
The Journal of Supercomputing, 18, 201–220, 2001
© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Compositing Methods for the
Sort-Last-Sparse Parallel Volume Rendering
System on Distributed Memory Multicomputers
DON-LIN YANG dlyang@fcu.edu.tw
JEN-CHIH YU jcyu@fcu.edu.tw
YEH-CHING CHUNG ychung@fcu.edu.tw

Department of Information Engineering, Feng Chia University, Taichung, Taiwan 407

Final version accepted September 15, 2000

Abstract. In the sort-last-sparse parallel volume rendering system on distributed memory multicom-
puters, one can achieve a very good performance improvement in the rendering phase by increasing
the number of processors. This is because each processor can render images locally without commu-
nicating with other processors. However, in the compositing phase, a processor has to exchange local
images with other processors. When the number of processors exceeds a threshold, the image com-
positing time becomes a bottleneck. In this paper, we propose three compositing methods to efficiently
reduce the compositing time in parallel volume rendering. They are the binary-swap with bounding
rectangle (BSBR) method, the binary-swap with run-length encoding and static load-balancing (BSLC)
method, and the binary-swap with bounding rectangle and run-length encoding (BSBRC) method. The
proposed methods were implemented on an SP2 parallel machine along with the binary-swap composit-
ing method. The experimental results show that the BSBRC method has the best performance among
these four methods.

Keywords: sort-last-sparse, parallel volume rendering, image compositing, run-length encoding

1. Introduction

Volume visualization is a well-known methodology for exploring the inner structure
and complex behavior of three-dimensional volumetric objects. Existing volume
visualization algorithms are commonly divided into two categories, surface render-
ing and (direct) volume rendering. Surface rendering extracts a given volume data to
form a contour surface with a constant-field value and renders the contour surface
geometrically. Volume rendering projects the entire volume data semi-transparently
onto a two-dimensional image without the aid of intermediate geometrical repre-
sentations. It is important for users to interactively explore the volume data in real
time. However, both surface rendering and volume rendering of large volumes of
data are still time consuming, and it is difficult to reach the interactive rendering
rate on a single processor.

To achieve the goal of interactive volume visualization, parallel rendering is a
very good approach. Molnar et al. [12] classified parallel rendering into three cate-
gories, sort-first, sort-middle, and sort-last. Among them, the sort-last scheme is the
most commonly used in parallel rendering. There are three phases, the partitioning

202 yang, yu and chung

phase, the rendering phase, and the compositing phase in a sort-last parallel volume
rendering system, as shown in Figure 1. In the partitioning phase, a processor par-
titions the entire volume data into several subvolume data, and distributes these
subvolume data to other processors. In the rendering phase, each processor renders
the assigned subvolume data into a 2D subimage using either volume rendering
or surface rendering algorithms. In the compositing phase, the subimages of pro-
cessors are composed into a full image using compositing algorithms. The image
is then displayed on the screen or is saved as an image file.

A number of parallel volume rendering systems in the sort-last class have been
proposed in the literature. Most of the algorithms are implemented on MIMD/
SIMD distributed memory multiprocessor systems. In the rendering phase, there
are several volume visualization algorithms that can be used, such as the March
cube algorithm [10] for surface rendering, and the ray tracing [9], shear-warp [7],
and splatting [15] algorithms for volume rendering. In Figure 1, we can see that
each processor renders its local subvolume data without communicating with other
processors. It can get a good speedup as the number of processors increases. How-
ever, a speedup is restricted to certain thresholds because of exchanging subimages
with other processors in the compositing phase. This indicates that the composit-
ing phase is a bottleneck in a sort-last parallel volume rendering system when the
number of processors exceeds a threshold.

In the sort-last class, the implementation of the image compositing can be divided
into two categories, full-frame merging and sparse merging [12]. In the full-frame

en tire vo lum e data

sub-
vo lum e

sub-
vo lum e

sub-
vo lum e

rendering

2D
sub-

im age

d isp lay

2D
sub-

im age

2D
sub-

im age

rendering rendering

processor 0 p rocessor np rocessor 1

com positing sub -im ages in to a fu ll im age

. . . .

. . . .

. . . .

partition en tire vo lum e in to sub-vo lum es and
d istribu te them to each p rocessorT h e p a rt i t io n in g p h ase

T h e ren d e r in g p h ase

T h e co m p o sit in g p h ase

Figure 1. Three phases in a sort-last parallel volume rendering system.

efficient compositing methods 203

merging implementation, processors exchange full 2D subimage frames without
considering the contents of the frames. The full-frame merging is very regular and
can be easily implemented in software and hardware, but it is not efficient if the
contents of the 2D subimage frames are sparse. On the other hand, in the sparse
merging implementation, processors exchange non-blank pixels of the 2D subim-
age frames. This implementation is more complicated than the full-frame merging
implementation. However, it can reduce the communication and the computation
overheads in the compositing phase when the 2D subimage frames are sparse.

In this paper, we propose three compositing methods, the binary-swap with
bounding rectangle (BSBR) method, the binary-swap with run-length encoding and
static load-balancing (BSLC) method, and the binary-swap with bounding rect-
angle and run-length encoding (BSBRC) method to efficiently reduce the image
compositing time in the sort-last-sparse parallel volume rendering system on dis-
tributed memory multicomputers. Throughout the paper we will use the terms
sort-last-sparse and sort-last sparse merging interchangeably. The proposed meth-
ods were implemented on an IBM SP2 parallel machine along with the binary-swap
compositing method [11]. Experimental results show that the BSBRC method has
the best performance among the four methods.

The rest of the paper is organized as follows. The related work of parallel com-
positing methods will be given in Section 2. In Section 3, the proposed methods will
be described and analyzed in detail. In Section 4, the experimental results of the
proposed methods will be presented. Section 5 concludes the paper and discusses
some future work.

2. Related work

Many parallel volume rendering systems in the sort-last class have been proposed
for distributed memory multiprocessor systems. In the image compositing phase,
the compositing methods can be divided into two cases, the buffered case and the
sequenced case [14]. In the buffered case, each processor is responsible for han-
dling a fixed portion of the image. Each processor allocates a buffer and receives
pixels in the same fixed portion of the image from other processors once. After
compositing pixels in the buffer, each processor generates the final image of the
portion it handles. In the buffered case, each processor has to send and receive
n− 1 messages at the same time. Hsu [4] and Neumann [14] used the buffered case
method to composite subimages into a final image. In the sequenced case, such as
the tiling approach [6], parallel pipeline [8], binary-tree [1], and binary-swap [11],
each processor receives a message from one processor and composites received
pixels immediately in each compositing stage. Each processor repeats the same step
in each compositing stage until it generates the portion of the final image. Since
our methods are based on the binary-swap compositing method, we will describe it
in detail in the next subsection.

The compositing methods described above can be applied to the sort-last-sparse
or the sort-last-full implementations. Some methods for the sort-last-sparse parallel

204 yang, yu and chung

volume rendering system have been proposed in the literature [1, 2, 8, 11]. In the
following section, we will briefly describe them.

Ahrens and Painter [1] proposed a compression-based image compositing algo-
rithm. They used a lossless compression technique, run-length encoding [3], to com-
press non-blank pixels. They applied this scheme to the binary-tree compositing
method for parallel surface rendering. In the surface rendering, a pixel value is rep-
resented using red, blue, green, depth, and count fields. The algorithm initially uses
the first pixel as the base pixel and then compares it with the next pixel. Iterating
through the pixels of the image by column or row, the algorithm compares the base
pixel with the current pixel. If the values of red, blue, green, and depth of the two
pixels are equal, the value of the count field in the base pixel is increased by one.
Otherwise the base pixel is the encoded pixel. The base pixel value is then set to the
current pixel value and the value of its count field is set to 1. In the compression
phase, the time complexity of the algorithm is O�n�, where n is the number of pix-
els of the input image. In the phase of compositing compressed images, two images
are input and one result image is output. There are two cases in this phase. One
case is that one input image contains a run (an encoded pixel) and the other does
not. In this case, an output pixel’s value is extracted from the run and the count
field in the run is decreased by 1. The other case is that both input images contain
runs. The runs of pixels can be composited together. The length of runs to be com-
posited is equal to the smaller count value of the two runs. The value of the count
field of the run with a larger count value is set to its count value minus the count
value of the other run. The comparison continues until there are no more runs. In
the compositing phase, the time complexity of the algorithm is O�n� for the worst
case and is O�1� for the best case.

Lee [8] proposed a direct pixel forwarding method and applied it to the par-
allel pipeline compositing algorithm for the sort-last-sparse polygon rendering. In
the direct pixel forwarding method, explicit information is used to locate non-blank
pixel positions in a subimage. For each non-blank pixel, its value is represented by
red, blue, green, depth, and its x and y coordinates of the pixel. In the composit-
ing phase, each processor only composites non-blank pixels and stores the result
pixels in correct positions according to the x and y coordinates of pixels. Cox and
Hanrahan [2] also applied this scheme to a distributed snooping algorithm for poly-
gon rendering.

Molnar et al. [12] indicated that the sort-last sparse merging methods are load
unbalanced if one processor sends more non-blank pixels than other processors. To
solve the load imbalance problem, one can assign each processor an interleaved
array of non-blank pixels such that each processor sends an almost equal number
of pixels to other processors. Lee [8] applied this scheme to the parallel pipeline
compositing algorithm with direct pixel forwarding.

To avoid sending blank pixels and to reduce overheads of processing non-blank
pixels, the bounding rectangle [3] is a good choice. Iterating through the pixels
in an input image, the bounding rectangle scheme records the coordinates of the
upper-left and the lower-right corners of the bounding rectangle. In the compositing
phase, each processor only handles pixels in the bounding rectangle. Lee [8] applied
the bounding rectangle scheme to the parallel pipeline compositing algorithm.

efficient compositing methods 205

Ma et al. [11] also used a bounding rectangle to cover all non-blank pixels at each
compositing stage.

3. The proposed compositing methods

In this section, we will first describe the binary-swap (BS) compositing method
proposed by Ma et al. [11]. Then we will explain the proposed compositing methods,
the binary-swap with bounding rectangle (BSBR) method, the binary-swap with run-
length encoding and static load-balancing (BSLC) method, and the binary-swap with
bounding rectangle and run-length encoding (BSBRC) method, in detail.

In order to derive the cost of the compositing phase in terms of processing time,
a summary of the notations used in this paper is introduced here.

• Tcomp�L�—Computation time of method L.
• Tcomm�L�—Communication time of method L.
• Ts—Start-up time per message.
• Tc—Message transmission time per byte.
• To—Computation time of “over” operation per pixel.
• A—Image size in pixels, A1/2 ×A1/2.
• P—Number of processors (PE).

3.1. The binary-swap compositing method

The binary-swap compositing method [11] was originally proposed for parallel
volume rendering to composite ray-traced subimages to a full image. The key idea
is that, at each compositing stage, two processors are paired. One processor in a
pair exchanges half of its subimage with that of the other. After exchanging subim-
ages, each processor composites the half image that it keeps with the received half
image by using the over operation. Figure 2 illustrates the binary-swap composit-
ing method using four processors. The algorithm of the binary-swap compositing
method is shown in Figure 3. In Figure 3, the terms of PE and PE′ are the paired
processors.

In the binary-swap compositing method, logP communication steps are required.
When the compositing of subimages to a full image is completed, the total
number of pixels transmitted is P ×∑logP

k=1 A/2
k, and each pixel consists of intensity

and opacity. Each pixel is represented by 16 bytes. Therefore, for each proces-
sor, the local computation time and the communication time in the binary-swap
compositing method are

Tcomp�BS� =
logP∑
k=1

(
To ×

A

2k

)
and (1)

Tcomm�BS� =
logP∑
k=1

(
Ts +

(
16 · A

2k

)
× Tc

)
: (2)

206 yang, yu and chung

P E 0

P E 1

P E 2

P E 3

S T E P 1 S T E P 2

Figure 2. The binary-swap compositing method using four processors.

3.2. The binary-swap with bounding rectangle (BSBR) Method

When applying the bounding rectangle scheme to the binary-swap compositing
method, termed BSBR, we have the following two cases. We show these two cases
in Figure 4. In the first case shown in Figure 4(a), for each processor pair, PE
and PE′, PE needs to send (receive) pixels to (from) PE′ if the sending (receiving)
subimage contains a portion of the bounding rectangle. The portion of a bounding
rectangle sent (received) to (from) PE′ is called the sending (receiving) bounding
rectangle of PE. The portion of a bounding rectangle that is retained in PE is called
the local bounding rectangle of PE. For the second case shown in Figure 4(b), for

Algorithm Binary_Swap_Compositing_Method(P)

1. for all processors do in parallel

2. for i = 1 to logP do

3. Each PE sends the half subimage that it keeps to PE';

4. Each PE receives the half subimage from PE';

5. Each PE composites incoming half subimage with its local half subimage;

6. endfor

end_of_Binary_Swap_Compositing_Method

Figure 3. The algorithm of the binary-swap compositing method.

efficient compositing methods 207

(a)

(b)

send ing
s u b i m a g e

P E P EPE' PE '

rece iv ing
s u b i m a g e

P EP E PE'PE '

Figure 4. Two cases for the BSBR method. (a) The first case. (b) The second case.

each processor pair, PE and PE′, PE needs not send (receive) pixels to (from) PE′

if the sending (receiving) subimage contains no portion of the bounding rectangle.
In order to obtain the bounding rectangle information, the processor in each pair
has to exchange its bounding rectangle information in each compositing stage.

The advantage of the BSBR method is that it can quickly find an approxi-
mate number of non-blank pixels with less additional fields to record these pixels’
positions. In the BSBR method, it takes an O�A� amount of time to search the
sending bounding rectangle and local bounding rectangle in the first compositing
stage. In the later compositing stages, each processor generates a new local bound-
ing rectangle by comparing the local bounding rectangle and the receiving bounding
rectangle information. The time complexity is O�1� in comparing the bounding rect-
angle. The disadvantage of the BSBR method is that it sends not only non-blank
pixels, but also blank pixels within the sending bounding rectangle. If there is a high
density of non-blank pixels in a sending bounding rectangle, the BSBR method per-
forms well. Conversely, it performs poorly as the non-blank pixels’ density of a
bounding rectangle is sparse.

The BSBR method is implemented as follows. We use four short integers to rep-
resent the upper-left and the lower-right coordinates of a bounding rectangle. First,
each processor finds the boundary of the sending bounding rectangle and packs
pixels in the rectangle into a sending buffer. Then, for each PE in a processor pair,
it sends the sending buffer to PE′ and accepts the receiving bounding rectangle from
PE′. If the receiving bounding rectangle contains no pixels, the pixel compositing is
completed in this compositing stage. Otherwise, the pixels in the receiving bound-
ing rectangle are composited with the pixels in the local bounding rectangle. The
compositing time of the BSBR method is O�Ak

rec� at the kth compositing stage,
where Ak

rec is the number of pixels in a receiving bounding rectangle.
In the BSBR method, it requires logP communication stages to send and receive

the bounding rectangle information for each paired processors. The number of
empty bounding rectangles depends on the number of processors and the rotation

208 yang, yu and chung

of a viewing point. As the number of processors increases, the ratio of empty bound-
ing rectangle increases as well. The factors of a viewing point are rotation dimension
and rotation degree. For each processor, there are log 3

√
P nonempty bounding rect-

angles in the receiving bounding rectangles when we use a normal orthogonal pro-
jection. As a viewing point rotates along one axis, each processor has a maximum
of log� 3

√
P2� nonempty bounding rectangles in logP communication stages. Each

processor has a maximum of logP nonempty bounding rectangles in logP commu-
nication stages while a viewing point rotates along two axes. For each processor,
the local computation time and the communication time for the BSBR method are

Tcomp�BSBR� = Tbound +
logP∑
k=1

(
To ×Ak

rec

[
B�k�]) and (3)

Tcomm�BSBR� =
logP∑
k=1

(
Ts +

(
8+ 16 ·Ak

rec

[
B�k�])× Tc); (4)

where Tbound is the computation time for finding a sending bounding rectangle and
a local bounding rectangle in the first compositing stage, and

�B�k�� =
{

1; if a receiving bounding rectangle is not empty
0; if a receiving bounding rectangle is empty :

3.3. The binary-swap with run-length encoding and
static load-balancing (BSLC) method

The run-length encoding is better than explicit x and y coordinates because it uses
less position information to record non-blank pixels. In [1], they used the values of
pixels to do encoding. It is a good scheme for surface rendering, but not efficient for
volume rendering due to an additional field used to record a count of the pixels with
the same value. In surface rendering or polygon rendering, a pixel’s value is usually
represented by an integer. Due to the data coherence of 2D images and the pixel’s
value representation format, the count field can be used efficiently. It can compress
many pixels with the same value into one pixel. However, in volume rendering,
opacity and intensity are used as a pixel’s values and are usually represented by
floating points. In general, the values of a non-blank pixel and the one next to it
are different. If we apply the run-length encoding method used in [1] for volume
rendering, the result image size is usually equal to the number of non-blank pixels
of the original image. This will increase the message size due to the count field. To
avoid this problem, we use the background/foreground value of a pixel (blank/non-
blank) instead of the value of a pixel to do encoding.

Figure 5 shows the case of run-length encoding by using the background/fore-
ground values of pixels. In the run-length encoding, transmitting non-blank pixels
and compositing pixels may not be balanced because of uneven non-blank pixel
distribution, which can be corrected by using static load-balancing methods. An
interleaved array distribution is a good choice for balancing a compositing load
without significant processor overheads. Figure 6 shows the load-balancing scheme
of an interleaved array distribution in the binary-swap compositing method.

efficient compositing methods 209

3 241 058

non-b lank p ixe l

b lank p ixe l

run- length code: 3, 8, 5, 10, 4, 2

Figure 5. The case of run-length encoding by using the background/foreground values of pixels.

In the BSLC method, the rule of data exchange is the same as the binary-swap
compositing method. The difference is that the half of a subimage we send is in
interleaved sections instead of a whole block. In the run-length encoding, iterating
through the pixels of the image using an interleaved method, the algorithm checks
a pixel’s value (opacity or intensity) to see whether it is zero or nonzero, i.e., the
pixel is blank or non-blank. The algorithm records the numbers of the continuous

P E 0

P E 1

P E 2

P E 3

S T E P 1 S T E P 2

Figure 6. An interleaved array distribution scheme in the binary-swap compositing method.

210 yang, yu and chung

blank and non-blank pixels, as shown in Figure 5. After encoding, we generate
the run-length codes to index the blank and non-blank pixels. Then we pack the run-
length codes and non-blank pixels into a sending buffer. As one processor receives
the data from the other paired processor, it only composites the non-blank pixels
in a receiving buffer according to the run-length codes.

The time complexity of a run-length encoding phase in the BSLC method
is O�A/2k� at the kth compositing stage. The size of run-length codes depends on
an image. As the image contains almost continuous blank and non-blank pixels,
it generates fewer codes than blank and non-blank pixels in a discrete distribu-
tion. In the worst case, i.e., the blank and non-blank pixels appear in turn, the size
of run-length codes is equal to the scheme of explicit x and y coordinates. The
compositing time in the BSLC method is O�Ak

opaque� at the kth compositing stage,
where Ak

opaque is the number of non-blank pixels in a receiving subimage. For each
processor, the local computation time and the communication time in the BSLC
method are

Tcomp�BSLC� =
logP∑
k=1

(
Tencode ×

A

2k
+ To ×Ak

opaque

)
and (5)

Tcomm�BSLC� =
logP∑
k=1

(
Ts +

(
2 · Rkcode + 16 ·Ak

opaque

)
× Tc

)
; (6)

where Tencode is the computation time of run-length encoding per pixel and Rkcode is
the size of run-length codes. Each element of run-length codes is represented by
two bytes.

3.4. The binary-swap with bounding rectangle and
run-length encoding (BSBRC) method

The disadvantage of the BSLC method is that it has to iterate through all the pixels
of a sending subimage whether the pixels are blank or non-blank. The disadvantage
of the BSBR method is that if the bounding rectangle is sparse, the processor sends
too many blank pixels to the paired processor. By combining the bounding rectangle
and the run-length encoding, the disadvantages of the BSBR method and the BSLC
method can be avoided. We call this new method BSBRC. In the BSBRC method,
a processor not only requires less computing time by using the bounding rectangle
but also sends less data to the paired processor with the run-length encoding. In the
BSLC method, or the method proposed by Ahrens et al. [1], it has to iterate through
all pixels in the sending subimage in the run-length encoding phase. The BSBRC
method only iterates through the pixels in the sending bounding rectangle of the
subimage. In the run-length encoding phase, a processor processes the pixels within
the sending bounding rectangle. It reduces the encoding time and generates fewer
run-length codes. In the compositing phase, a processor composites only the non-
blank pixels instead of all the pixels in the receiving subimage according to the
run-length encoding. It takes less compositing time and sends out less data since

efficient compositing methods 211

the total number of the run-length codes and non-blank pixels is less than the
number of pixels of an image. The BSBRC algorithm is given as follows.

Algorithm BSBRC(P) �
1. For all PEs do in parallel
2. /* Find the bounding rectangle*/
3. For all pixels in the subimage do
4. Find the boundary of the local bounding rectangle to cover all non-

blank pixels;
5. For k = 1 to logP do �
6. Use the centerline of the subimage to divide the local bounding rect-

angle into the new local bounding rectangle and the sending bounding
rectangle;

7. For all pixels in the boundary of the sending bounding rectangle do
8. Use the run-length encoding to generate the codes to index the non-

blank pixels and pack non-blank pixels into a temporary buffer;
9. Pack the sending bounding rectangle information into the sending

buffer;
10. If the sending bounding rectangle is not empty �
11. Pack the run-length codes into the sending buffer;
12. Pack the pixels in a temporary buffer into the sending buffer;

�
13. Send the sending buffer to the paired PE′;
14. Receive the receiving buffer from the paired PE′;
15. Unpack the receiving bounding rectangle information from the receiv-

ing buffer;
16. If the receiving bounding rectangle is not empty �
17. Unpack the run-length codes from the receiving buffer;
18. Unpack the pixels from the receiving buffer into a compositing buffer;
19. For each pixel in a compositing buffer do
20. Composite the pixel with the corresponding pixel in the local

subimage according to the run-length codes
�

21. Calculate the new local bounding rectangle by combining the local
bounding rectangle with the receiving bounding rectangle;
�

� end of BSBRC

For each processor, the local computation time and the communication time for
the BSBRC method are

Tcomp�BSBRC� = Tbound +
logP∑
k=1

(
Tencode ×Ak

send + To ×Ak
opaque

)
(7)

and

Tcomm�BSBRC� =
logP∑
k=1

(
Ts +

(
8+ 2 · Rkcode + 16 ·Ak

opaque

)
× Tc

)
; (8)

212 yang, yu and chung

where Ak
send is the number of pixels in a sending bounding rectangle at the kth

compositing stage.

4. Performance study and experimental results

To evaluate the performance of the proposed methods, we have implemented these
methods on an IBM SP2 parallel machine [5] along with the binary-swap (BS) com-
positing method. The IBM SP2 parallel machine belongs to the National Center
of High Performance Computing (NCHC) in Taiwan. This super-scalar architec-
ture uses a CPU model of IBM RISC System/6000 POWER2 with a clock rate of
66.7 MHz. There are eighty IBM POWER2 nodes in the system, and each node
has a 128KB 1st-level data cache, a 32KB 1st-level instruction cache, and 128MB
of memory space. Each node is connected to a low-latency, high-bandwidth inter-
connection network called the High Performance Switch (HPS).

These proposed methods were written in C language with an MPI [13] message
passing library. The test samples are Engine low �256 × 256 × 110�, Engine high
�256× 256× 110�, Head �256× 256× 113�, and Cube �256× 256× 110�. The images
of the test samples are shown in Figure 7. In the rendering phase, for each test
sample, a ray tracing algorithm is used to generate 8-bit gray-level images in two

Figure 7. Test sample images. (a) Engine low, (b) Engine high, (c) Head, (d) Cube.

efficient compositing methods 213

Figure 7. Continued.

different sizes, 384 × 384 pixels and 768 × 768 pixels. In our experiments, we run
the test samples on 2, 4, 8, 16, 32, and 64 processors.

We use the maximum received message size to evaluate the performance of the
proposed methods. For each processor, it calculates the message sizes it received at
all compositing stages by mi =

∑logP
k=1 �Rki �, where Rki is the received message size

in bytes for the ith processor at the kth compositing stage. The maximum received
message size, Mmax, among P processors is defined as Mmax =MAXP−1

i=0 �mi�. From
Equations (2), (4), (6), and (8), in general, we have that

MBS
max ≥MBSBR

max ≥MBSBRC
max ≥MBSLC

max (9)

where MBS
max, MBSBR

max , MBSBRC
max , and MBSLC

max are Mmax of the BS, BSBR, BSBRC, and
BSLC methods, respectively.

Table 1 shows the compositing time (Ttotal�L� = Tcomp�L� + Tcomm�L�) for each
proposed method L and the BS method for the test images with 384 × 384
pixels. From Table 1, we can see that in most cases the BS method has the
largest communication time and the BSLC method has the smallest commu-
nication time while Tcomm�BSBRC� is less than Tcomm�BSBR�. For the sparser
cases, Engine high and Cube, Tcomm�BSLC� is much less than Tcomm�BSBR� and
Tcomm�BSBRC�. In a few cases where the number of processors is two, Tcomm�BSLC�
is larger than Tcomm�BSBRC�. The reason is that Ak

opaque�BSLC� is almost equal to
Ak

opaque�BSBRC�, but the BSLC method has more run-length code than the BSBRC

214 yang, yu and chung

Ta
bl
e
1.

T
he

co
m

po
si

tin
g

tim
e

of
pr

op
os

ed
m

et
ho

ds
fo

r
th

e
fo

ur
38

4
×

38
4

te
st

im
ag

es

B
S

B
SB

R
B

SL
C

B
SB

R
C

N
um

be
r

of
pr

oc
es

so
rs

T
co
m
p

T
co
m
m

T
to
ta
l

T
co
m
p

T
co
m
m

T
to
ta
l

T
co
m
p

T
co
m
m

T
to
ta
l

T
co
m
p

T
co
m
m

T
to
ta
l

E
ng
in
e
lo
w

2
29

7.
85

29
.2

5
32

7.
10

70
.7

2
11

.5
7

82
.2

9
85

.0
1

9.
97

94
.9

8
64

.2
0

8.
72

72
.9

2
4

36
9.

18
55

.3
4

42
4.

52
60

.6
8

30
.9

2
91

.6
0

11
9.

29
17

.1
0

13
6.

39
60

.9
7

28
.0

1
88

.9
8

8
37

1.
34

56
.1

1
42

7.
44

57
.3

7
44

.4
1

10
1.

78
13

1.
91

11
.6

7
14

3.
59

69
.3

1
29

.8
0

99
.1

1
16

37
8.

98
59

.0
1

43
8.

00
56

.2
6

44
.2

5
10

0.
51

13
6.

67
16

.7
0

15
3.

36
60

.1
3

30
.2

7
90

.4
0

32
38

5.
80

60
.5

6
44

6.
36

48
.7

8
43

.1
9

91
.9

7
14

1.
50

8.
51

15
0.

02
60

.8
2

22
.4

1
83

.2
3

64
39

2.
48

60
.3

2
45

2.
80

50
.7

2
39

.9
9

90
.7

2
14

0.
75

11
.0

9
15

1.
85

59
.1

2
24

.5
6

83
.6

8

E
ng
in
e
hi
gh

2
29

8.
03

26
.9

8
32

5.
02

59
.8

8
21

.9
5

81
.8

3
71

.4
8

2.
83

74
.3

0
57

.9
7

5.
52

63
.4

9
4

37
1.

75
57

.2
4

42
8.

99
54

.2
6

30
.2

8
84

.5
4

10
7.

07
3.

87
11

0.
94

52
.8

8
13

.6
6

66
.5

4
8

37
1.

42
64

.3
8

43
5.

81
54

.0
0

37
.7

5
91

.7
5

12
3.

27
4.

84
12

8.
11

55
.3

9
23

.0
5

78
.4

4
16

37
3.

97
66

.5
4

44
0.

51
52

.0
7

30
.4

0
82

.4
6

13
2.

18
5.

87
13

8.
05

50
.0

2
23

.1
0

73
.1

2
32

38
8.

80
64

.1
5

45
2.

95
42

.7
0

39
.2

8
81

.9
9

13
4.

47
4.

28
13

8.
76

48
.3

5
25

.7
5

74
.1

0
64

39
2.

95
62

.2
2

45
5.

17
48

.0
4

26
.1

9
74

.2
4

13
7.

94
5.

41
14

3.
35

48
.0

1
20

.2
5

68
.2

7

H
ea
d

2
29

0.
90

35
.6

4
32

6.
53

73
.6

2
20

.9
0

94
.5

2
88

.5
1

10
.4

3
98

.9
4

65
.5

6
9.

72
75

.2
8

4
36

4.
66

50
.2

5
41

4.
90

71
.0

0
42

.7
8

11
3.

78
12

7.
21

16
.9

6
14

4.
17

63
.2

1
34

.8
0

98
.0

2
8

38
9.

83
59

.8
3

44
9.

66
62

.7
9

42
.4

3
10

5.
22

13
5.

47
14

.3
8

14
9.

85
73

.4
6

32
.8

8
10

6.
34

16
38

8.
89

60
.6

6
44

9.
55

51
.2

3
37

.7
5

88
.9

8
14

2.
15

15
.4

6
15

7.
61

60
.1

1
34

.7
4

94
.8

5
32

38
2.

29
59

.9
6

44
2.

58
51

.1
6

45
.0

1
96

.1
7

13
7.

41
15

.5
7

15
2.

99
54

.9
7

42
.6

6
97

.6
3

64
38

5.
96

62
.9

7
44

8.
93

52
.7

4
33

.5
1

86
.2

6
13

8.
25

11
.4

7
14

9.
73

64
.3

5
17

.5
7

81
.9

3

C
ub

e
2

29
9.

04
27

.1
2

32
6.

15
81

.8
6

14
.0

3
95

.8
9

73
.2

1
4.

70
77

.9
1

64
.2

6
3.

30
67

.5
6

4
37

4.
49

55
.0

7
42

9.
56

69
.7

8
44

.3
8

11
4.

16
10

8.
52

6.
32

11
4.

84
59

.2
7

17
.9

1
77

.1
8

8
37

3.
64

63
.5

2
43

7.
16

75
.2

1
57

.7
4

13
2.

95
12

4.
28

7.
62

13
1.

90
69

.5
9

17
.2

5
86

.8
3

16
38

0.
22

60
.3

8
44

0.
60

59
.3

1
50

.8
3

11
0.

13
13

1.
59

7.
98

13
9.

57
55

.7
8

26
.7

6
82

.5
4

32
38

1.
10

61
.4

8
44

2.
58

47
.1

6
42

.1
5

89
.3

1
13

9.
81

4.
53

14
4.

34
51

.9
7

19
.4

6
71

.4
4

64
38

3.
94

64
.1

5
44

8.
09

47
.6

6
27

.0
5

74
.7

2
13

7.
34

9.
33

14
6.

68
54

.7
0

11
.3

3
66

.0
3

(T
im

e
un

it:
m

s)
.

efficient compositing methods 215

Engine_low

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

2 4 8 16 32 64

number of processors

tim
e

(m
s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 8. The compositing time of the BSBR, BSLC, and BSBRC methods for Engine low.

method. The experiment results of the communication time in Table 1 match the
analysis of Equation (9).

For the computation time, Tcomp�BSLC� is much larger than Tcomp�BSBRC� and
Tcomp�BSBR�. From Equation (1) and Equation (5), we can predict an asymptotic
bound for the computation time of the BS method and the BSLC method respec-
tively, when the number of processors exceeds a threshold.

To visualize the experiment results better, we use Figures 8 and 9 to show the
compositing time of the three proposed methods for Engine low and Head, respec-
tively. The images of these two test samples are denser than the other two. Later

Head

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

2 4 8 16 32 64

number of processors

tim
e

(m
s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 9. The compositing time of the BSBR, BSLC, and BSBRC methods for Head.

216 yang, yu and chung

we will show the figures for Engine high and Cube that have better results as was
expected.

In the experiments where the number of processors is greater than eight,
the Tcomp�BSBRC� of some cases is larger than the Tcomp�BSBR�. However, in
Figure 8, every Ttotal�BSBRC� is less than Ttotal�BSBR� because the difference
between Tcomm�BSBRC� and Tcomm�BSBR� is much larger than the difference
between Tcomp�BSBRC� and Tcomp�BSBR�. Although Ttotal�BSBRC� is larger than
Ttotal�BSBR� in Figure 9 when the number of processors is 8, 16, or 32, the dif-
ference is very small. Ttotal�BSLC� is much larger than Ttotal�BSBR� as well as
Ttotal�BSBRC� due to a large Tcomp�BSLC�, even though Tcomm�BSLC� is the
smallest among the four methods.

Figures 10 and 11 show the compositing time of the three proposed methods for
Engine high and Cube, respectively. In these cases of sparser images, Tcomp�BSBRC�
is larger than Tcomp�BSBR� when the number of processors is greater than thirty-
two. However, the BSBRC method performs much better than other methods, espe-
cially when the bounding rectangle of a subimage is larger and sparser, such as Cube.
In Figure 11, Ttotal�BSBRC� is much less than Ttotal�BSBR� in all test cases. Also
note that Ttotal�BSLC� is less than Ttotal�BSBR� only when the number of processors
is less than eight.

Table 2 shows the compositing time of the three proposed methods for the test
samples with 768× 768 pixels. The results are similar to those of Table 1. In general,
the BSBRC method has the best overall performance among them. A further anal-
ysis will be given below.

The goal of our proposed methods is to reduce the compositing time (Ttotal�L� =
Tcomp�L� + Tcomm�L��. From Equation (9) and our experiments, we know that
Tcomm�BSLC� is the smallest, but Tcomp�BSLC� is the largest among the four meth-
ods. Since Tcomp�BSLC� dominates the total time due to the encoding of each

Engine_high

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 4 8 16 32 64

number of processors

tim
e

(m
s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 10. The compositing time of the BSBR, BSLC, and BSBRC methods for Engine high.

efficient compositing methods 217

Cube

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 4 8 16 32 64

number of processors

tim
e

(m
s)

Tcomp(BSBR)

Tcomm(BSBR)

Tcomp(BSLC)

Tcomm(BSLC)

Tcomp(BSBRC)

Tcomm(BSBRC)

Ttotal(BSBR)

Ttotal(BSLC)

Ttotal(BSBRC)

Figure 11. The compositing time of the BSBR, BSLC, and BSBRC methods for Cube.

image (A/2k from Equation (5)) to achieve the load balancing, the BSLC method
is not as good as the other two.

From Equations (4) and (8), we get that Tcomm(BSBRC) is less than Tcomm(BSBR)
except when the pixels in a receiving bounding rectangle are all non-blank. The dif-
ference between Tcomm(BSBRC) and Tcomm(BSBR) becomes larger when a receiv-
ing bounding rectangle is sparser. Although in some cases Tcomp(BSBRC) is larger
than Tcomp(BSBR) depending on the factors of Tencode, To, Ak

send, and Ak
opaque, the

total compositing time of the BSBRC method is less than the BSBR method, i.e.,
�Tcomm�BSBR� − Tcomm�BSBRC�� > �Tcomp�BSBRC� − �Tcomm(BSBR)).

The overall efficiency of the BSBRC method is better than the BSBR and BSLC
methods, but it also has bottlenecks. First, the BSBRC method requires extra com-
putation time to encode the non-blank pixels. After encoding, it generates additional
codes to index non-blank pixels thus increasing the communication time. Second,
as the bounding rectangle becomes denser, the performance of the BSBR method
is closer to the BSBRC method. Third, as the number of processors increases, the
size of the subimage decreases such that the difference between Ttotal�BSBRC� and
Ttotal�BSBR� gets smaller. Further efforts to improve our methods will be discussed
in the next section.

5. Conclusions and future work

In this paper we have presented three compositing methods, the binary-swap with
bounding rectangle (BSBR) method, the binary-swap with run-length encoding and
static load-balancing (BSLC) method, and the binary-swap with bounding rectangle
and run-length encoding (BSBRC) method, for the sort-last-sparse parallel volume
rendering system and have demonstrated the performance improvements on a dis-
tributed memory multicomputer.

218 yang, yu and chung

Ta
bl
e
2.

T
he

co
m
po

si
tin

g
tim

e
of

pr
op

os
ed

m
et
ho

ds
fo
r
th
e
fo
ur

76
8
×

76
8
te
st

sa
m
pl
es

B
SB

R
B
SL

C
B
SB

R
C

N
um

be
r
of

pr
oc
es
so
rs

T
co
m
p

T
co
m
m

T
to
ta
l

T
co
m
p

T
co
m
m

T
to
ta
l

T
co
m
p

T
co
m
m

T
to
ta
l

E
ng
in
e
lo
w

2
34

3.
75

60
.6
6

40
4.
41

33
6.
63

30
.3
8

36
7.
00

31
4.
63

44
.0
6

35
8.
68

4
32

3.
38

15
1.
64

47
5.
02

48
0.
83

53
.2
6

53
4.
09

32
2.
16

11
7.
12

43
9.
28

8
37

0.
87

19
3.
27

56
4.
14

57
8.
53

43
.0
1

62
1.
55

34
9.
70

13
8.
78

48
8.
48

16
29

0.
41

19
5.
00

48
5.
41

55
4.
43

76
.9
3

63
1.
37

24
8.
74

15
4.
76

40
3.
51

32
21

3.
03

23
8.
19

45
1.
22

56
8.
99

40
.5
1

60
9.
50

27
2.
68

12
5.
78

39
8.
46

64
23

1.
22

16
2.
73

39
3.
95

57
8.
29

25
.4
2

60
3.
72

27
0.
51

10
9.
17

37
9.
68

E
ng
in
e
hi
gh

2
30

5.
77

79
.3
8

38
5.
15

28
8.
96

9.
69

29
8.
65

26
9.
64

42
.8
6

31
2.
50

4
31

6.
46

15
4.
02

47
0.
48

43
0.
95

12
.7
2

44
3.
67

24
7.
90

60
.0
1

30
7.
91

8
32

3.
85

16
0.
80

48
4.
65

49
0.
93

19
.1
4

51
0.
07

23
4.
16

11
9.
68

35
3.
84

16
21

9.
62

15
0.
89

37
0.
51

51
7.
86

29
.3
9

54
7.
25

25
9.
29

35
.4
3

29
4.
72

32
19

1.
24

23
7.
84

42
9.
08

53
5.
04

19
.5
5

55
4.
59

20
2.
16

12
9.
53

33
1.
70

64
19

3.
53

12
4.
72

31
8.
25

54
2.
41

12
.7
5

55
5.
16

20
6.
82

57
.4
0

26
4.
23

H
ea
d

2
40

1.
25

24
7.
53

64
8.
78

34
9.
41

37
.2
7

38
6.
68

32
6.
74

16
5.
58

49
2.
32

4
47

0.
61

19
9.
23

66
9.
84

49
3.
69

64
.7
0

55
8.
39

39
0.
48

15
8.
02

54
8.
50

8
37

5.
13

18
3.
51

55
8.
64

53
9.
47

62
.8
0

60
2.
27

33
3.
66

19
4.
47

52
8.
14

16
30

8.
10

19
0.
95

49
9.
05

56
0.
23

61
.3
0

62
1.
53

29
4.
90

17
8.
62

47
3.
52

32
18

7.
68

22
2.
46

41
0.
14

60
8.
87

20
.3
8

62
9.
26

23
4.
19

15
7.
53

39
1.
72

64
25

3.
06

18
1.
00

43
4.
06

56
1.
54

40
.3
0

60
1.
85

23
7.
53

99
.0
7

33
6.
60

C
ub

e
2

41
9.
80

61
.5
6

48
1.
36

30
1.
48

14
.7
0

31
6.
18

29
2.
14

24
.5
0

31
6.
64

4
37

6.
53

21
6.
55

59
3.
08

44
3.
85

25
.5
2

46
9.
37

27
3.
59

10
3.
13

37
6.
72

8
45

4.
21

19
6.
93

65
1.
13

49
8.
76

23
.7
7

52
2.
54

29
8.
69

87
.0
8

38
5.
78

16
24

7.
90

29
4.
01

54
1.
91

52
4.
00

23
.1
7

54
7.
17

23
6.
72

10
6.
54

34
3.
26

32
26

4.
53

16
8.
79

43
3.
32

54
2.
34

14
.8
1

55
7.
15

22
0.
23

56
.1
3

27
6.
36

64
21

8.
93

12
0.
05

33
8.
98

54
7.
54

12
.4
8

56
0.
02

21
1.
55

47
.4
1

25
8.
96

(T
im

e
un

it:
m
s)
.

efficient compositing methods 219

We have implemented these three methods along with the binary-swap method
on an IBM SP2 parallel machine. From the experimental results, we found that the
BSLC method has the smallest maximum received message size among the four
methods. However, it requires more computation time than the BSBRC method.
The BSBRC method has fewer maximum received message sizes than the BSBR
method, and it also has the shortest compositing time among the four methods.

In the future, we first plan to improve the binary-swap compositing method run-
ning on any number of processors. The binary-swap compositing method is an effi-
cient method for parallel rendering with more parallelism. The drawback of the
binary-swap compositing method is that the number of processors must be a power
of two. Second, we plan to implement the parallel splatting volume rendering [15]
method and explore an efficient load-balancing scheme in the rendering phase since
load-balancing plays an important role in sort-last parallel rendering as the size of
opaque voxels has large disparities. Third, we will try our methods on different
types of machine architectures, such as [16–18] and study more efficient encoding
schemes.

Acknowledgments

The authors would like to thank the referees for their helpful comments. This
research was partially supported by the National Science Council of Republic of
China under contract NSC-89-2213-E-035-032.

References

1. J. Ahrens and J. Painter. Efficient sort-last rendering using compression-based image compositing.
In Proceedings of the 2nd Eurographics Workshop on Parallel Graphics & Visualization, 1998.

2. M. Cox and P. Hanrahan. Pixel merging for object-parallel rendering: A distributed snooping algo-
rithm. In Proceedings of the 1993 Parallel Rendering Symposium, pp. 49–56, New York, 1993.

3. J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principles and Practice
Second Edition in C. Addison-Wesley, Reading, MA, 1990.

4. W.M. Hsu. Segmented ray casting for data parallel volume rendering. In Proceedings of the 1993
Parallel Rendering Symposium, pp. 7–14, San Jose, CA, October 1993.

5. IBM. IBM AIX Parallel Environment, Parallel Programming Subroutune Reference.
6. G. Johnson and J. Genetti. Volume rendering of large datasets on the Cray T3D. In 1996 Spring

Proceedings (Cray User Group), pp. 155–159, 1996.
7. P. Lacroute. Analysis of a parallel volume rendering system based on the shear-warp factorization.

IEEE Computer Graphics and Application, 2:218–231, 1996.
8. T.Y. Lee, C.S. Raghavendra, and J.B. Nicholas. Image composition schemes for sort-last polygon

rendering on 2D mesh multicomputers. IEEE Transactions on Visualization and Computer Graphics,
2:202–217, 1996.

9. M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9:245–261, 1990.
10. W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D surface construction algo-

rithm. Computer Graphics, 21:163–169, 1987.
11. K.L. Ma, J. Painter, C. Hansen, and M. Krogh. Parallel volume rendering using binary-swap com-

positing. IEEE Computer Graphics and Application, 14:59–67, 1994.
12. S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel rendering. IEEE

Computer Graphics and Application, 14:23–32, 1994.

220 yang, yu and chung

13. MPI Fourm. MPI: A message-passing interface standard, May 1994.
14. U. Neumann. Volume reconstruction and parallel rendering algorithms: A comparative analysis.

Ph.D. dissertation, Department of Computer Science, University of North Carolina at Chapel Hill,
1993.

15. L.A. Westover. SPLATTING: A parallel, feed-forward volume rendering algorithm. Ph.D. disserta-
tion, Department of Computer Science, University of North Carolina at Chapel Hill, July 1991.

16. M. Berekovic and P. Pirsch. An array processor with parallel data cache for image rendering and
compositing. In Proceedings of Computer Graphics International CGI’98, pp. 411–414, June 1998.

17. B. Liu, M. Margala, N. Durdle, and S. Juskiwm. High-speed image composition with enhanced mul-
tiplier structures. In Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer
Engineering, pp. 477–485, May 1999.

18. Kwan-Liu Ma. Parallel rendering of 3D AMR data on the SGI/Cray T3E. In The Seventh Symposium
on the Frontiers of Massively Parallel Computation, pp. 138–145, 1999.

