
Int. J. Ad Hoc and Ubiquitous Computing, Vol. 5, No. 4, 2010 209

Copyright © 2010 Inderscience Enterprises Ltd.

Malugo: A peer-to-peer storage system

Yu-Wei Chan, Tsung-Hsuan Ho, Po-Chi Shih
and Yeh-Ching Chung*
Department of Computer Science,
National Tsing Hua University,
Hsinchu 30013, Taiwan, ROC
E-mail: ywchan@sslab.cs.nthu.edu.tw
E-mail: ansons@gmail.com
E-mail: shedoh@sslab.cs.nthu.edu.tw
E-mail: ychung@cs.nthu.edu.tw
*Corresponding author

Abstract: We consider the problem of routing locality in peer-to-peer storage systems where
peers store and exchange data among themselves. With the global information, peers will take the
data locality into consideration when they implement their replication mechanisms to keep
a number of file replicas all over the systems. In this paper, we mainly propose a peer-to-peer
storage system – Malugo. Algorithms for the implementation of the peers’ locating and
file operation processes are also presented. Simulation results show that the proposed
system successfully constructs an efficient and stable peer-to-peer storage environment with
considerations of data and routing locality among peers.

Keywords: distributed storage system; peer-to-peer storage; Malugo.

Reference to this paper should be made as follows: Chan, Y-W., Ho, T-H., Shih, P-C. and
Chung, Y-C. (2010) ‘Malugo: A peer-to-peer storage system’, Int. J. Ad Hoc and Ubiquitous
Computing, Vol. 5, No. 4, pp.209–218.

Biographical notes: Yu-Wei Chan received his BS and MS in Information Engineering from
TamKang University, Taiwan, in 1997 and 2001, respectively. He is currently pursuing his PhD
in the Department of Computer Science, National Tsing Hua University, Taiwan. His current
research interests include peer-to-peer computing, peer-to-peer streaming and game-theoretic
resource allocation.

Tsung-Hsuan Ho received his BS from the Department of Computer Science and Engineering,
National Sun Yat-Sen University, Kaohsiung, Taiwan, in 2006, and MS from the Institute of
Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan,
in 2008. He is currently working in the industry with internet multimedia development.

Po-Chi Shih received the BS and MS in Computer Science and Information Engineering
from Tunghai University in 2003 and 2005, respectively. He is now studying PhD in Computer
Science in National Tsing Hua University. His research interests include grid computing and
peer-to-peer technology.

Yeh-Ching Chung received a BS in Information Engineering from Chung Yuan Christian
University in 1983, and the MS and PhD in Computer and Information Science from Syracuse
University in 1988 and 1992, respectively. He joined the Department of Information Engineering
at Feng Chia University as an Associate Professor in 1992 and became a Full Professor in 1999.
From 1998 to 2001, he was the Chairman of the Department. In 2002, he joined the Department
of Computer Science at National Tsing Hua University as a Full Professor. His research interests
include parallel and distributed processing, cluster systems, grid computing, multi-core tool
chain design, and multi-core embedded systems. He is a Member of the IEEE computer society
and ACM.

1 Introduction

With the exploding growth of internet, more and more
global organisations share their resources and collaborate
with each other in large-scale projects. One of the
most fundamental challenges of these cross-organisation

collaborations is that how to efficiently exchange data
within physically distributed environment. One of the
famous projects is SourceForge.net, which provides
the downloading services for source programmes and
documentations. Taiwan UniGrid (2006) system has been

210 Y-W. Chan et al.

developed with a distributed storage platform to exchange
data among several sites in Taiwan. However, a distributed
storage system usually needs much cost and may consist
of some bottlenecks such as scalability and reliability.

In the past few years, one of the most famous internet
applications is the peer-to-peer technology. Peer-to-peer
system is a kind of virtual overlay network built on
application layer. Peers collaborate with each other for
distributing data or working together by either structured
or unstructured architecture. In recent years, significant
peer-to-peer applications have been proposed, such as
peer-to-peer file-sharing systems, peer-to-peer streaming
systems and peer-to-peer storage systems.

Since the advantages of scalability and robustness
of peer-to-peer system, a lot of peer-to-peer storage systems
have been proposed such as Freenet (Clarke et al., 2000),
OceanStore (Kubiatowicz et al., 2000), PAST (Druschel
and Rowstron, 2001), CFS (Dabek et al., 2001) and
CFR (Lin et al., 2007). To keep a number of replicas
all over the system, some of these systems implement
their replication mechanisms with the need of global
information. In addition, to make the file popularity
achieve different numbers of copies of different files.
Some of them consider the data locality to achieve
higher downloading rate while ignoring the routing locality
issue.

In this paper, we mainly develop and propose an
internet-based, reliable, scalable and efficient peer-to-peer
storage architecture, which is called Malugo. This system
consists of two layers. One is the bottom layer in which
peers are clustered together to form groups and construct
a ring topology with the Chord (Stoica et al., 2003)
framework. The other is the upper layer in which groups of
different regions are connected with each other by utilising
a tree-like topology.

To cluster peers, we base on the architecture of
mOverlay (Zhang et al., 2004) system to develop our
overlay operations that when a new join peer wants to join a
group, it will be able to choose a proper group or even
create a new group automatically. In addition, new inserted
files will be replicated to different groups and different files
will have different numbers of replicas according to the
pre-specified replication policy. Additional copies will be
cached in different peers to balance the load of storage
peers, which host popular files.

The contribution of this paper is as follows:

• We mainly proposed a peer-to-peer storage system,
which addressed the routing locality issues, which have
been overcome by our proposed replication
mechanisms

• In this system, we have proposed efficient file cache
and replication mechanisms to solve the hotspot
problem and achieve reliable, scalable file distribution
among peers.

The remainder of this paper is organised as follows.
In Section 2, we compare some various systems with our
system. In Section 3, we briefly introduce our system
architecture.

Section 4 gives some system analyses with respect to
our proposed system model. The simulation and
experimental results are all shown in Section 5. Finally,
some concluding remarks are presented.

2 Previous works

Many peer-to-peer data storage systems have been proposed
in the past few years. Some peer-to-peer storage systems
make use of the Distributed Hash Table (DHT) mechanism
to collect nodes and organise them into an overlay. First, by
using the consistent hash function such as SHA-1, each
node or object will be given a key from hashing its address
or object name. Then, they will map these keys to nodes that
are belonged to them. When one peer requests an object, the
DHT system calculates the key of this peer from requesting
information (such as filename) and retrieve from
corresponding node by some kind of efficient lookup
operations. Besides these, it can balance the load of the
system, since all nodes receive roughly the same number
of keys.

Stoica et al. (2003) have designed a Chord system,
which is one of the outstanding DHT systems and it is
constructed by ring topology. The Chord system improves
the scalability of consistent hashing by avoiding the need of
maintaining fully connected neighbouring relationships.
In the Chord system, the consistent hash function was used
to collaborate with nodes and allocate objects to distribute
data indices to achieve load balance among peers.
In addition, the finger table mechanism accelerates routing
speed of peers. These properties make the framework of
Chord system suitable for constructing distributed data
storage system.

Dabek et al. (2001) have proposed a CFS system, which
is a Unix-style read-only file system layered on top of the
Chord framework. Files stored in the CFS are split into
several blocks to avoid the problem of storing a single
large-scale file, which exceeds the capacity of nodes.
Rowstron and Druschel (2001) have proposed a Pastry
system, which is also based on the DHT scheme to route
and deliver data. Druschel and Rowstron have presented
a PAST system, which is a large-scale persistent storage
system layered on the Pastry architecture. The PAST system
can be layered on other routing architectures with some loss
of locality and fault resilience properties.

Our system adopts the idea of the PAST system in the
sense that our system uses the same method to store
and replicate the whole file. But, our system is different
from the PAST system. We do not rely on complex
replication policies. Muthitacharoen et al. (2002) have

 Malugo: A peer-to-peer storage system 211

designed an IVY system, which is a log-based file system
that supports concurrent write operations. The IVY
system uses the distributed hash scheme to store the
logs efficiently.

Gupta et al. (2003) have proposed a Kelips system,
which is a file system layered on its own routing scheme
with O(1) lookup time. The fast lookup, however, suffers
from the cost of larger memory usage and background
communication overhead. Boundary Chord (Jin et al.,
2005), HIERAS (Xu et al., 2003) system utilise the
hierarchical ring architecture. The Boundary Chord system
uses different layer names to partition different groups, and
requests need to route among all layers. Both of them also
construct a ring topology for upper overlay. The HIERAS
system proposed a multiple-layered ring to reflect the
network locality, but this system needs to maintain complex
finger tables between layers.

Lin et al. (2007) have presented a CFR system, which is
one of the peer-to-peer storage systems, which also bases on
the Chord framework. Peers are all in the same ring
topology in the CFR system, but they have different region
ID numbers. When the data are inserted, they will be first
placed on the corresponding peers whose ID has been
assigned. Then, the data will be replicated to these
corresponding peers. Our proposed system also adopts the
idea of the CFR system. In the Malugo system, each region
maintains a replica for each single file. However, the
Malugo system is different from the CFR system.
The difference is that administrators in the CFR system
know geographical property and they can easily configure
the locality settings. However, most administrators are
failed to successfully and smoothly set up the storage
servers from previous experiments. However, administrators
in the Malugo system only need to set up a number of
grouping criteria, server peers will automatically cluster
together by themselves and help these system administrators
for setting up their storage systems.

Furthermore, the main difference between our system
and the above-described systems is the routing locality.
This means that the above-described systems do not
consider the routing locality of peers, but our system does.
When we ignore the issue of routing locality, it will not only
increase the lookup time but also introduce significant
maintenance overhead, especially in the complex system
such as the HEIRAS system. However, in the Malugo
system, servers or client peers can automatically locate
to a proper group so as to achieve high system performance.

3 System architecture

Our system consists of three modules, which are file
management, intra-overlay and inter-overlay modules,
respectively. The file management module is responsible for
file operations such as file insertion, retrieve, recovery,
replicate and cache from a storage peer. Details of this
mechanism will be specified in the following Section 3.2.
The inter-overlay module provides the ability for
communication among groups. The intra-overlay module

provides operations to locate peers to the proper groups
using the scheme of the Chord system. Both modules will
be described in Section 3.1.

3.1 Overlay construction

Our system is constructed in terms of two-layered
architecture. The bottom layer called intra-group overlay is
constructed with Chord framework. The overlay clusters
neighbouring peers to provide services within local regions.
The upper layer called inter-group overlay is constructed to
connect local groups together with locality consideration.
In our system, one of the peers in local group will be elected
to be the root peer to handle interconnection between
groups. Figure 1 shows an example of the overlay structure
of our system. Table 1 lists the description of some terms
in this paper.

Figure 1 An overview of system architecture

Table 1 Description of the terms in the system

Terms Description

Access rate Initial bandwidth between two peers
(kbps)

Grouping bound The pre-defined size of grouping bound
when a new joining peer joins to the
current group (kbps)

Contact peer The root peer of a group which represents
the location of the group

The grouping criterion of Malugo system is described as
follows.

• When the distance between a new peer Q and group A’s
neighbour is the same as the distance between group A
and A’s neighbour groups, we say that the peer Q
belongs to group A

• The distance could be represented as the bandwidth,
response time, latency or some other terms to show the
network status between any two peers.

In the following statements, we will introduce the
peer-locating scheme of our system. Let us consider such a
situation that when a new joining peer N wants to join a
group, it will measure the access rate between it and the
contact peer C of the group G. If the access rate between C
and N is larger than B, we say that the peer N belongs to the

212 Y-W. Chan et al.

group G. The algorithm of the peer-locating process is
described as follows

A1 First, a new joining peer N will connect with the
bootstrap peer of group g.

A2 If bootstrap peer is not the root peer of group g, it will
redirect N to the root peer Rg. Otherwise, the bootstrap
peer is the peer Rg.

A3 We measure the access rates between N-Rg and N-{Rg’s
neighbours}, if the access rate between N-Rg is the
largest one, we call the group g is the proper group
for the peer N. Otherwise, we redirect the peer N to the
peer Rj whose access rate is the largest one between
it and the peer N.

A4 Repeat the above-described steps until the proper group
has been found.

Although the locating process has finished, the access
rate between peer N and the current proper group is still
smaller than the group bound, which is represented by the
character B. The new joining peer will notify the root peer
of the selected group that there is a new group formed and it
is a neighbour group. Other peers may connect to this new
group to get data. Therefore, we also need to collect data
from other neighbouring groups.

When a new group is constructed, one issue called
topology mismatch may occur as illustrated in Figure 2(a).
When a new peer N joins the overlay, it first connects
with the peer P1. Then, it will connect with the peer P2.
If P2’s group is too far away, the newly joined peer will
form a new group by itself. Since P2 is the last peer,
which the newly joined peer connects, the newly joined peer
will add the peer P2 to its neighbour table.

From Figure 2, we can see that there are 2 links among
N, P1 and P2. If we can only keep 2 links among these 3
peers, the topology shown in Figure 2(b) is obviously better
than Figure 2(a) since the total distance of {P1-N, P2-N} is
smaller than {P1-P2, P1-N}. Liu et al. (2005) have
proposed the LTM method to solve the above-described
topology mismatch problem. We refer to the LTM method
to handle the topology mismatch problem. The operations
for coping with the topology mismatch problem are shown
in Figure 3.

Figure 2 Topology mismatch problem: (a) an inefficient overlay
and (b) a better connection model

(a)

(b)

Figure 3 Pseudo-code for processing the topology mismatch
problem

If the access rate between the new joining peer N and the
current proper group G is larger than the grouping bound B,
N will join the local overlay and located itself by using the
method proposed by Chord. Meanwhile, N will record the
root peer information of group G for sending interactive
information with other groups. The new joining peer N is
now responsible for a section of keys, and therefore, we also
need to retrieve data back from its successor peer.

Issues in typical super-peer architecture are single point
of failure and hotspot if there is only one super-peer that is
responsible for a group. In case of single point of failure
means that once the root peer fails, the inter-group
connection will be out of services since there is no more
available gateway for relying messages. The hotspot
problem represents the situation in which there are
substantial connections, which connect to one specific peer
suddenly. These connections will make use of this hotspot
peer to search, relay or get files. In such a situation, the
performance of this hotspot peer will degrade immediately.
Therefore, we replicate the outgoing routing table to the
predecessor and successor peers of this hotspot peer to keep
the files availability and durability. The predecessor and
successor peers will be served as the backhaul root peers of
normal peers in the same group.

3.2 File operations

The algorithm of the file insertion process is described as
follows.

B1 A file that was given a fileID will be inserted into the
peer ni whose id is the closest to the fileID within a
specific group

B2 Peer ni will notify its root peer nr to start the replication
process

B3 Peer nr then broadcasts the NEW_FILE notification
information and information of the newly arrived file
to its neighbouring root peers

 Malugo: A peer-to-peer storage system 213

B4 When other root peers receive the notification
information sequentially, these root peers will notify
their responsible sub-peers to get file content and
continue notifying other neighbouring root peers.

File insertion operations of our system will replicate files
to all the groups of the system. To provide different
numbers of file replicas, various replication mechanisms
were proposed. In the traditional replication mechanisms
proposed by previous works such as PAST and OceanStore
systems, all rely on the global information of the system.
For obtaining a number of replicas of each file, the
replication mechanism must collect the global information
of the system by travelling all peers of the system. However,
in a fully decentralised peer-to-peer environment, it is
difficult to maintain the complete global information owing
to the highly dynamic change environment. Therefore,
we propose a simple replication mechanism, which is
introduced by an example.

A file f will be given a replication level L, which means
the file will be replicated every L travelled groups. Peer that
should hold the file originally but is skipped by replication
level will hold a simple indicator to the peer that really
holds the file. Figure 4 is a simple example for L = 2.

Figure 4 Examples of replication level L = 2 (see online version
for colours)

From Figure 4, we can see that initially a file has been
uploaded into the group A. Then, the file will be replicated
every other 2 groups away. Therefore, this inserted file will
be replicated in group D, E and I. By using this replication
mechanism, we not only increase the file availability but
also reduce the storage space requirements.

The algorithm of the file retrieve process is described as
the following example.

C1 First, if a client peer c wants to retrieve a file fj, it first
contacts with one peer within the selected group and
uses the Chord framework to connect with the peer ni
which is responsible for storing the file fj.

C2 Second, the peer ni may only contain the file indicator
owing to the replication mechanism.

C3 Third, the client peer c will follow the indicator to
connect with the storage peer that maintains the exact
file objects.

C4 Finally, if ni is found being busy, it will send a
notification information to redirect the client peer c to
other peers that also cache the file fj.

The storage server peers are usually placed in the same spot
permanently and the client peers are usually in the
neighbourhood. If a client peer can have a cache, which
records the connection route between it and the remote
storage peers, it will help to decrease the number of lookup
hops. Therefore, in our system, we design the file cache
mechanism to achieve load balance among peers and avoid
the hotspot problem. The steps of the file cache mechanism
are listed as follows.

D1 We will set the threshold of the cache-creation and
cache-remove of each peer.

D2 We will record the download frequency of each file
of each peer.

D3 When we find a peer is busy, its file download rate will
exceed the upper bound of this peer. In such a situation,
the transient file will be replicated to its predecessor
peer.

3.3 The process of peers’ churn

Any peer in the system may join or depart freely at any time
by itself. Therefore, peers need to check whether the
replication system is still maintained well. For the files that
do not exist on the peer (it means this peer only has
indicator), peer will check to see if the target peer is alive
and maintains the pointed file. If not, two situations need to
be considered. First, the remote target peer is still available,
but the files do not exist. In such a case, we ask the
following peers of the original target peer to find another
new remote peer. Second, the remote peer is not available.
This may be occurred since peers depart or fail. In this
situation, the peer that holds the failed indicator will
broadcast the new point peer to the peers that hold the files
exactly. For files that exist on the peers, peers will check the
groups in range L/2 (L stands for replication level) and
remove any redundant files in this range. This process can
save the storage space of the system.

Any storage peer that joins or leaves will affect the data
location that will lead to the situation of a large amount of
files migration. The situation may also cause the failure of
lookup. Therefore, the affected peers will first create the
reference to avoid the missing of locating data by dealing
with the change of topology.

214 Y-W. Chan et al.

4 The system analysis

In this section, we will present a simple quantitative analysis
for the characteristics and performance of the overlay of our
system.

4.1 Theoretical approximation for travelling hops

In the Malugo system, we referred the inequality of distance
dint for any two groups, which was proposed by Zhang et al.
(2004), as follows.

dint < logMNgrp + 3

where M is the average number of neighbours of each
group, and Ngrp is the number of groups. In the system,
we consider the average distance at the level of
logMNgrp + 1. From our experience, we can simply substitute
2 to M. Therefore, we can obtain a final equation:

dint = (1/2)log2Ngrp + 1.

On the other hand, the average hop number for looking up
the corresponding nodes of the intra-group operation dira is
mentioned in the Chord system and listed here

dira = (1/2) log2Nira

where Nira is the average number per group. Therefore,
the average locating distance from the bootstrap node
to the corresponding node can be considered as follows.

d = dint + dira = (1/2)(log2Ngrp + log2Nira) + 1.

4.2 The splitting-group decision analysis

On the basis of the previous grouping criteria, the size of
different groups may be very large or very small. The size
of the group will affect our system performance when we
want to search for a specified peer in the local group.
Therefore, we first define the expected lookup time (t) for
searching for a specific peer.

ira

n

Mt
R

=∑

where t is the travelled time in the local group, Rn is the
access rate between {the newly coming peer | client c}
and peer n is the travelled hops in the group, and Mira is the
routing cost of crossing each peer in local group. Peers that
clustered into the same group usually have similar access
rate to c. Therefore, we can assume that the value of Rn is
equal to R. Besides, the average travelling hops with Nira
peers are listed.

dira = (1/2) log2Nira.

Therefore, the expected lookup time (t) for searching
for a specific peer can be converted to the equation as
follows.

ira
2 ira(1/ 2) log .Mt N

R
= ×∑

If we divide this large group into two minor groups,
the equation of the expected lookup time (t) for searching
for a specific peer can be further represented as follows.

ira ira
2 ira(1/ 2) log (/ 2) (1/ 2) .M Mt N

R R
= × +∑

Since the local group has been divided into two groups, the
hop number, which compares with the average number,
will be less than half when peers travel in the local group.
However, when peers travel among different groups,
the hop number, which compares with the average number,
will be more than half. Therefore, there is no difference of
travelling time in case of splitting the large group or not.
According to the above-described statement, activation for
merging small groups will not benefit our system. This is
because it will be less advantageous to our system for
splitting and merging groups and will introduce much extra
overhead. Therefore, we do not consider the issue of
splitting or merging groups in our system.

5 Simulation results

To evaluate our system, we have implemented a simulator
and performed several experiments.

In the following simulation, all peers are distributed in
an imaginary map. The speed between any two peers
is an exponential distribution from 8 kbps to 8000 kbps.
The response time between any two peers is from 3 ms to
400 ms. For measuring the extra maintenance or query cost,
we assume that the length of an inter-group message is
512 bytes whereas the length of an intra-group message is
1024 bytes. In addition, the length of a keep-alive message
is 128 bytes. In each simulation, we repeat to generate
overlay 100 times and get the average results. One of the
various goals of our system is to reduce the traffic cost such
as travelled hops or travelled time. We will compare these
metrics with the CFR system and specify these simulation
results.

5.1 System performance with different group bound

This experiment shows the performance of our system
under different grouping bound. We vary the grouping
bound value from 0 kbps to 4000 kbps in the environment
where 212 peers connect with each other. We randomly
generated 100 client peers and each client peer randomly
performs 10,000 queries simultaneously. From Figures 5–7,
we can conclude that with larger grouping bound, client
peers not only spend fewer hop numbers but also take
less time to reach the proper storage server and achieve
higher access rate.

The access rate between storage peers can be increased
to improve the maintenance overhead. In addition, we can
observe that the results of the travelled time and the access
rate, which trend to more smooth, when the grouping bound
goes larger than 1300–1700 kbps. This is because that larger

 Malugo: A peer-to-peer storage system 215

grouping bound will create more groups, new joining peers
cannot locate to the most proper group.

In Figure 6, the speed line represents the average
access rate of client peers. The spd2NxPr line is the average
access rate to the next peer in local group by using our
system topology. The spd2Neis line is the average access
rate to a peer in its neighbouring group. In addition, the
baseline is the average access rate by using the Chord
framework. From the simulation, we can obtain a proper
value of grouping bound of about 1300 kbps. This value
will help us to easily set up our experiment in real world.

Figure 5 Performance evaluation results with different grouping
bound (see online version for colours)

Figure 6 Performance evaluations of the travelled time
of different grouping bound

Figure 7 Performance evaluations of the access rate of different
grouping bound

We also compare our system with the CFR system in terms
of the file insertion time. In our system, we divide the file

insertion operations into the inter-group and intra-group
routing and obtain the responsible peer for inserting the
exact file. A comparison result of the file insertion time is
shown in Figure 8.

In this simulation, we insert a file with the 10 Mbytes
size to both these systems. The CFR system will create the
same number of regions with the number of groups that
Malugo has created. From the simulation results, we can
realise that when the grouping bound is larger than
1200 kbps, the cost of file insertion of the Malugo system is
slighter than the CFR system. However, when the grouping
bound is smaller than 1200 kbps, our system introduces
more overhead than the CFR system.

Figure 8 Comparisons of file insertion time between our system
and the CFR system

5.2 System performance under different numbers
of nodes

This simulation shows the number of travelled hops under
different numbers of storage peers in our system. We vary
the number of storage peers from 128 to 65,536 with group
bound, which sets to {100, 500, 1000, 2000, 3000, 4000}
kbps. In this experiment, 100 client peers will be randomly
generated and given a random object to lookup 10,000 times
in 100 different network environments.

Figure 9 shows the average number of groups, which
system will generate when the number of peers increases.
More groups will be generated to handle the join operation
of more new peers to achieve higher performance and
balance the load of the root peers. Figure 10 shows the
relative travelled time. From Figure 10, we can see that
when the number of peers increases exponentially, the time
increases linearly.

Besides, if we need higher grouping bound, we must
increase the number of peers. We first formulate our
performance improvement model by evaluating the travelled
time here.

b

b
t

b

b

T T
TR

G G
G

−

=
−

216 Y-W. Chan et al.

where Rt is the performance improvement under grouping
bound B. T is the travelled time under grouping bound B.
Tb is the travelled time under the baseline group bound
b = 100 kbps. Also, G is the number of groups under
grouping bound B and Gb is the number of groups under the
baseline group bound b. If the performance improvement
from b to B in the environment of large number of peers is
higher than that of small number of peers, we need a
dynamic mechanism to create extra groups to handle the
increasing number of peers.

Figure 9 The average number of groups with different numbers
of storage peers (see online version for colours)

Figure 10 Performance evaluation results of travelled time
with different numbers of peers (see online version
for colours)

5.3 Evaluation with peer dynamics

In this simulation, we evaluate the dynamic property of the
Malugo system. We first set up the environment with peer
number N = 1000 and set the grouping bound B to
1000 kbps and we also divide peers into about 9.5 groups.
The number of successor list used by the local group r was
set to 20 and the stabilisation period was set to be 30 s.
For comparison, the join and voluntary leave are modelled
by a Poisson process with a mean arrival rate R. From
Stoica et al. (2003), the expected number of timeouts
experienced by a lookup operation in local group can be
formulated as follows

ira

ira ira ira

1
90 log log

R
R N
l N N

′
′ + +

where lira is the average travelled hops and Nira is the
average number of peers per group in local group. Also,
R = R/Ng is the arrival rate of join and leave. Ng is the
number of groups. A failure occurred during the inter-group
locate process can be presented as lint × R × Ngrp/N. We can
obtain our expected number when a lookup operation reach
the lookup timeout in local group or failed to locate the
proper group as follows

grp int grp

grp ira

ira ira ira

/ .
/ 1

90log log

R N l R N
R N N N

l N N

× ×+
+ +

From Figure 11, we can see that under peer dynamics
situation, our system performs better than CFR system.
We have fewer expected failure number than CFR system.

Through the above-presented simulation results,
we have shown that our system not only reduced
the hop numbers but also took less time to search the
desired files.

Figure 11 The overlay maintenance overhead under different
node join/leave rate

5.4 Experimental results

To evaluate the real performance of our system, we have
deployed the implemented system on Taiwan UniGrid
(2006). The Taiwan UniGrid is a grid platform for
researchers in Taiwan to perform distributed researches.
We execute the Malugo storage system on 9 sites with
42 servers in 4 cities as shown in Figure 12(a).

We first select the top 10 download files from
SourceForge.net as our test data. Then, we use three
different grouping bound {1000 kbps, 100 kbps, 10 kbps} to
cluster these storage nodes. We set up the storage nodes
by setting different grouping bound. Consequently, we run
the client peers, which are randomly distributed around
these storage nodes to retrieve these test data. Then, we
measure the access rate while downloading randomly
selected files.

Figure 12(b)–(d) shows that we have successfully
clustered physically closer peers together under specific
group bound. In the experiment, we found that the average
time for measuring the bandwidth between the newly
joining peer and the target peer could be less than 10 ms.

 Malugo: A peer-to-peer storage system 217

In addition, the average time of locating operation can be
less than one second. As a result, we can say that the group
operation could be ignored.

Figure 12 (a) Server location of test-bed in Taiwan UniGrid;
(b) server group result with group bound being
1000 kbps; (c) server grouping result with group bound
being 100 kbps and (d) server group result with group
bound being 10 kbps (see online version for colours)

From Figure 13, we can observe that the access rate of
download increases while we increase the group bound.
Until now, we have shown that our system has been
implemented successfully in real world and the performance
was better than some previous systems.

Figure 13 Performance evaluation under different grouping
bound

6 Conclusions

We have presented the Malugo system, a peer-to-peer
storage system that was designed for large-scale
collaborative projects. The Malugo system can cluster peers
by routing locality automatically, partitioning files to
different peers to achieve load balancing and replicating
files to different groups to achieve geographical properties
without the global information.

In a real world, the Malugo system has been
implemented, and we have showed that our system is not
only workable but also has excellent performance. Although
the Malugo system is an efficient storage platform now,
we still go on developing new several features, such as user
authorisation and user/file permissions. As a further target,
we will develop the Malugo system into a storage platform
with file system properties.

References
Clarke, I., Sandberg, O., Wiley, B. and Hong, T.W. (2000)

‘Freenet: a distributed anonymous information storage and
retrieval system’, Proceedings of the ICSI Workshop on
Design Issues in Anonymity and Unobservability, CA, USA,
July, pp.25, 26.

Dabek, F., Kaashoek, M.F., Karger, D., Morris, R. and Stoica, I.
(2001) ‘Wide-area cooperative storage with CFS’,
Proceedings of the 18th ACM Symposium on Operating
Systems Principles, December, Banff, Alberta, Canada,
Vol. 35, pp.202–215.

Druschel, P. and Rowstron, A. (2001) ‘PAST: a large-scale,
persistent peer-to-peer storage utility’, Proceedings of the 8th
Workshop on Hot Topics in Operating Systems, 20–22 May,
Germany, pp.75–80.

Gupta, I., Birman, K., Linga, P., Demers, A. and Renesse, R.v.
(2003) ‘Kelips: building an efficient and stable P2P DHT
through increased memory and background overhead’,
Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS 2003), 20–21 February, CA,
USA, pp.160–169.

Jin, H., Wang, C. and Chen, H. (2005) ‘Boundary Chord: a novel
peer-to-peer algorithm for replica location mechanism
in grid environment’, Proceedings of the 8th International
Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN 2005), 7–9 December, Las Vegas, Nevada,
USA, pp.262–267.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P.,
Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H.,
Weimer, W., Wells, C. and Zhao, B. (2000) ‘OceanStore:
an architecture for global-scale persistent storage’,
Proceedings of the 9th International Conference on
Architectural Support for Programming Languages
and Operating Systems, Cambridge, Massachusetts, USA,
Vol. 35, pp.190–201.

Lin, M.R., Lu, S.H., Ho, T.H., Lin, P. and Chung, Y.C. (2007)
‘CFR: a peer-to-peer collaborative file repository system’,
Proceedings of the 2nd International Conference on Grid and
Pervasive Computing, 2–4 May, Paris, France, pp.100–111.

Liu, Y., Xiao, L., Liu, X., Ni, L.M. and Zhang, X. (2005)
‘Location awareness in unstructured peer-to-peer systems’,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 16, No. 2, pp.163–174.

218 Y-W. Chan et al.

Muthitacharoen, A., Morris, R., Gil, T.M. and Chen, B. (2002)
‘Ivy: a read/write peer-to-peer file system’, Proceedings
of the 5th Symposium on Operating Systems Design
and Implementation (OSDI), Boston, Massachusetts, USA,
Vol. 36, pp.31–44.

Rowstron, A. and Druschel, P. (2001) ‘Pastry: scalable,
decentralized object location and routing for large-scale
peer-to-peer systems’, Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware), November, Heidelberg, Germany, pp.329–350.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R.,
Kaashoek, M.F., Dabek, F. and Balakrishnan, H. (2003)
‘Chord: a scalable peer-to-peer lookup protocol for internet
applications’, IEEE/ACM Transactions on Networking,
Vol. 11, No. 1, pp.17–32.

Taiwan UniGrid (2006) Obtained through the internet: http://
www.unigrid.org.tw/

Xu, Z., Min, R. and Hu, Y. (2003) ‘HIERAS: a DHT based
hierarchical P2P routing algorithm’, Proceedings of the
International Conference on Parallel Processing (ICPP),
October, Kaohsiung, Taiwan, pp.187–194.

Zhang, X.Y., Zhang, Q., Zhang, Z., Song, G. and Zhu, W. (2004)
‘A construction of locality-aware overlay network: mOverlay
and its performance’, IEEE Journal on Selected Areas in
Communications, Vol. 22, No. 1, January, pp.18–28.

