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Abstract In the era of Big Data, huge amounts of structured and unstructured data
are being produced daily by a myriad of ubiquitous sources. Big Data is difficult to
work with and requires massively parallel software running on a large number of
computers. MapReduce is a recent programming model that simplifies writing dis-
tributed applications that handle Big Data. In order for MapReduce to work, it has to
divide the workload among computers in a network. Consequently, the performance
of MapReduce strongly depends on how evenly it distributes this workload. This can
be a challenge, especially in the advent of data skew. In MapReduce, workload distri-
bution depends on the algorithm that partitions the data. One way to avoid problems
inherent from data skew is to use data sampling. How evenly the partitioner dis-
tributes the data depends on how large and representative the sample is and on how
well the samples are analyzed by the partitioning mechanism. This paper proposes an
improved partitioning algorithm that improves load balancing and memory consump-
tion. This is done via an improved sampling algorithm and partitioner. To evaluate the
proposed algorithm, its performance was compared against a state of the art partition-
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ing mechanism employed by TeraSort. Experiments show that the proposed algorithm
is faster, more memory efficient, and more accurate than the current implementation.

Keywords TeraSort · MapReduce · Load balance · Partitioning · Sampling · Cloud
computing · Hadoop

1 Introduction

Over the past decades, computer technology has become increasingly ubiquitous.
Personal computers, smart phones, tablets, and an ever-growing number of embed-
ded devices can now all connect and communicate with each other via the internet.
Computing devices have numerous uses and are essential for businesses, scientists,
governments, engineers, and the everyday consumer. What all these devices have in
common is the potential to generate data. Essentially, data can come from anywhere.
Sensors gathering climate data, a person posting to a social media site, or a cell phone
GPS signal are example sources of data.

The popularity of the Internet alongside a sharp increase in the network bandwidth
available to users has resulted in the generation of huge amounts of data. Furthermore,
the types of data created are as broad and diverse as the reasons for generating it.
Consequently, most types of data tend to have their own unique set of characteristics
as well as how that data is distributed.

Data that is not read or used has little worth, and can be a waste of space and re-
sources. Conversely, data that is operated on or analyzed can be of inestimable value.
For instance, data mining in business can help companies increase profits by predict-
ing consumer behavior, or discover hitherto unknown facts in science or engineering
data. Unfortunately, the amount of data generated can often be too large for a single
computer to process in a reasonable amount of time. Furthermore, the data itself may
be too large to store on a single machine. Therefore, in order to reduce the time it
takes to process the data, and to have the storage space to store the data, software
engineers have to write programs that can execute on two or more computers and
distribute the workload among them. While conceptually the computation to perform
maybe simple, historically the implementation has been difficult.

In response to these very same issues, engineers at Google developed the Google
File System (GFS) [4], a distributed file system architecture model for large-scale
data processing and created the MapReduce [3] programming model. The MapRe-
duce programming model is a programming abstraction that hides the underlying
complexity of distributed data processing. Consequently, the myriad minutiae on how
to parallelize computation, distribute data, and handle faults no longer become an is-
sue. This is because the MapReduce framework handles all these details internally,
and removes the onus of having to deal with these complexities from the programmer.

Hadoop [25] is an open source software implementation of MapReduce, written
in Java, originally developed by Yahoo!. Hadoop is used by various universities and
companies including EBay, FaceBook, IBM, LinkedIn, and Twitter. Hadoop was cre-
ated in response to the need for a MapReduce framework that was unencumbered by
proprietal licenses, as well as the growing need for the technology in Cloud comput-
ing [18].
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Since its conception, Hadoop has continued to grow in popularity amongst busi-
nesses and researchers. As researchers and software engineers use Hadoop they have
at the same time attempted to improve upon it by enhancing features it already has,
by adding additional features to it, or by using it as a basis for higher-level applica-
tions and software libraries. Pig, HBase, Hive, and ZooKeeper are all examples of
commonly used extensions to the Hadoop framework [25].

Similarly, this paper also focuses on Hadoop and investigates the load balancing
mechanism in Hadoop’s MapReduce framework for small- to medium-sized clusters.
This is an important area of research for several reasons. First, many clusters that use
Hadoop are of modest size. Often small companies, researchers and software engi-
neers do not have the resources to develop large cluster environments themselves, and
often clusters of a modest size are all that is required for certain computations. Fur-
thermore, it is common for developers creating Hadoop applications to use a single
computer running a set of virtual machines as their environment. Limited processing
power and memory necessitates a limited number of nodes in these environments.

In summary, this paper presents the following contributions:

• A method for improving the work load distribution amongst nodes in the MapRe-
duce framework.

• A method to reduce the required memory footprint.
• Improved computation time for MapReduce when these methods are executed on

small or medium sized cluster of computers.

The rest of this paper is organized as follows. Section 2 presents some background
information on MapReduce and its inner workings. Section 3 introduces an improved
load balancing methodology and a way to better utilize memory. Section 4 contains
experimental results and a discussion of this paper’s findings. Section 5 presents re-
lated work. Section 6 concludes this paper and briefly discusses future work.

2 Background and preliminaries

2.1 MapReduce

MapReduce [3] is a programming model developed as a way for programs to cope
with large amounts of data. It achieves this goal by distributing the workload among
multiple computers and then working on the data in parallel. From the programmers
perspective MapReduce is a relatively easy way to create distributed applications
compared to traditional methods. It is for this reason MapReduce has become popular
and is now a key technology in cloud computing.

Programs that execute on a MapReduce framework need to divide the work into
two phases known as Map and Reduce. Each phase has key-value pairs for both
input and output [32]. To implement these phases, a programmer needs to specify
two functions: a map function called a Mapper and its corresponding reduce function
called a Reducer.

When a MapReduce program is executed on Hadoop, it is expected to be run
on multiple computers or nodes. Therefore, a master node is required to run all the
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Fig. 1 MapReduce Dataflow

required services needed to coordinate the communication between Mappers and Re-
ducers. An input file (or files) is then split up into fixed sized pieces called input splits.
These splits are then passed to the Mappers who then work in parallel to process the
data contained within each split. As the Mappers process the data, they partition the
output. Each Reducer then gathers the data partition designated for them by each
Mapper, merges them, processes them, and produces the output file. An example of
this dataflow is shown in Fig. 1.

It is the partitioning of the data that determines the workload for each reducer. In
the MapReduce framework, the workload must be balanced in order for resources to
be used efficiently [7]. An imbalanced workload means that some reducers have more
work to do than others. This means that there can be reducers standing idle while
other reducers are still processing the workload designated to them. This increases
the time for completion since the MapReduce job is not complete until all reducers
finish their workload.

2.2 HashCode

Hadoop uses a hash code as its default method to partition key-value pairs. The hash
code itself can be expressed mathematically and is presented in this paper as the
following equation:

HashCode = Wn × 31n−1 + Wn−1 × 31n−2 + · · · + W1 × 310

=
TotalWord∑

n=1

Wn × 31n−1 (1)
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Fig. 2 HashCode partitioner

The hash code presented in Eq. (1) is the default hash code used by a string object
in Java, the programming language on which Hadoop is based. In this equation, Wn

represents the nth element in a string. The reason integer 31 is used in this equation
is because it is a prime number. Hash codes traditionally use prime numbers because
they have a better chance of generating a unique value when multiplied with another
number.

A partition function typically uses the hash code of the key and the modulo of
reducers to determine which reducer to send the key-value pair to. It is important
then that the partition function evenly distributes key-value pairs among reducers for
proper workload distribution.

Figure 2 shows how the hash code works for a typical partitioner. In this example,
there are three reducers, and three strings. Each string comes from a key in a key-
value pair. The first string is “ant.” The string “ant” consists of three characters. The
characters “a,” “n,” and “t” have the corresponding decimal ASCII values of 97,
110, and 116. These values are then used with Eq. (1) to get the hash code value
of 96743. Since there are three reducers, a modulo of 3 is used which gives a value
of 2. The value is then incremented by one in the example as there is no reducer 0,
which changes the value to 3. This means the key-value pair will be sent to reducer 3.
Following the same methodology, the strings “boy” and “cat” are assigned to reducers
2 and 1, respectively.

2.3 TeraSort

In April 2008, Hadoop broke the world record in sorting a Terabyte of data by using
its TeraSort [24] method. Winning first place it managed to sort 1 TB of data in 209
seconds (3.48 minutes). This was the first time either a Java program or an open
source program had won the competition. TeraSort was able to accelerate the sorting
process by distributing the workload evenly within the MapReduce framework. This
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was done via data sampling and the use of a trie [13]. Although the original goal of
TeraSort was to sort 1 TB of data as quickly as possible, it has since been integrated
into Hadoop as a benchmark.

Overall, the TeraSort algorithm is very similar to the standard MapReduce sort.
Its efficiencies rely on how it distributes its data between the Mappers and Reducers.
To achieve a good load balance, TeraSort uses a custom partitioner. The custom par-
titioner uses a sorted list of N − 1 sampled keys to define a range of keys for each
reducer. In particular, a key is sent to a reducer i if it resides within a range such that
sample[i −1] <= key < sample[i]. This ensures that the output of reducer i is always
less than the output for reducer i + 1.

Before the partitioning process for TeraSort begins, it samples the data and extracts
keys from the input splits. The keys are then saved to a file in the distributed cache
[16]. A partitioning algorithm then processes the keys in the file. Since the original
goal of TeraSort was to sort data as quickly as possible, its implementation adopted a
space for time approach. For this purpose, TeraSort uses a two-level trie to partition
the data.

A trie, or prefix tree, is an ordered tree used to store strings. Throughout this
paper, a trie that limits strings stored in it to two characters is called a two-level trie.
Correspondingly, a three-level trie stores strings of up to three characters in length, a
four-level trie stores strings of up to four characters in length and an n level trie stores
strings of up to n characters in length.

This two-level trie is built using cut points derived from the sampled data. Cut
points are obtained by dividing a sorted list of strings by the total number of partitions
and then selecting a string from each dividing point. The partitioner then builds a two-
level trie based on these cut points. Once the trie is built using these cutpoints, the
partitioner can begin its job of partition strings based on where in the trie that string
would go if it were to be inserted in the trie.

3 The proposed techniques and trie optimizations

This section introduces the concept of the Xtrie and describes how TeraSort can be
modified using an Xtrie and how Xtrie can benefit TeraSort. Furthermore, this section
introduces the Etrie and shows how it can save memory using a ReMap method.

3.1 Xtrie

The Xtrie algorithm presented here provides a way to improve the cut point algorithm
inherited from TeraSort. One of the problems with the TeraSort algorithm is that it
uses the quicksort algorithm to handle cut points. By using quicksort, TeraSort needs
to store all the keys it samples in memory and that reduces the possible sample size,
which reduces the accuracy of the selected cut points and this affects load balancing
[24]. Another problem TeraSort has is that it only considers the first two characters of
a string during partitioning. This also reduces the effectiveness of the TeraSort load
balancing algorithm.
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Algorithm 1 Trie Cut Point Algorithm

Input:
IS: set of input strings
i: index in the trie array
trieSize: size of the trie array
partitionCount: total number of partitions
prefixCount: number of prefixes in the trie array
k: partition number

Output:
OS: a set of partitioned strings

Create IS by extracting n samples from source data.

1. counter = 0
2. for each string S in IS
3. tc = TrieCode(S)
4. if(trie[tc] == FALSE)
5. prefixCount = prefixCount + 1
6. end if
7. trie[tc] = TRUE
8. end for
9. splitSize = prefixCount / partitionCount
10. for i = 0 to trieSize
11. if(trie[i] == TRUE)
12. split = split + 1
13. if (split >= splitSize)
14. k = k + 1
15. end if
16. OSk.add(trie[i])
17. endif
18. end for

A trie has two advantages over the quicksort algorithm. Firstly, the time complex-
ity for insertion and search of the trie algorithm is O(k) where k is the length of the
key. Meanwhile, the quicksort algorithm best and average case is O(n logn) and in
the worst case O(n2) where n is the number of keys in its sample. Secondly, a trie
has a fixed memory footprint. This means the number of samples entered into the trie
can be extremely large if so desired. Algorithm 1 shows how this trie is used.

In Algorithm 1, the trie is an array accessed via a trie code. A trie code is similar
to a hashcode, but the codes it produces occur in sequential ASCIIbetical order. The
equation for the trie code is as follows:

TrieCode = Wn × 256n−1 + Wn−1 × 256n−2 + · · · + W1 × 2560

=
TotalWord∑

n=1

Wn × 256n−1 (2)
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Fig. 3 Strings stored in a trie

Table 1 XTrie partitioner using
a Two-level Trie Prefix Keys Trie code Count Partition

ar arm 0x6172 1 1

ba barn 0x6261 1

bi big

bird

0x6269 2

bo boat

bone

book

boot

0x626f 4 2

ca card

cash

cat

0x6361 3 3

do dot 0x646f 1

The problem with using a conventional trie is that it fails to reflect strings that share
the same prefix. This can result in an uneven distribution of keys and an imbalanced
workload.

As an example, consider the set of keys {“arm,” “barn,” “big,” “bird,” “boat,”
“bone,” “book,” “boot,” “card,” “cash,” “cat,” and “dot”} as stored in the trie in Fig. 3.
Since a two-level trie can only contain the first two characters of a string, the strings
are truncated and the set is reduced to {“ar,” “ba,” “bi,” “bo,” “ca,” “do”}. If there are
three reducers, the workload would be divided into three partitions. Each partition
is then sent to a different reducer. This results in reducer-1 processing keys starting
with {“ar,” “ba”}, reducer-2 processing keys starting with {“bi,” “bo”}, and reducer-
3 processing keys starting with {“ca,” “do”}. Consequently, reducer-1 processes two
keys, reducer-2 processes 6 keys and reducer-3 processes 4 keys. This workload is
imbalanced, as ideally all three reducers should process the same number of keys.

In order to ameliorate this problem Xtrie uses a counter for each node in the trie.
By using a counter, keys have proportional representation and the partitioner can
distribute the total number of keys among reducers more evenly. Table 1 assumes a
two-level trie is used and that three partitions are required. In Table 1, each prefix
keeps count of how many keys are associated with it. Once all the keys have been
inserted in the trie, the keys are divided up amongst the partitions based on the prefix
count. In this example, the total number of keys is 1 + 1 + 2 + 4 + 3 + 1 = 12.
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Fig. 4 Data distribution of
English text

Once the partitions are made and the keys are divided up among reducers, this results
in reducer-1 processing keys starting with {“ar,” “ba,” “bi”}, reducer-2 processing
keys starting with {“bo”}, and reducer-3 processing keys starting with {“ca,” “do”}.
Consequently, reducer-1, reducer-2, and reducer-3 process 4 keys each.

Using this methodology, a two level Xtrie can now produce the same results as
the TeraSort quicksort method but as expected, it does so using a smaller memory
footprint and requiring less processing time. An insight analysis and performance
evaluation will be discussed in the next section.

3.2 Etrie

One of the problems inherited by TeraSort and Xtrie is that they use an array to rep-
resent the trie. The main problem with this technique is that it tends to contain a lot of
wasted space. For example, plain text files and log files often contain only rudimen-
tary alphanumerical characters, whitespace, line breaks, and punctuation marks. Fur-
thermore, when processing text, the whitespace, line breaks, and punctuation marks
are often filtered out by the Mapper. Moreover, many kinds of applications only use
a small range of keys, resulting in a lot of wasted space by the trie. For example, if
plain English text is being sorted the data distribution may be skewed in a way similar
to Fig. 4, whereby characters and numbers constitute nearly all of the characters to
be stored by the trie.

This paper therefore presents the ReMap algorithm, which reduces the memory re-
quirements of the original trie by reducing the number of elements it considers. The
algorithm does this by placing each ASCII character into one of the three categories:
null, alphanumeric, or other. Alphanumeric characters are upper and lower case let-
ters or numbers. Other is used for all characters that are not alphanumeric except for
null. Null is used to represent strings that have fewer characters than the number of
levels in the trie. We present an example of the ReMap layout in Table 2.

The ReMap chart maps each of the 256 characters on an ASCII chart to the re-
duced set of elements expected by the Etrie. Since the purpose of Etrie is to reflect
words found in English text ReMap reassigns the ASCII characters to the 64 elements
shown in Table 3.
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Table 2 Etrie ReMap chart

Hex ASCII Etrie Code

0x00 null 0x00

0x01 SOH 0x3f

0x02 STX 0x3f

0x03 ETX 0x3f

. . . . . . . . .

0x2f / 0x3f

0x30 0 0x01

0x31 1 0x02

0x32 2 0x03

0x33 3 0x04

0x34 4 0x05

0x35 5 0x06

Hex ASCII Etrie Code

0x36 6 0x07

0x37 7 0x08

0x38 8 0x09

0x39 9 0x0a

0x3a : 0x3f

0x41 A 0x0b

0x42 B 0x0c

0x43 C 0x0d

. . . . . . . . .

0x58 X 0x22

0x59 Y 0x23

0x5a Z 0x24

Hex ASCII Etrie Code

0x5b [ 0x3f

. . . . . . . . .

0x60 ` 0x3f

0x61 a 0x25

0x62 b 0x26

0x63 c 0x27

. . . . . . . . .

0x78 x 0x3c

0x79 y 0x3d

0x7a z 0x3e

0x7b { 0x3f

other 0x3f

Table 3 Etrie element chart
ASCII char Etrie Code

null 0x00

0 0x01

1 0x02

2 0x03

. . .

8 0x09

9 0x0a

ASCII char Etrie Code

A 0x0b

. . .

Z 0x24

a 0x25

. . .

z 0x3e

other 0x3f

By reducing the number of elements to consider from 256 to 64 elements per level,
the total memory required is reduced to 1/16th of its original footprint for a two-level
trie. In order to use the Etrie, the TrieCode presented in Eq. (2) has to be modified.
The EtrieCode shown in Eq. (3) is similar to the TrieCode in Eq. (2), but has been
altered to reflect the smaller memory footprint. The EtrieCode equation is as follows:

EtrieCode = Wn × 64n−1 + Wn−1 × 64n−2 + · · · + W1 × 640

=
TotalWord∑

n=1

Wn × 64n−1 (3)

Using less memory per level allows deeper tries (tries with more levels) to be
built. Deeper tries provides opportunities for distributing keys evenly amongst reduc-
ers. Consider the set of keys {“baby,” “back,” “bald,” “ball,” “bare,” “bark,” “barn,”
“bath,” “bone”} as stored in the trie in Fig. 5. Attempting to partition keys evenly
using a two-level trie is not feasible in this case. Using a two-level trie would cre-
ate the set of prefixes {“ba,” “bo”}. Although one can identify that the prefix “ba”
represents 8 keys and the prefix “bo” represents 1 key, the prefix themselves are in-
divisible, which creates a distribution imbalance. This problem can be resolved by
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Fig. 5 A trie unbalanced by
strings with the same prefix

using a deeper trie. By using a deeper trie, one increases the length of each prefix.
In practice, this increases the number of prefixes that are considered, and reduces the
number of keys each prefix represents. This provides a finer grain with which to cre-
ate partitions, thereby creating a more even distribution of keys between partitions.
For instance, when using the same set of keys, a three level trie would produce the
prefixes {“bab,” “bac,” “bal,” “bar,”, “bat,” “bon”}, thus dividing the 8 keys formerly
represented by the prefix “ba” up into five smaller categories.

4 Performance evaluation and analysis

To evaluate the performance of the proposed algorithms, this study investigates how
well the algorithms distribute the workload, and looks at how well the memory is
utilized. Experiments conducted in this study were done using 100 eBooks, with each
eBook containing a minimum of 100,000 words. Using the eBooks as our input, we
simulated computer networks from 5 nodes in size to 100 nodes in size.

In order to compare the different methodologies presented in this paper and deter-
mine how balanced the workload distributions are, this study uses a metric called the
uneven rate. The uneven rate α is calculated using the following equations:

Let V = optimal partition size = total keys / total partitions
Let Sn = number of keys in partition n.
Let �Sn = |Sn − V |
Then

α = �Sn + �Sn−1 + · · · + �S1

TotalPartitions
÷ V

α =
∑TotalPartitions

n=1 �Sn

TotalPartitions
÷ V

(4)

In order to evaluate the memory consumption of each method, we defined a metric
called the space utilization rate, which we present in the following equation:

β: space utilization rate
A: occupied elements in the trie array
B: total elements in the trie array

β = A

B
(5)
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Fig. 6 Uneven rate for one
level trie

Fig. 7 Uneven rate for two
level trie

Fig. 8 Uneven rate for three
level trie

Fig. 9 Uneven rate between
different level Etrie

Figures 6 to 9 show that when the number of reducers increase the rate of uneven-
ness increases. In other words, as more reducers become available, the more difficult
it is to divide the workload evenly between them.

Figures 6 to 8 show that both Xtrie an Etrie exhibit similar behaviors and that
the unevenness rate decreases the more levels they have, especially when the number
of nodes is low. In Fig. 6, the uneven rate of a conventional trie shows comparable
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Fig. 10 Sort Time Taken
between different level XTrie

performance to Xtrie and Etrie methods after the reducers exceeded 60 in number.
The convergence of the methodologies occurs due to the limited number of elements
used to represent the trie. As the number of nodes increases, the ability to distribute
the keys evenly among the nodes reduces.

Figures 7 and 8 shows that for two and three level tries, Xtries and Etries exhibit
similar workload behaviors, both having nearly identical rates of unevenness. Fur-
thermore, they both show a much smaller rate of unevenness (smaller being better)
than the conventional trie, especially when the number of computers used are small.

In Fig. 9, Etries are compared to each other but using different number of levels.
Because the key prefixes in a one level trie is so short the keys are coarsely grouped
together within the trie and a poor uneven rate. Etries using two or three levels have
a lot lower uneven rate due to their being more finer differentiation between keys. In
English, the average word length is 4.5 letters long [33], and longer words tend to be
used less often than smaller ones. Therefore, it is expected that there is a limit on how
much increasing the number of levels trie will improve the uneven rate.

According to experimental results, the uneven rate is lower (lower being better)
when a trie has more levels. This is because the deeper a trie is the longer the prefix
each key represents. This results in a finer differentiation between individual keys.
This makes it easier for the partitioner to distribute keys more evenly among reducers
thereby lowering the uneven rate.

In a second experiment, we measured the time taken for different types of XTrie,
the results are shown in Fig. 10. The physical machine used in this experiment had
2 Intel Xeon CPUs running at 2.93 GHz, with 6 cores per CPU. An 11 GB file was
used as input. Results show that as the number of levels in the XTrie increased the
unevenness typically decreased, and consequently the time taken decreased.

In a third experiment, measurements were taken to compare how time efficient the
XTrie algorithm is compared to quicksort algorithm used by the TeraSort. As shown
in Fig. 11, as more and more samples were included the time taken by quicksort
method grows rapidly as expected by its time complexity.

In a fourth experiment, measurements were taken to compare how well the Xtrie
and Etrie utilized space, where T1, T2, and T3 represent XTrie using one-level, two-
level, and three-level tries, respectively. Similarly, ET1, ET2, and ET3 represent one-
level, two-level, and three-level Etries. The space utilization efficiency is presented
as follows in Table 4.

As can be seen in Table 4, Etrie space utilization is better than the Xtrie space
utilization no matter how many levels are used to represent the trie. However, no
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Fig. 11 Time complexity
comparison of QuickSort and
XTrie

Table 4 Space utility

T1 T2 T3 ET1 ET2 ET3

Number of nodes 77 693 3080 56 608 2903

Space required 256 65,536 16,777,216 64 4,096 262,144

Space utilization (%) 30.08 1.06 0.02 87.5 14.84 1.11

matter which method was used, space utilization suffered as the number of levels in
a trie increased. This is because the array representing the trie becomes increasingly
sparse as its size increases.

Overall, according to the experimental results, Xtrie and ETrie outperform Tera-
Sort’s partitioning method in time complexity. Furthermore, Etrie has much better
space utilization compared to other tries, and the two level ETrie is 14 times more
space efficient than the two level XTrie.

5 Related work

Sorting is a fundamental concept and is required step in countless algorithms. Various
sorting algorithms have been created over the years including bubble sort, quick sort,
merge sort, and so on. Different sorting algorithms are better equipped for sorting
different problems. Burst Sort [31] is a sorting algorithm designed for sorting strings
in large data collections. The implementation involves building a burst trie, which is
an efficient data structure for storing strings, and requires no more memory than a
binary tree. The burst trie is fast as a trie, but was not as fast as a hash table. The
TeraSort algorithm also uses these trie methods as a way to sort data but does so
under the context of the Hadoop architecture and the MapReduce framework.

An important issue for the MapReduce framework is the concept of load balanc-
ing. Over the years, a lot of research has been done on the topic of load balancing.
This is because how data is distributed and work shared amongst the components of
a physical machine or nodes in network can be a key contributing factor to the effi-
ciency of a system. Where data is located [10], how it is communicated [15], what
environment it resides on [19, 26, 28] and the statistical distribution of the data can
all have an affect on a systems efficiency. Many of these algorithms can be found
worldwide in various papers and have been used by frameworks and systems prior to
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the existence of the MapReduce framework [8, 17]. Some of the less technical load
balancing techniques are round robin, random, or shortest remaining processing time.
While these techniques are well known, they have been found either inappropriate or
inadequate for the task of sorting data on the MapReduce framework.

In the MapReduce framework, the workload must be balanced in order for re-
sources to be used efficiently. An imbalanced workload means that some reducers
have more work to do than others do. This means that there can be reducers standing
idle while other reducers are still processing the workload designated to them. This
increases the time for completion since the MapReduce job cannot complete until all
reducers finish their workload.

By default, Hadoop’s workload is balanced with a hash function. However, this
methodology is generic and not optimal for many applications. For instance, Ran-
Kloud [1] uses its own uSplit mechanism for partitioning large media data sets. The
uSplit mechanism is needed to reduce data replication costs and wasted resources that
are specific to its media based algorithms.

In order to work around perceived limitations of the MapReduce model, various
extend or change the MapReduce models have been presented. BigTable [2] was
introduced by Google to manage structured data. BigTable resembles a database,
but does not support a full relational database model. It uses Rows with consecutive
keys grouped into tablets, which form the unit of distribution and load balancing.
And suffers from the same load and memory balancing problems faced by shared-
nothing databases. The open source version of BigTable is Hadoop’s HBase [27],
which mimics the same functionality of BigTable.

Due to its simplicity of use, the MapReduce model is quite popular and has sev-
eral implementations [9] [11, 12]. Therefore, there has been a variety of research
on MapReduce in order to improve the performance of the framework or the per-
formance of specific applications like datamining [14, 22], graph mining [5], text
analysis [20], or genetic algorithms [6, 21] that run on the framework.

Occasionally, researchers find the MapReduce framework to be too strict or in-
flexible in its current implementation. Therefore, researchers sometimes suggest new
frameworks or suggest new implementations as a solution. One such framework is
Dynamically ELastic MApReduce(DELMA) [23].

DELMA is a framework that follows the MapReduce paradigm, just like Hadoop
MapReduce. However, it is capable of growing and shrinking its cluster size, as jobs
are underway. This framework extends the MapReduce framework so that nodes can
be added or removed while applications are running on the system. Such a system
is likely to have interesting load balancing issues, which is beyond the scope of our
paper.

Another alternative framework to MapReduce is Jumbo [30]. In [30], the authors
state that some of the properties of MapReduce makes load balancing difficult. Fur-
thermore, Hadoop does not provide many provisions for workload balancing. For
these reasons, the authors created Jumbo a flexible framework that processes data in
a different way from MapReduce. One of the drawbacks of MapReduce is that mul-
tiple jobs may be required for some complex algorithms, which limits load balancing
efficiency. Due to the way it handles data, Jumbo is able to execute these complex
algorithms in a single job. The Jumbo framework may be a useful tool with which to
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research load balancing, but it is not compatible with current MapReduce technolo-
gies.

Finally, to work around load balancing issues derived from joining tables in
Hadoop, [29] introduces an adaptive MapReduce algorithm for multiple joins us-
ing Hadoop that works without changing its environment. It does so by taking tuples
from smaller tables and redistributing them among reducers via ZooKeeper, which is
a centralized coordination service. Our paper also attempts to do workload balancing
in Hadoop without modifying the underlying structure, but focuses on sorting text.

6 Conclusion and future work

This paper presented XTrie and ETrie, extended partitioning techniques, to improve
load balancing for distributed applications. By improving load balancing, MapRe-
duce programs can become more efficient at handling tasks by reducing the overall
computation time spent processing data on each node. The TeraSort, developed by
O’Malley, Yahoo, was designed based on randomly generated input data on a very
large cluster of 910 nodes. In that particular computing environment and for that data
configuration, each partition generated by MapReduce appeared on only one or two
nodes. In contrast, our study looks at small- to medium-sized clusters. This study
modifies their design and optimizes it for a smaller environment. A series of experi-
ments have shown that given a skewed data sample, the ETrie architecture was able to
conserve more memory, was able to allocate more computing resources on average,
and do so with less time complexity. In future, further research can be done extending
this framework so that it can use different micropartitioning methods for applications
using different input samples.
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