
Autom Softw Eng (2014) 21:489–508
DOI 10.1007/s10515-013-0135-x

JackHare: a framework for SQL to NoSQL translation
using MapReduce

Wu-Chun Chung · Hung-Pin Lin ·
Shih-Chang Chen · Mon-Fong Jiang ·
Yeh-Ching Chung

Received: 15 December 2012 / Accepted: 6 September 2013 / Published online: 28 September 2013
© Springer Science+Business Media New York 2013

Abstract As data exploration has increased rapidly in recent years, the datastore and
data processing are getting more and more attention in extracting important informa-
tion. To find a scalable solution to process the large-scale data is a critical issue in
either the relational database system or the emerging NoSQL database. With the in-
herent scalability and fault tolerance of Hadoop, MapReduce is attractive to process
the massive data in parallel. Most of previous researches focus on developing the SQL
or SQL-like queries translator with the Hadoop distributed file system. However, it
could be difficult to update data frequently in such file system. Therefore, we need a
flexible datastore as HBase not only to place the data over a scale-out storage system,
but also to manipulate the changeable data in a transparent way. However, the HBase
interface is not friendly enough for most users. A GUI composed of SQL client appli-
cation and database connection to HBase will ease the learning curve. In this paper,
we propose the JackHare framework with SQL query compiler, JDBC driver and a
systematical method using MapReduce framework for processing the unstructured
data in HBase. After importing the JDBC driver to a SQL client GUI, we can exploit
the HBase as the underlying datastore to execute the ANSI-SQL queries. Experimen-
tal results show that our approaches can perform well with efficiency and scalability.

W.-C. Chung · H.-P. Lin · S.-C. Chen (B) · Y.-C. Chung
Dept. of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan
e-mail: shcchen@sslab.cs.nthu.edu.tw

W.-C. Chung
e-mail: wcchung@sslab.cs.nthu.edu.tw

H.-P. Lin
e-mail: tlcsmall3@sslab.cs.nthu.edu.tw

Y.-C. Chung
e-mail: ychung@cs.nthu.edu.tw

M.-F. Jiang
is-land Systems Inc., Hsinchu Science Park, 3F, No.4, Prosperity Rd. 2, Hsinchu 300, Taiwan
e-mail: mike@is-land.com.tw

mailto:shcchen@sslab.cs.nthu.edu.tw
mailto:wcchung@sslab.cs.nthu.edu.tw
mailto:tlcsmall3@sslab.cs.nthu.edu.tw
mailto:ychung@cs.nthu.edu.tw
mailto:mike@is-land.com.tw


490 Autom Softw Eng (2014) 21:489–508

Keywords Cloud computing · Unstructured data processing · MapReduce · NoSQL
database · HBase · JDBC · Compiler

1 Introduction

With the size of datasets growing rapidly, the large-scale data processing has become
more and more important. In early years, there were many works that focused on
finding solutions to solve the storage and processing the massive data. Using par-
allel relational database management systems (parallel DBMSs) is just one of the
solutions. Since the techniques (Chang et al. 2008; Dean and Ghemawat 2008; Ghe-
mawat et al. 2003) Google had published, the large-scale data processing steps into a
new pattern.

Generally, accessing relational database (RDB) is one of the most popular ways to
manage data for enterprises. RDB techniques are mature and the performance is good
for small datasets. With rapidly growing of data being collected and analyzed, RDB
is no more a good solution. Users store large-scale of data in different tables in RDB,
it becomes complicated and costs more time to access data. The ways cloud comput-
ing provides users to access datastore usually facilitate the operations of separating
tables or distributing files to different nodes. In this manner, a submitted query can
be processed in parallel to reduce the turnaround time. However it is inconvenient
for users to access the datastore in cloud once the way they access data is changed.
Moreover, changing datastore from RDB to cloud datastore requires steep learning
curve to users.

To avoid the steep learning curve for users, one solution is to develop a frame-
work which provides a front-end interface as shown in Fig. 3 to submit ANSI-SQL
queries and a back-end to employs NoSQL database for accessing large-scale data.
Thus the ANSI-SQL users can access NoSQL database without having to learn new
programming languages.

MapReduce is one of these techniques acted as a large-scale data processing plat-
form, which is initially used to analyze the text data and build the text index. The
Clydesdale work (Kaldewey et al. 2012) points out several attractive properties com-
pared to parallel DBMSs, and also states the importance of structured data process-
ing. As examples, scalability, fault-tolerance and flexible programming framework
are important features required on large-scale data processing. Although the paral-
lel DBMS is one of the solutions to process the structured data, how to process the
large-scale structured data in a scalable way is a big challenge.

A comparison of approaches to large-scale data analysis (Pavlo et al. 2009) eval-
uated the performance comparisons between parallel DBMSs and MapReduce. That
research pointed out several problems for data processing using MapReduce. How-
ever, making DBMSs more scalable is not easy according to the rules (Stonebraker
and Cattell 2011). Developers have to implement functions in the application-level
and implement the mechanism of replication or sharding. In this way, the solutions
may highly depend on the application itself. FunSQL (Binnig et al. 2012) is func-
tional language to extend SQL while statements can be optimized and parallelized.
Therefore, more complex application logic can be developed as in SQL. Oracle has



Autom Softw Eng (2014) 21:489–508 491

supported for MapReduce paradigm through specific mechanism. Native Hadoop
programs cannot be executed in this framework without being rewritten. A proto-
type (Su and Swart 2012) for such framework was proposed to seamlessly integrate
MapReduce and SQL. This explains that MapReduce is a better solution for a wide
variety of applications while Big Data is involved.

In recent years, several studies work on adopting the MapReduce to perform the
unstructured data processing, e.g. HadoopDB (Abouzeid et al. 2009), Pig Latin (Ol-
ston et al. 2008) and Hive (Thusoo et al. 2009). However, most of previous works
pay less attention to address the adaption of frequently updatable datastore such as
Bigtable or HBase (Apache HBase (2013). http://hbase.apache.org). In some enter-
prises’ needs, the data resided in a database may be frequently changed as the update
occurs. Accordingly, we need a flexible datastore not only to place the data over a
scale-out storage system, but also to manipulate the changeable data in a transparent
way. Based on the flexible datastore, we can further process the large-scale unstruc-
tured data on MapReduce in a scalable manner.

In this paper, we propose the JackHare framework to facilitate the process of ac-
cessing large-scale datasets. The JackHare framework provides a front-end interface
and back-end datastore connection allowing users to use the ANSI-SQL queries to
manipulate large-scale data. The front-end of the JackHare framework includes a
JDBC driver which implements the Java database connectivity and provides a com-
piler to scan, parse and execute ANSI-SQL queries. In order to generate code, we
provide a systematical method using MapReduce for the unstructured data process-
ing in NoSQL database. To support an updatable datastore, we exploit the HBase
as the underlying NoSQL database. Therefore, a JDBC driver for the connection to
HBase is provided in this framework for users to access data in HBase.

Based on the HBase, we analyze the major manipulation languages of the ANSI-
SQL and provide the corresponding implementations to manipulate the data resid-
ing in the NoSQL database. To manipulate the datasets effectively, a data placement
model which is aligned with the target NoSQL database is a critical issue. Therefore,
to organize the data with less complexity, we also introduce a mapping strategy to
translate the data model from the relational database to the NoSQL database. With
the corresponding manipulations, developers can exploit transparent programming
interfaces to process the unstructured data in NoSQL database. Moreover, we further
conduct the unstructured data processing on MapReduce to scale the data manipula-
tion among the large-scale data.

To use the JackHare framework is to import the JDBC driver to a SQL client, e.g.
SQuirreL. After setting up the configuration in SQL client, submitting ANSI-SQL
queries through the SQL client can manipulate the large-scale data in HBase. With
our work, we can approach the scalable data processing in NoSQL database without
any change to the legacy SQL manipulations. Experimental results show that our
approaches perform the effectiveness of the efficiency and the scalability with the
variety of SQL queries.

The rest of this paper is organized as follows. Section 2 reviews the related works,
while Sect. 3 introduces the JackHare framework. Section 4 presents the data model
and SQL implementations using MapReduce. Section 5 shows the experimental re-
sults to illustrate the system performance while Sect. 6 concludes this paper.

http://hbase.apache.org


492 Autom Softw Eng (2014) 21:489–508

2 Related work

Some works have been done for massive data processing in recent years. The most
similar works we focus on are the structured data processing on MapReduce includ-
ing Pig (Olston et al. 2008), Hive (Thusoo et al. 2009), YSmart (Lee et al. 2011),
S2MART (Gowraj et al. 2013), HadoopDB (Abouzeid et al. 2009), and Clydesdale
(Kaldewey et al. 2012).

Some of previous works provide high level query languages, e.g., SQL-like
queries, for data processing without directly using the MapReduce programming.
Their contribution is to facilitate the use of MapReduce framework for users. In-
stead of learning MapReduce framework, users spend less time learning SQL-Like
languages. As well-known examples, Pig introduces a simpler procedural language
named Pig Latin while Hive presents a declarative language called HiveQL. These
two languages are all built on top of the MapReduce framework. Compared to writing
MapReduce code, coding with the Pig Latin is relatively simple. However, the logic
of data manipulation may differ from the SQL query, whereas HiveQL is more com-
fortable with SQL. Moreover, Hive presents a data warehouse built on top of Hadoop
distributed file system (HDFS) (Apache Hadoop (2013). http://hadoop.apache.org)
for storing the data originally resided in a relational database. Nevertheless, executing
complex SQL queries with HiveQL is still difficult. QMapper (Xu and Hu 2013) was
then proposed to address this problem by utilizing the rewriting rules and MapReduce
flow evaluation, and improved the performance of Hive significantly. YSmart pointed
out that Hive should consider the correlations of queries for better performance. Once
the correlations are considered, redundant computations, I/O operations and network
transferring can be significantly reduced. S2MART tried to transform SQL queries
into MapReduce jobs and reduce both data transfer cost and network transfer cost.
The authors also provided comprehensive study about various features of this re-
search. In our work, we focus on data processing with the logic of SQL queries in
NoSQL database, e.g., HBase. We present a SQL implementation on MapReduce in
HBase for processing and storing the data.

The architecture of HadoopDB is a cluster composed of the MapReduce frame-
work among multiple single-node relational databases. The data in HadoopDB is
stored in the relational databases instead of the HDFS. The contribution of this work
is to approach the performance of parallel DBMSs and sustains the scalability and
fault tolerance as Hadoop. In addition, HadoopDB provides SQL query via a trans-
lation called SQL-MR-SQL (SMS), which is an extended translation layer based on
Hive. The translation flow of Hive is to translate the HiveQL into MapReduce for
processing the files located in the HDFS. HadoopDB modifies and extends this trans-
lation flow to change the interaction target to each single-node relational database.
However, it is a complex architecture to overcome the scalability problem of tra-
ditional database systems. In our work, we provide an alternative solution without
modifying the architecture of Hadoop.

Instead of developing the high level query languages, Clydesdale (Kaldewey et al.
2012) presents a prototype system for structured data processing on MapReduce. The
proposed system provides a significant performance improvement compared to exist-
ing works and does not need any modification of Hadoop implementations. Clydes-
dale focuses on processing the data fitting a star schema. On the contrary, our work

http://hadoop.apache.org


Autom Softw Eng (2014) 21:489–508 493

addresses the data manipulation of SQL queries. Besides, we implement the SQL
manipulations on top of a NoSQL database instead of the HDFS.

To sum up, the previous works mainly focus on using MapReduce for the data
analysis and the performance improvement over HDFS. However, these works are not
desirable for processing the data which may be changed frequently, because of the
write-once-read-many feature of HDFS. In our work, we intend to provide a solution
that can fulfill the frequent update of the data. Consequently, HBase is employed
as our datastore to support changeable data records while sustaining the scalability
and reliability in NoSQL database. Moreover, to organize the datasets, a simpler data
model is designed to transform the data schema between the relational database and
the HBase. We further conduct MapReduce algorithms on SQL implementations to
efficient manipulate the datasets in a scalable NoSQL database.

3 The JackHare framework architecture

To facilitate the use of MapReduce and HBase for ANSI-SQL users, the JackHare
framework composed of front-end and back-end to translate ANSI-SQL queries and
perform logical operations while accessing HBase. JackHare aims to ease the learning
curve of analyzing large-scale datasets in NoSQL database instead of RDB. Figure 1
shows the architecture of JackHare framework. The front-end includes a GUI, com-
piler and JDBC driver while the back-end includes HBase which is a scalable NoSQL
database. Users can choose their favorite application as a GUI, e.g. SQuirreL SQL
client, to import the JDBC driver. The JDBC driver includes an ANSI-SQL query

Fig. 1 The architecture of
JackHare framework



494 Autom Softw Eng (2014) 21:489–508

compiler to scan, parse and execute queries. The scanner, parser and code generator
are implemented using the open source project, Druid. While an ANSI-SQL query
submitted, the scanner breaks queries into tokens. The parser manipulates the abstract
syntax tree which is comprised of tokens. The code generator produces MapReduce
jobs to access HBase and then perform logical operations according to the parsed
commands. The results of ANSI-SQL queries are returned and shown on GUI.

The data models of tables in HBase are quite different from those in RDB. In this
paper, we define the data model used for HBase and introduce it in Sect. 4.1. The
relation between tables in RDB and HBase should be given for the code generator
to precisely retrieve the information of the right column in right table to produce
MapReduce job. The JackHare framework chooses Apache Derby as the metadata
server. Derby stores the table name, column families and column qualifiers of HBase
which can be mapped to database, table name and column name of RDB.

The process of operations from submitting an ANSI-SQL query to returning the
results on SQL client interface is as follows.

• User submits an ANSI-SQL query by SQL client application.
• The compiler scans and parses the ANSI-SQL query.
• Lookup the related table name, column families and column qualifier of HBase.
• Generate MapReduce code according to the query commands and metadata.
• Access HBase and execute the MapReduce job.
• The results wrapped back from the back-end.
• The returned results are shown on SQL client application according to RDB

schema.

In this paper, SQuirreL is used as the user interface in frond-end. It allows users to
access NoSQL service with familiar RDBMS interface. Figure 2 is the screen capture
of SQuirreL with three blocks indicating important information. Block ‘a’ shows the
space to place user’s ANSI-SQL query while block ‘b’ is a button for executing the
query by SQuirreL. Lastly, block ‘c’ shows the results regarding to the RDB schema
after finishing a series of operations including scanning, parsing, code generating,
MapReduce job executing.

To produce MapReduce jobs for ANSI-SQL queries, we need the data model to
store data from RDB, the mechanism of analysis ANSI-SQL clauses and the design
of MapReduce algorithm. Next section describes a high level view for data model,
systematic flow for clauses translating, and the design of MapReduce execution plan
and algorithms.

4 Unstructured data processing in HBase

This section describes the methods we propose for structured data processing in
HBase. At first, we describe how to remap the data in relational database to HBase.
Then, we analyze ANSI-SQL to build up methods with a systematic flow. Finally,
we propose a series of data manipulation methods with MapReduce framework to
process the massive data in HBase.



Autom Softw Eng (2014) 21:489–508 495

Fig. 2 The screen capture of SQuirreL

4.1 Data model

Data model is a high level view of data organization and manipulation, which deeply
affects the methods of data store and access. To perform the remap process, we have
to understand the differences of data model between relational database and HBase.
After that, a corresponding approach is presented to transform the data from relational
database to HBase and is fulfilled to our proposed JOIN algorithm in Sect. 4.2.3.

According to different kinds of data models, NoSQL databases can be classified
into different categories, and HBase is a Bigtable-style database (Chang et al. 2008).
Table 1 compares some critical aspects between the Bigtable-style and the relational
data model. The column-/row-oriented represents the physical placement of datasets.
In this work, we do not concern this criterion because the physical placement may
affect the performance of the queries case by case. Instead, we focus on developing
a generic and systematic solution. Regarding the dimension and the cell version, the
Bigtable data model can support multiple dimensions and cell versions, whereas the
supportability of a relational data model is limited. In fact, the cell version is a hidden
dimension to record the histogram of a cell, which is not considered in the design of
a relational data model.



496 Autom Softw Eng (2014) 21:489–508

Table 1 Difference between Bigtable data model and relational data model

Bigtable data model Relational data model

Column-/Row-oriented Column Row

Dimension Multi-dimension Two-dimension

Cell version Multiple version One version

Number of columns Arbitrary Fixed

Group of columns Yes (Column Family) No

Fig. 3 Data model of a big table transformed from relational tables of a relational database

In the Bigtable data model, the number of columns is arbitrary, whereas the num-
ber of columns is fixed in the relational data model. While the fixed number of
columns is well designed to deal with the structured data, pre-deciding the schema of
table is difficult to handle the unstructured data. Hence, the Bigtable-style data model
utilizes an arbitrary number of columns to store such datasets. Moreover, the dimen-
sion and the group concept are two properties that mostly affect the remapping design.
In the matter of dimension, we remap the two dimensions of relational database to the
rows and the qualifiers of HBase. Each row key of HBase is a combination of table
name and primary key in the original relational table. Besides, the column family,
which is the group concept of HBase, is applied to identify each relational table of a
relational database. Additionally, we adopt one special column family and a row for
the JOIN algorithm. With this mapping strategy, those tables of an application in a
relational database can be successfully transformed into a “big table” of HBase.

As illustrated in Fig. 3, we use the dataset from a semiconductor industry to de-
scribe above remap process. The table of HBase consists of four column families,
in which DIE, WAFER, and LOT represent three original relational tables respec-
tively. Therefore, when there is a query related to table DIE in the view of relational
database, we access the data related to column family DIE in the table in HBase for
this query. A special column family “RowKeys” is defined as storing the row key



Autom Softw Eng (2014) 21:489–508 497

Fig. 4 Logical flow of a basic
SQL statement

list generated by our JOIN algorithm. Section 4.2.3 describes more about the use of
“RowKeys” in (c) Joining query in (3) Extended clauses.

4.2 Analysis of SQL clauses

The SELECT statement is the basic scope of query support in this paper. It means
the SQL language begins with the SELECT keyword and is composed of clauses.
To design methods with a systematic flow, we need to translate each clause of the
SELECT statement into an execution plan of one or multiple MapReduce phases.
Subsequently, we describe two steps for our proposed translation and summarize the
design of these clauses into a logical flow as shown in Fig. 4.

4.2.1 SELECT, FROM and WHERE clauses

This work focuses on the translation of three basic clauses of SELECT statement:
SELECT, FROM, and WHERE. Firstly, we describe how to translate these clauses
into a logical flow, and then, we translate this logical flow into the MapReduce exe-
cution plan.

Queries are usually given with an order: SELECT, FROM, and then WHERE.
But the data manipulation flow is definitely not in this order. We have to reorder the
process of a basic SELECT statement. The first step is to deal with the input of a
query. No matter how many input tables the FROM clause has to access, we filter all
the input tables if the query statement contains a WHERE clause. The WHERE clause
specifies the condition which rows of the input tables can be used. In other words, the
WHERE clause is not necessary for every query. If the WHERE clause is given, all



498 Autom Softw Eng (2014) 21:489–508

the rows of input tables are used. The last step is to output the data fields which are
specified in the SELECT clause. Hence, as show in Fig. 4, the data manipulation
order of these three clauses is FROM, WHERE (optional), and then SELECT.

4.2.2 Extended clauses

Apart from three basic clauses as mentioned above, the SELECT query has some
extended capabilities. These extended clauses are used to perform some advance pro-
cessing based on the result of basic clauses. We introduce these capabilities according
to the clauses and features as follows.

(a) GROUP BY:
GROUP BY is a clause that specifies a column for the grouping. The AGGRE-

GATE FUNCTIONs is usually given with a GROUP BY clause to compute the
result of rows in a group. Then, a constraint of the HAVING clause can be further
set to filter the query result. Basically, without other clauses, the query result of
each group is only a single row.

(b) HAVING:
HAVING is a clause that specifies a constraint to filter the result, which is often

cooperated with GROUP BY and AGGREGATE FUNCTIONs. If the GROUP
BY clause is given, the HAVING clause is resolved after handling the GROUP
BY clause. In the case of AGGREGATE FUNCTIONs, the HAVING clause is
executed after the WHERE clause or the FROM clause if the WHERE clause is
not given.

(c) ORDER BY:
ORDER BY is a clause that specifies a column for the sorting. The ORDER

BY clause has to be the last clause of a SELECT statement. The query result
would be sorted if ORDER BY clause is given.

(d) JOIN:
JOIN is a clause that specifies the number of input tables is more than one.

When the FROM clause of a query is given with more than one table, a JOIN
operation could be identified. A JOIN query can cooperate with key words, e.g.,
ON, INNER, to perform different kinds of joining queries. In current work, we
focus on the CROSS JOIN and the EQUAL JOIN (i.e., JOIN . . . ON.) to con-
struct a systematic flow of proposed methods.

(e) AGGREGATE FUNCTIONs:
An AGGREGATE FUNCTION is the operation to summarize the value of

rows of a given column in a group or a full table. The aggregate functions often
cooperate with the GROUP BY clause. The ANSI-SQL standard defines many
kinds of aggregate functions. In current work, we focus on five commonly used
functions. SUM and AVG functions will work with the numeric. While SUM
sums up the value of a specified column, AVG computes the average value of a
specified column. On the other hand, the COUNT function is used to calculate
the number of rows in a given column. MIN and MAX are used to find out the
minimum and the maximum value of a specified column.

Next, we take the following query as an example:



Autom Softw Eng (2014) 21:489–508 499

SELECT WAFER_ID, SUM(PSVDDV)
FROM DIE
WHERE WAFER_ID LIKE ‘A00002.2 %’
GROUP BY WAFER_ID
HAVING SUM(PSVDDV) > 2000000

In this example, the input table DIE which specified by the FROM clause is filtered
firstly according to the constraint of “WAFER_ID LIKE ’A00002.2 %”’. Secondly,
the GROUP BY clause groups and summarizes the rows based on common values in a
set of WAFER_ID. One group is treated as a single row by setting an SUM function.
The SUM function is a kind of aggregate function to compute the arithmetic sum
in a set of grouped rows. Then, the HAVING clause filters the grouped rows that
satisfied with “SUM(PSVDDV) > 2000000”. Finally, the SELECT clause specifies
WAFER_ID and SUM(PSVDDV) to be retrieved as the output format.

According to the sample query, we can successfully translate the specified clauses
into a logical flow as shown in Fig. 4. There are other two clauses we also take into
consideration, which are ORDER BY and JOIN. Since the ORDER BY clause is
performed to sort the result of a specific column, we develop this clause after other
clauses. On the other hand, when the FROM clause appears in more than one table,
a joining query occurs. Subsequently, we describe translating the logical flow into
MapReduce execution plan.

4.2.3 Design of MapReduce algorithm

We have described how to translate the SQL clauses into a logical flow. This section
focuses on the design of MapReduce execution plan and corresponding algorithms.

(1) From logical flow to MapReduce execution plan
To explain the translation from the logical flow to a MapReduce execution plan,

we give a brief review of Hadoop MapReduce at first. A Hadoop MapReduce job
is typically divided into two major phases. In the Map phase, the Mapper processes
the input data and mapping the data into corresponding key-value sets. Then, the
framework steps into the shuffle/sort stage. In this stage, the output of key-value sets
from the Map phase is redistributed by keys to achieve a global data organization.
Finally, the last Reduce phase combines the received key-value sets into an ordered
list according to the keys. In this phase, Reducer processes the key-value sets with
the same key to perform a global combination.

Since we get the logical flow of the SQL statement, we can take the translation
process as a mapping between the logical flow and the MapReduce execution stages.
Figure 5 summarizes the relation between them. For most of the basic statements,
one Mapper is involved to resolve the query; at the meanwhile, the Reducer is not
involved. In the case of giving the extended clauses of SQL statement, the remaining
logic flow of the query is executed by the Reducer, e.g. GROUP BY, AGGREGATE
FUNCTIONs and HAVING. However the ORDER BY clause is not executed by the
Reducer since the row keys in HBase are sorted by the type of byte array. The ORDER
BY clause can exploit this feature to retrieve the sorted result. Once the JOIN clause
is involved, we run a MapReduce job to create the joined table at first. The remaining



500 Autom Softw Eng (2014) 21:489–508

Fig. 5 Logic flow to MapReduce plan

clauses are performed by the other MapReduce job to resolve the query. Thus, the
number of MapReduce jobs could be more than one depending on the complexity of
the query.

After introducing the MapReduce execution plan, we further describe how to con-
duct the combinations of SQL clauses on MapReduce in HBase.

(2) Basic clauses of a SQL statement
Given a basic clause, the WHERE clause can simply be treated as a filter. In

this work, regarding the MapReduce framework in HBase, the Filter instance of the
HBase system is used to filter the data in HBase. To exploit the HBase filter, we use
the Scan instance to filter more results of matched rows. In the scanning process, we
add a Filter on the Scan instance to filter the input table. The Filter instance can be
customized according to various constraints. After scanning with the Filter, the result
is sent to the Mapper. In this way, the number of data sent to the Mapper is smaller
than filtering the data in the Map phase. Moreover, the scanning process could be
parallelized and so does the corresponding Filter operation.

After receiving the result from the Scan instance, Mapper uses the TableInputFor-
mat to convert the tabular data into a format that can be identified by the MapReduce
framework. The TableInputFormat is a kind of input format provided by Hadoop
MapReduce. Using the TableInputFormat, the input of Map function in Mapper is
filtered and read one row at a time. The Map function only needs to get the columns
which SELECT clause specified and output to the result table in HBase. In this man-
ner, we can retrieve the data input and output in parallel. Thus, when the query is
simply using the basic SELECT statement, we need only the Map phase to get query
result. There is no operation for reduce phase in this situation.



Autom Softw Eng (2014) 21:489–508 501

(3) Extended clauses
For easy understanding, we classify the combinations of extended clauses into

four categories and explain the corresponding designs of MapReduce algorithms.

(a) Grouping query: The grouping query is a combination of the clause with
GROUP BY, AGGREGATE FUNCTIONs or HAVING. The MapReduce framework
essentially provides the ability to process the GROUP BY clause. Accordingly, in
our work, the Mappers assign specified keys for grouping and the Reducers group
the key-value pairs with the same key into a group. Since the Reducers primitively
receive the same key from the output of Mappers, all we have to do is to decide the
key-value pairs for each row.

In the Map phase, we get some related information from the MapReduce config-
uration instance at first. Secondly, the following steps are processed in the Mapper.
Whether the GROUP BY clause of a query cooperates with or without HAVING
or AGGREGATE FUNCTIONs, the key of the key-value pair is the specified value
of the column which is given in the GROUP BY clause. To support AGGREGATE
FUNCTIONs, the value of the key-value pair is the combination of the column name
and the values specified by the query. After constructing the key-value pair, the Map-
per outputs this pair to the corresponding Reducer which is responsible for this key.

Once Reducers collect all key-value pairs with the same key, they start to sum-
marize the values according to the specified AGGREGATE FUNCTIONs. Each col-
umn may be required to perform multiple AGGREGATE FUNCTIONs. We can get
this information from the MapReduce configuration. According to the part of column
name, Reducer can distinguish which column the value is belonged to. Then, Reducer
knows what aggregate operations to be performed to this value. After every column
of the row is processed, the Reducer writes the result to a result table in HBase. Be-
sides, if the HAVING clause is given, the Reducer will check if the result satisfied the
condition specified by the HAVING clause.

(b) Aggregate query: The aggregate query is a combination of the clause with
AGGREGATE FUNCTIONs. We implement these functions in the Reduce phase.
When the aggregate function does not cooperate with GROUP BY clause, the result
of the query is summarized to a single row. Therefore, the key of the key-value pair
is set to the same value and sent to the same Reducer.

(c) Joining query: The joining query is a combination of the clause with JOIN. The
ANSI-SQL standard defines a variety of joining query. In this paper, we consider both
the equal join and the cross join of two tables. Several existing works have introduced
their join algorithm using MapReduce (Afrati and Ullman 2010; Blanas et al. 2010;
Okcan and Riedewald 2011). The comparison of join algorithm (Blanas et al. 2010)
analyzes different join algorithms and presents a comprehensive comparison of those
algorithms. However, the previous algorithms focus on the equal join. Our proposed
method can extend an extra job to filter the result of cross join to achieve the equal
join.

To support the cross join, we construct a row key list of the smaller input table by a
MapReduce job and store the list in the HBase at first. For the process of joining, we
create another MapReduce job which only contains a Map phase. Figure 6 illustrates
flow in the Map phase in detail. To produce more parallel processing operations, we



502 Autom Softw Eng (2014) 21:489–508

Fig. 6 Implementation of CROSS JOIN

take a larger table as the input of this MapReduce job. Three steps are described as
follows.

(i) Each Mapper gets the partial data of a larger table in the HBase as its input.
(ii) The Mapper gets the row key list and takes the combination of row keys of the

larger and smaller tables as the new row key. When processing the input row of
the larger table, Mapper replaces the row key part of KeyValue instance with the
new row key. Mapper then adds this instance to the Put instance. Mapper also has
to get the raw data for each row key in the row key list and do the same steps as
above described. The Put is an instance provided by the original HBase package
used to output to HBase. Finally, we get the Put instance containing the cross join
result of the current input row.

(iii) The Mapper sets the Put instance as the value of MapReduce key-value pair. The
MapReduce framework outputs the Put instance after Mapper completes the job.

The method for CROSS JOIN queries aims at the cases that one table is much
smaller than the other one. Thus, each mapper performs CROSS JOIN with partial
data of the large table and the complete data of the small table along with small row
key list. While handling both tables with very large size, a very large row key list will
be generated first. Each mapper then needs more spaces to perform CROSS JOIN
with partial data of the large table and another large table along with the produced
large row key list. To avoid performance dropping dramatically, partitioning the other
large table is a possible solution. There are fewer researches studies discussing on the
cross join than the equal join. The concept of most common solutions of equal join is
similar to the partitioning.

(d) Sorting query: The sorting query is a combination of the clause with ORDER
BY. In HBase, rows of the table are lexicographically sorted by the row key. Since
the data stored in HBase is the type of byte array, we regard the row key as charac-
ters to compare any two keys from left to right. The row keys in our design are the
primary keys of original database tables. To process the sorting query, the row key
is composed of the value of the specified column and the row keys of input table.



Autom Softw Eng (2014) 21:489–508 503

For example, the column DIE_X of the input table DIE is the specified column to be
sorted and the row keys of table DIE is column DIE_SN. The corresponding row key
of the result is in the format: “DIE_X:DIE_SN”. The column DIE_X is used to be
the information for sorting and the column DIE_SN is used to guarantee each row is
unique.

5 Experimental results

To evaluate the proposed MapReduce algorithms in JackHare framework for
SELECT, FROM, WHERE and extended clauses, we implemented them to com-
pare with Hive and MySQL. We describe the experimental environment and results
as follows.

5.1 Experimental environment

To evaluate the performance of the proposed MapReduce algorithms, we established
a 16-node virtual machine cluster on four physical machines. The installed version
of Hadoop on the cluster is 0.20.203. The version of HBase installed on the top of
Hadoop is 0.92.0, which is the datastore of the proposed framework and also supports
Hive to access to an existing HBase table with string and byte data types. (Hive HBase
Integration (2013). https://cwiki.apache.org/Hive/hbaseintegration.html) To evaluate
the performance, Hive was installed on the same cluster. The version of Hive is 0.9.0
which supports creating an external table to access a table in HBase with byte data
type. Since Hadoop is a Java-based system, the installed version of JAVA is 1.6.0 and
the maximum heap size is 512 MB. A layer-2 switch is used to connect to physical
machines. Every physical machine has two Intel Xeon L5640 CPU, 24 GB ram and
3 TB HD. In the 16-node virtual machine cluster, each virtual machine has two cores
at 2 GHz with 4 GB ram and 400 GB storage space. The version of MySQL database
5.1.52 and was installed on a virtual machine with two cores at 2 GHz, 4 GB ram and
800 GB hard disk to compare the performance disparity among SQL database and
NoSQL database.

The large-scale dataset for evaluating different approaches was generated from a
semiconductor industry. The SQL queries to manipulate data for different approaches
are listed in Table 2, and are adopted as benchmarks to evaluate the performance. The
dataset is composed of three tables in RDB. The table names are LOT, WAFER and
DIE for storing data of lot, wafer and die. One lot has 25 wafers and each wafer has
two million dies, the table die is extremely larger than the others. To import the dataset
to HBase, three tables are combined in a HBase table with data model described in
Sect. 4.1. Hive then creates external table to access data in HBase.

5.2 Results

This section classifies the SQL statements into three categories which are “SELECT,
FROM, WHERE”, “GROUP BY and AGGREGATE FUNCTIONs” and “ORDER
BY and JOIN”, and presents the performance results as follows.

https://cwiki.apache.org/Hive/hbaseintegration.html


504 Autom Softw Eng (2014) 21:489–508

Table 2 SQL Statements of data manipulations for performance benchmark

Statements

1. SELECT ∗ FROM DIE WHERE WAFER_ID = ’A00002.01’

2. SELECT ∗ FROM DIE WHERE WAFER_ID BETWEEN ’A00002.20’ AND
’A00002.25’

3. SELECT ∗ FROM DIE WHERE WAFER_ID LIKE ’A00002.2 %’

4. SELECT WAFER_ID, COUNT(∗) FROM DIE WHERE WAFER_ID LIKE
’A00002.2 %’ GROUP BY WAFER_ID

5. SELECT SUM(PSVDDV), MAX(PSVDDV), MIN(PSVDDV), AVG(PSVDDV) FROM
DIE WHERE WAFER_ID LIKE ’A00002.2 %’

6. SELECT WAFER_ID, PSVDDV FROM DIE WHERE WAFER_ID BETWEEN
’A00002.20’ AND ’A00002.25’ ORDER BY WAFER_ID DESC

7. SELECT ∗ FROM LOT a, WAFER b

Fig. 7 Performance of SELECT, FROM, WHERE (a) Statement 1 (b) Statement 2 (c) Statement 3

5.2.1 SELECT, FROM, WHERE

The first category consists of statements 1, 2 and 3 which addresses on filtering the
data with different constraints. The experimental results are shown in Fig. 7. In our
work, the result of each query is directly stored in the HBase. That is, the number of



Autom Softw Eng (2014) 21:489–508 505

Fig. 8 Performance of GROUP BY and AGGREGATE FUNCTIONs (a) Statement 4 (b) Statement 5

rows written to the result table may affect the total execution time. In the experience
of statement 1, there are 2,000,000 rows in result. In the cases of statement 2 and
statement 3, there are 12,000,000 rows in result for each statement. On average, the
experimental results show that the statement 2 and the statement 3 spend more time
than the statement 1 to process the dataset for JackHare.

The performance gap between JackHare, Hive and MySQL becomes larger as the
size of dataset increases. In the case of 100 GB, we find that our work performs almost
the same with MySQL in statement 2. That is because the I/O time of HBase takes
a great proportion of the execution time. Therefore, when the output is relatively
small to the total input dataset, the difference of performance between our method
and MySQL is not obvious. In other cases, JackHare has better performance against
MySQL. On the other hand, JackHare outperforms Hive in this category. The reason
could be the characteristic of Hive descripted in YSmart (Lee et al. 2011) that Hive
is a production SQL-to-MapReduce translator. The MapReduce jobs created by Hive
may be inefficient. JackHare is 3, 1.5 and 1.5 times faster than Hive with 100 GB
data size for statement 1, 2 and 3 respectively. JackHare has better performance with
larger data size against Hive, and is almost 7.06 times faster with 700 GB data size
and 4.7 times faster on average in this category.

5.2.2 GROUP BY and AGGREGATE FUNCTIONs

While the first category focuses on the queries of I/O part, the second category ad-
dresses the performance of computation queries. Figure 8 presents the performance
results for this category of statement 4 and statement 5, in which the number of output
rows are 6 and 1 respectively. The results depict that the execution time of JackHare
is less than the results in the previous category. The phenomenon illustrates that com-
putation intensive queries are more effective than I/O intensive queries for JackHare
to process a large-scale data in HBase. Generally speaking, JackHare outperforms
Hive and MySQL and is at least 5.04 and 2.15 times faster than Hive and MySQL for
statement 4 and 5 on average.



506 Autom Softw Eng (2014) 21:489–508

Fig. 9 Performance of ORDER BY and JOIN (a) Statement 6 (b) Statement 7

5.2.3 ORDER BY and JOIN

The experimental results of these two kinds of statements are shown in Fig. 9. The
result of statement 6 is similar to previous statements. JackHare outperforms its com-
petitors in all cases. In the statement 6, the number of output row is 12,000,000 ac-
cording to the WHERE clause. The performance gap between JackHare, Hive and
MySQL increases as the size of dataset grows. Comparing statement 6 with state-
ment 2 for JackHare, we can find the ORDER BY query costs less time than the
basic query under the same size of dataset. That is because fewer columns are speci-
fied in the SELECT clause. Accordingly, the more columns a query needs to output
the result, the more execution time will be.

Statement 7 is a JOIN query which queries data from two tables. Since LOT and
WAFER tables are small, the relational database performs CROSS JOIN no more
than one second. However, the relational database cannot perform CROSS JOIN with
an extremely large table such as DIE. While executing CROSS JOIN with LOT and
WAFER (two small size of tables), JackHare performs better than Hive in all data
sizes. It performs 1.08 times faster than Hive on average and saves 675 seconds in
total.

5.2.4 Summary

The exact values for graphs in Figs. 7, 8, and 9 are presented in Table 3. In general, the
more input data a query needs to deal with, the larger execution time will consume.
Nevertheless, in all cases of benchmarked queries, our approaches can resolve each
query with stable performance.

6 Conclusions

In this paper, we have proposed the JackHare framework with a comprehensive so-
lution including SQL query compiler, JDBC driver and a systematical method using
MapReduce for processing the unstructured data in NoSQL database. JackHare is
developed based on Hadoop and HBase to store the data that originally resides in the



Autom Softw Eng (2014) 21:489–508 507

Table 3 Exact values for graphs in Figs. 7, 8 and 9

Statement Method Results of different data size in second

100 GB 200 GB 300 GB 400 GB 500 GB 600 GB 700 GB

Statement 1 JackHare 503 947 1427 1740 2164 2743 3077

Hive 1962 3790 6437 7730 10907 20109 21701

MySQL 996 1822 2645 3582 4729 5864 6680

Statement 2 JackHare 1334 1616 2062 2296 2679 3434 3746

Hive 1961 3810 6053 8165 10522 21323 20721

MySQL 1265 2087 3452 4701 5792 6985 7934

Statement 3 JackHare 1241 1543 2042 2282 2667 3312 3673

Hive 1903 3989 5995 7340 10393 19951 22920

MySQL 1511 2425 3476 4420 5331 6343 7545

Statement 4 JackHare 471 938 1449 1813 2387 2944 3372

Hive 1790 3707 6002 6935 9857 19770 25233

MySQL 1026 1859 3124 4292 5490 6692 7811

Statement 5 JackHare 473 961 1461 1832 2340 2889 3376

Hive 1697 4283 5789 7216 10856 17331 22272

MySQL 1021 1924 2765 3963 5215 6371 7441

Statement 6 JackHare 667 1132 1597 2045 2532 3058 3400

Hive 1713 3445 5903 7269 10704 21225 22497

MySQL 1049 1807 3083 4238 6546.82 6186.6 6482.5

Statement 7 JackHare 439 813 1194 1487 1614 1695 1732

Hive 448 837 1322 1522 1770 1798 1952

MySQL 0.01 0.01 0.01 0.01 0.01 0.01 0.01

relational database and designed the corresponding MapReduce methods based on
the logic of SQL queries. To ease the learning curve of employing NoSQL database
like HBase, SQL user can import the JDBC driver to SQL client software to manip-
ulate the large-scale data without being aware of NoSQL database. The experimental
results show that JackHare outperforms both Hive and MySQL in most cases and is
also a scalable solution for various sizes of data. However, result of statement 7 shows
the difficulty of replacing RDBs while executing CROSS JOIN with small tables. In
the future, we will focus on a hybrid architecture combining the best of both RDBs
and JackHare to improve JackHare framework.

References

Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB: an architec-
tural hybrid of MapReduce and DBMS technologies for analytical workloads. In: Proceedings of the
VLDB Endowment. VLDB Endowment, Armonk pp. 922–933 (2009)

Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Proceedings of the 13th
International Conference on Extending Database Technology, pp. 99–110 (2010)

Apache Hadoop: http://hadoop.apache.org (2013)
Apache HBase: http://hbase.apache.org (2013)

http://hadoop.apache.org
http://hbase.apache.org


508 Autom Softw Eng (2014) 21:489–508

Binnig, C., Rehrmann, R., Faerber, F., Riewe, R.: FunSQL: it is time to make SQL functional. In: Proceed-
ings of the 2012 Joint EDBT/ICDT Workshops, pp. 41–46. ACM, New York (2012)

Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join algorithms for
log processing in MaPreduce. In: Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, pp. 975–986 (2010)

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst.
26(2), 1–26 (2008)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1),
107–113 (2008)

Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pp. 29–43. ACM, New York (2003)

Gowraj, N., Ravi, P.V., Sumalatha, M.R.: S2MART: smart sql to map-reduce translators. In: Proceedings
of the Web Technologies and Applications. LNCS, vol. 7808, pp. 571–582. Springer, Berlin
(2013)

Hive HBase Integration (2013). https://cwiki.apache.org/Hive/hbaseintegration.html
Kaldewey, T., Shekita, E.J., Tata, S.: Clydesdale: structured data processing on MapReduce. In: Proceed-

ings of the 15th International Conference on Extending Database Technology, pp. 15–25. ACM, New
York (2012)

Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., Zhang, X.Y.: Yet another SQL-to-MapReduce translator. In:
Proceeding of the 2011 31st International Conference on Distributed Computing Systems, Washing-
ton, pp. 25–36 (2011)

Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, pp. 949–960. ACM, New York (2011)

Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data
processing. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, pp. 1099–1110. ACM, New York (2008)

Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A comparison
of approaches to large-scale data analysis. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 165–178. ACM, New York (2009)

Stonebraker, M., Cattell, R.: 10 rules for scalable performance in ’simple operation’ datastores. Commun.
ACM 54(6), 72–80 (2011)

Su, X., Swart, G.: Oracle in-database hadoop: when mapreduce meets RDBMS. In: Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, pp. 779–790. ACM, New
York (2012)

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive:
a warehousing solution over a map-reduce framework. In: Proceedings of the VLDB Endowment.
VLDB Endowment, Armonk pp. 1626–1629 (2009)

Xu, Y., Hu, S.: QMapper: a tool for SQL optimization on hive using query rewriting. In: Proceedings of the
22nd International Conference on World Wide Web Companion, pp. 212–221. ACM, Geneva (2013)

https://cwiki.apache.org/Hive/hbaseintegration.html

	JackHare: a framework for SQL to NoSQL translation using MapReduce
	Abstract
	Introduction
	Related work
	The JackHare framework architecture
	Unstructured data processing in HBase
	Data model
	Analysis of SQL clauses
	SELECT, FROM and WHERE clauses
	Extended clauses
	Design of MapReduce algorithm


	Experimental results
	Experimental environment
	Results
	SELECT, FROM, WHERE
	GROUP BY and AGGREGATE FUNCTIONs
	ORDER BY and JOIN
	Summary


	Conclusions
	References


