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Abstract - For better efficiency of parallel and distributed 
computing, Apache Hadoop distributes the imported data 
randomly on data nodes. This mechanism provides some 
advantages for general data analysis. With the same concept 
Apache Sqoop separates each table into four parts and 
randomly distributes them on data nodes. However, there is 
still a database performance concern with this data 
placement mechanism.  This paper proposes a Correlation 
Aware method on Sqoop (CA_Sqoop) to improve the data 
placement. By gathering related data as closer as it could be 
to reduce the data transformation cost on the network and 
improve the performance in terms of database usage. The 
CA_Sqoop also considers the table correlation and size for 
better data locality and query efficiency. Simulation results 
show that data locality of CA_Sqoop is two times better than 
that of original Apache Sqoop. 
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I. INTRODUCTION 

  With the improvement and advancement of internet 
technologies, people use the internet more and more in 
daily life. Thus, huge amount of data is generated with 
various formats. The ways to store data, analyze data and 
find useful information become important issues. Cloud 
Computing technologies are developed for those issues, 
e.g., Google File System (GFS) [6], MapReduce 
framework [5] and BigTable [4] proposed by Google in 
2003, 2004 and 2006 for distributed file system, parallel 
and distributed computing, and NoSQL database, 
respectively. 

  In 1984, John Gage created the phrase "The Network 
is the computer" which described the concept of Cloud 
Computing today. However, the internet technologies 
were not good enough to realize this idea. The phrase 
"Cloud Computing" is not a technology but a concept of 
establishing a server cluster [3] in Cloud by virtualization 
technologies and processing the large amount of data 
stored in Cloud through the internet. Google proposed the 
MapReduce framework to split data into small pieces and 
execute the related jobs on nodes. The results will be 
collected from nodes, integrated and then return back to 
users. In this way, MapReduce transforms a single-node 
processing job to a parallel processing job to improve the 
execution efficiency.  

  Although GFS, MapReduce and BigTable were 

published, the source code was not released. After the 
community developed Hadoop [8], enterprises and 
programmers have a platform similar to GFS and 
MapReduce framework to develop MapReduce related 
technologies [7].  

  Most enterprises still use relational database (RDB) 
for business. However, as more and more data produced, 
RDB lacks the ability to handle such size of data. Using 
Cloud database is a possible solution and enterprises need 
a tool to migrate data from RDB to Cloud database for 
performance in terms of database usage. 

  Apache Sqoop was developed for data migration from 
RDB to NoSQL database. Sqoop becomes the top level 
project in 2012 which enable users to migrate large size of 
data to Cloud environment and to be accessed by Cloud 
technologies. 

  Different from the traditional means, files are split and 
distributed in different Virtual Machines (VMs). However, 
there will be an issue if a JOIN operation is performed 
and its data of tables is distributed and stored on different 
VMs. 

  Sqoop splits each table into four parts by default and 
use the Mapper of MapReduce framework to store data in 
the cluster via JDBC driver during data migration. Data of 
tables is then stored in the VMs where Hadoop executes 
the Mapper randomly. The data is therefore distributed in 
the VM cluster. 

  Due to execute Mapper randomly in VMs, the bad 
location of data in the cluster may increase the query time 
because some data has to be transformed on network. 

  This paper addresses above issues and enhances data 
locality by analyzing the log of queries. RDB logs 
everything including the queries which are submitted to 
access database. By analyzing the log, tables which are 
frequently used can be found and stored as closer as 
possible in the VM cluster to avoid possible data 
transformation and improve the overall performance.  

  The rest of this paper is organized as follows. Section 
2 presents the related work. Section 3 introduces how 
Apache Sqoop works. In section 4, we present the 
proposed method, CA_Sqoop, to improve the data locality. 
Section 5 gives the performance evaluation. Finally, 
section 6 concludes this paper. 
 

II. RELATED WORK 
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  With the coming of digital age, enterprises have to 
keep up with data growth explosion. RDB lacks the 
ability to handle such amount of data for real-time system, 
e.g., telecom billing systems. A research [10] compared 
MapReduce and SQL on large scale data processing. The 
result shows RDB had better performance with small data, 
but MapReduce performed better while size of data 
increased. LoadAtomizer [1] presented algorithms to 
solve the scheduling and load balancing problems. 

  JOIN is a frequently used database operation. Many 
researches had proposed solutions to improve the 
performance of JOIN [11, 12]. Hive [16] provides 
SQL-like query language, HiveQL, to access data in 
NoSQL storage, e.g., HBase. However, the MapReduce 
jobs of JOIN operations generated by Hive are not 
efficient. 

  Hive generates MapReduce jobs for queries one by 
one. Thus, the relation between queries is not considered. 
YSmart [15] addressed this issue and tried to merge 
operations according to the relation between queries. 
YSmart successfully avoided unnecessary JOIN operation, 
improved the query time and was integrated to Hive in 
2012. 

  NoSQL databases were designed to process 
unstructured data [13, 14], but enterprises want to 
leverage the ability of NoSQL to process structure data. 
Clydesdale [9] proposed a framework on Hadoop for 
above issue without modifying the complicated 
architecture of Hadoop but presenting several techniques 
to speed up the operation of processing structured data. 

 
III. IMPORT DATA TO NOSQL 

  In the age of information explosion, anything can be 
digitalized, e.g. books and figures. As time goes by, the 
size of digital data grows and is hard to know how large it 
actually is. IDC says the total data size of Digital universe 
is 0.18 ZB in 2006. RDB is obviously not able to 
processing such kind of data in terms of size. However, 
Cloud Computing is designed for the Big Data including 
data storing, processing and analyzing. 

  Hadoop, an Apache top level open source project, 
provides a distributed system architecture and is mainly 
consisted of Hadoop Distributed File System (HDFS) and 
MapReduce. HDFS was developed based on the concept 
of GFS to connect nodes together and form a large scale 
of distributed file system. HDFS was designed to process 
large amount of data and provide safe storage architecture 
to avoid hardware failure. It was also designed for 
write-once-read-many file access model, which provides 
simple consistency mechanism and increase the 
throughput of data transformation. HDFS duplicates the 
data on different data nodes to make sure users can still 
access their data if any data node crashes. 

Fig. 1 shows Apache Sqoop system architecture. Sqoop 
focuses on migrating large scale of data between RDB 

and Hadoop. Through Sqoop, users can migrate data to 
HDFS or HBase in command line mode with ease. Sqoop 
became an Apache top level project in March, 2012. 
 

 
Figure 1. Apache Sqoop system architecture 

 
  With the rapid growth of data, processing and 

analyzing data with RDB, e.g., MySQL, becomes 
inefficient. MapReduce can be an alternative to improve 
the performance after Sqoop migrates data to Hadoop. 

  Apache Sqoop splits a table into four parts and 
migrate them to HDFS or HBase through JDBC by 
Mapper. However, the nodes for executing Mappers is 
randomly decided by Hadoop. Data is therefore stored on 
random data nodes which results in a bad data locality. 

  Queries are used to access databases and shown the 
data with different meaning. JOIN is a frequently used 
operation which merges two table according to specific 
columns. If the data of two tables is distributed on eight 
data nodes, data transformation on network cannot be 
avoided to perform the JOIN operation. The speed of data 
accessing on network is obviously slower than that in 
local disks. Therefore, data locality should be increased to 
avoid data transformation on network and enhance the 
performance of JOIN operation. Section 4 proposes an 
algorithm to allocate data to nodes according necessary 
information to address this issue. 
 

IV. CORRELATION AWARE TECHNIQUE 

  Relational database usually has a log file to store 
operations including configuration, modification and 
query. The log file is usually used to monitor the database. 
In addition, the logged operations can be treated as the 
queries accessing to the database. Thus, once the log file 
is analyzed, we can know the tables which are frequently 
use by queries. 

  Table I demonstrates a matrix showing degree of 
Table Correlation (TC) by analyzing queries in the log file.  
Taking Table 1 and Table 2 as an example, the degree is 
15 which means there were 15 queries accessing these 
two table simultaneously according to history records. 
Similarly, there were 45 queries accessing Table 4 and 
table 5 according to the log. 
   In addition to the degree of table correlation, the size 
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of tables can also be considered.  In some cases, it is not 
necessary to put two relative small tables together even 
though the degree of table correlation is high.  Hadoop 
assigns a task to one of the nodes, which owns more data 
to reduce the cost data transformation.  Such concept is 
also applied in this work to improve the performance 
according to table sizes. 

 
TABLE I. Example of table correlation 

 
Table 

Correlation 
(TC) 

Table1 Table2 Table3 Table4 Table5 

Table1  15 25 63 21 

Table2   82 24 34 

Table3    72 12 

Table4     45 

Table5      

 
V. PERFORMANCE ANALYSIS 

  The simulation results of Sqoop and the proposed 
method, CA_Sqoop, are given in this section to show the 
performance while considering table placement. In the 
simulation, the effect of replication is not considered.  
The ranges of parameters in the simulation are given as 
follows.  

 
� Table Size : 1~10 GB 
� Table Correlation : 1~1000 
� Node Capacity : 2~50 
� # of Tables : 20~300 
� # of Nodes : 60~100 

 
  Figures 2 and 3 are the results of with different 

number of node capacity while importing tables to 
clusters. Fig. 2 gives the improvement on data locality 
with a small cluster while Fig. 3 presents the results with 
a large cluster. CA_Sqoop overcomes Sqoop with better 
data locality even the node capacity is increased. 
 

 
Figure 2. Importing twenty tables to a small cluster 

 

 
Figure 3. Importing one hundred tables to a large cluster 

 
   Fig. 4 presents smaller difference in data locality 
while the number of table is increased. The results also 
show a smaller space to be improved while there are more 
tables to be migrated from RDB. 

 

 
Figure 4. Importing different number of tables to a cluster 

 
  Fig. 5 shows that CA_Sqoop increases data locality 

with wider range of correlation. The reason is that 
CA_Sqoop aims at improving the operations related to 
larger tables. 

 

 
Figure 5. A database has different correlation range. 

 
Fig. 6 gives the results of importing one hundred tables 

to clusters with different number of nodes. Although 
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original Sqoop has less data locality while number of 
nodes increased, CA_Sqoop can derive higher data 
locality in the same situation. 
 

 
Figure 6. Impact on different sizes of cluster 

 
  Those simulations show that our approach CA_Sqoop 

can get more data locality than tradition Sqoop. We 
believe that locality can reduce data transmission by 
network and improve MapReduce join performance. 
 

VI. CONCLUSIONS 

  The design of distributed file system provides the 
ability to execute jobs in parallel while data is split and 
imported to nodes randomly. However, this behavior may 
not be good for processing some data which is frequently 
used. To improve the data placement may enhance the 
performance in terms of database usage and is the 
motivation of this paper.  

  JOIN is one of the frequently used operations to 
database and requires much resource. While performing 
JOIN on a distributed file system, it is sensible to execute 
jobs on some nodes. If data is not distributed in these 
nodes, data transformed from other nodes through 
network is necessary and will affect the execution time of 
JOIN. The design of the proposed method, CA_Sqoop, is 
to first analyze the log to know which tables are 
frequently used for JOIN. Then generate TCS and 
distribute above tables on the same node if possible. 

  Simulation results show that CA_Sqoop can improve 
the data locality in all scenarios even importing 300 tables 
to the distributed file system. With CA_Sqoop, the time 
of data transformation and job execution can be 
significantly improved. 
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