
HSAemu – A Full System Emulator for HSA Platforms

Jiun-Hung Ding1, WeiChung Hsu2, BaiCheng Jeng1, ShihHao Hung2, and YehChing Chung1
1
National Tsing Hua University

2
National Taiwan University

Hsinchu, 30013, Taiwan Taipei, 10617, Taiwan
{adjunhon, bcjeng, ychung}@cs.nthu.edu.tw {hsuwc, hungsh}@csie.ntu.edu.tw

ABSTRACT

Heterogeneous System Architecture (HSA) is an open industry
standard designed to support a large variety of data-parallel and
task-parallel programming models. Currently, most of HSA

hardware and software components are still in development. It is
helpful to provide various heterogeneous simulation environments
for HSA developers in developing HSA software stacks. This
paper presents the design of HSAemu, a full system emulator for
the HSA platform, and illustrates how those HSA features are
implemented in the simulator. HSAemu provides an infrastructure
of heterogeneous simulation environments by supporting required
HSA features, including hUMA, hQ and HSAIL. Based on the

infrastructure, HSAemu provide two simulation models, FastSim
and DeepSim, for high-speed functional emulation and slow
cycle-accurate simulation, respectively. In our preliminary
experiments, HSAemu helps test a complete HSA software stack
and profile system performance. Our case studies show that
HSAemu is very useful as a hardware/software co-design tool for
heterogeneous systems.

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture Styles—
Heterogeneous (hybrid) Systems; C.1.6 [Simulation and

Modeling]: Type of Simulation—Parallel.

General Terms

Performance, Design, Experimentation.

Keywords

HSA, GPU simulation, parallel simulation.

1. INTRODUCTION
Over the past decade, heterogeneous computing has been
increasingly adopted in energy efficient computing platforms.
Graphics Processing Unit (GPUs) have been successfully used as
an accelerator to increase the performance and power efficiency
for applications, including servers, desktops, and embedded

systems. However, the current designs by integrating CPUs and
GPUs into a heterogeneous computing platform have several
drawbacks. On the hardware side, current CPUs and GPUs have
been designed as separate processing elements and do not work
together efficiently. For example, since each computing device

has its own address space, applications are required to explicitly
copy data from one side to another back and forth. This introduces
significant programming burden for programmers, as the
programmers must handle the required data movements and
manage such data transfers when the local memory of the
accelerator is not large enough for containing all the data at once.
The programmers also pay attention to data locality exploitation

in different memory hierarchies. In addition, when a program
running on a CPU to request help from a GPU, it sends the job
request to a queue waiting for the GPU to process via system calls,
which in turn, go through a device driver managed by a
completely separate scheduler. Furthermore, it is not feasible for a
program running on a GPU to directly generate work-items, either
for itself or for the CPU.

Heterogeneous System Architecture (HSA) is an emerging open
industry standard, proposed by the HSA foundation, to address the
issues mentioned above. The essence of the HSA strategy is to
create a tightly coupled processor design to effectively support
heterogeneous computing. HSA intends to cover a large variety of
data-parallel and task-parallel programming models by providing

a unified view of fundamental computing elements for
programmers to write applications. HSA also intends to include
more types of accelerators such as ASICs and FPGAs in the future.
This single unified programming platform is a strong foundation
for the development of languages, frameworks, and applications
of HSA. More specifically, the goals of HSA include:

 Remove the CPU/GPU programmability barrier.
 Reduce CPU/GPU communication latency.
 Open the programming platform to a wider range of

applications by enabling existing programming models.
 Create a basis for the inclusion of additional processing

elements beyond the CPUs and GPUs.

To build up next-generation heterogeneous computing
environments, HSA has provided specifications that define the
hardware and software system architectures. Although there are
no HSA-compliant processors available at this time, many of them

are under development. In order to support software development
in parallel to hardware development, the HSA community must
provide a comprehensive system simulator. A full system
simulator, such as QEMU [1] and Simics [2], will help developers
for functional debugging and testing software stacks at early
stages way before the available hardware. In addition, it can
generate event traces and profiling information from complete
software systems, including operating systems, runtime libraries,
applications, and underlying simulation components.

This paper presents the design of a full system HSA emulator,
called HSAemu, which follows the specifications of the HSA
standard. In short, the goals of HSAemu are:

1. Provide a simulation infrastructure of HSA to help developers
in developing software for the HSA platform.

2. Develop a functional model to speed up simulation while
running a complete HSA software stack.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Request permissions from Permissions@acm.org.

ESWEEK'14, October 12 - 17 2014, New Delhi, India

Copyright 2014 ACM 978-1-4503-3051-0/14/10…$15.00.

http://dx.doi.org/10.1145/2656075.2656088

3. Develop a detailed model to collect detailed profiling
information from cycle accurate HSA components, to assist
micro-architecture designs of HSA-compliant processors.

To meet the first goal, HSAemu simulates a whole computer

system based on HSA specifications, including a shared memory
model (hUMA) [3], a queuing model for task dispatching (hQ) [3]
and a virtual ISA for enhanced portability (HSAIL) [4]. To
simulate hUMA so that both CPU and GPU can share the same
virtual address space and page tables, a logically shared,

physically separated soft-MMUs, are implemented. For hQ
simulation, HSAemu provides a modified OpenCL runtime for
HSA to bridge the communication between HSA components
using Architected Queuing Language (AQL). For processing
HSAIL, a LLVM [5] based translator is included to translate
HSAIL binary to native codes of HSA components.

To meet the second goal, the functional HSA simulator, FastSim,
is further optimized for increased simulation speed. While running
HSA software applications in HSAemu, it is compelling that the
underlying parallelism available in the host machine should be
exploited. To speed up the CPU model of HSAemu, we use
PQEMU [6] for parallel CPU computation simulation. PQEMU

effectively parallelizes the dynamic binary translation (DBT)
engine in QEMU to achieve highly efficient parallel emulation on
multi-core host machines. To speed up the GPU simulation of
HSAemu, each GPU compute unit is simulated by a compute
thread. A thread scheduler is assigned to dispatch work-groups to
compute threads, each compute thread simulates a GPU compute
unit so that multiple work-groups are simulated in parallel.

To meet the third goal, we develop DeepSim to collect detailed
micro-architecture information with a cycle accurate GPU
simulation, Multi2Sim [7], which models AMD southern islands
series. Compared to FastSim, DeepSim can gather more
information about the implementation of a GPU, but is much

slower than FastSim. Although FastSim does not gather such
detailed profiling information as DeepSim, FastSim can gather
system memory access events between CPU and GPU, such as
TLB misses and page faults. HSAemu can be extended in multiple
directions, for example, DeepSim may integrate with GPGPU-sim
[8] and GPUWattch [9] to support GPU other than AMD devices.

To evaluate the infrastructure of HSAemu, a heterogeneous
computing simulation environment is configured to run an HSA
software stack and an HSA-compatible N-body Simulation
application. N-body simulation is an ideal example to show the
frequent interactions between CPU and GPU and illustrate the
benefit of the HSA architecture. Both simulation models, FastSim
and DeepSim, are applied in the case studies to reveal their

performance and profiling capability. Finally, the parallelism of
GPU simulation is measured for FastSim.

The rest of this paper is organized as follows. In section 2, the
related works of heterogeneous computing simulation are

presented. Section 3 introduces the background of HSA. Then an
overall architecture design and implementation of HSAemu will
be described in Section 4. Some preliminary experiment results
are presented and discussed in section 5. Section 6 summarize this
work and describes the future works of HSAemu.

2. RELATED WORK
A full-system simulator is an architecture simulator that simulates
a computer system at such a level of detail that complete software
stacks from real systems can run on the simulator without any
modification. A full system simulator provides virtual hardware
that is independent of the nature of the host computer. The full-

system model includes processor cores, peripheral devices,
memories, buses, and network connections. SimpleScalar [10] is a
widely used micro-architectural simulator for modeling
implementation details of a processor. Wattch [11] is also a
popular micro-architectural simulator for modeling power

consumption of processors. ZSim [12] introduces a few novel
simulation techniques, such as bound-weave and lightweight user-
level virtualization, to make thousand-core simulation practical.

As opposed to micro-architectural simulations, functional
emulations allow the interactions among processors, memory and
peripherals to be observed without modeling microarchitectural
details. Recent functional emulators, such as Embra [13], Mambo
[14], QEMU [1] and Simics [2] usually adopt dynamic binary

translation for increased simulation efficiency. In today’s multi-
core environment, parallelism exploitation becomes a major issue
in emulator designs. For instance, PQEMU [6], COREMU [15],
Parallel Mambo [16], and Parallel Embra [17] are all emulators
that allow multiple virtual CPUs to be simulated concurrently on
the host machine. While MCEmu [18] supports parallel
simulation and performance profiling for heterogeneous systems,
it is not HSA-compliant and lacks detailed GPU models.

For GPU simulation, several simulators have been proposed in the
literature. GPGPU-sim [8] provides a detailed simulation of a
contemporary GPU running CUDA and OpenCL [19] workloads
with an integrated energy model at micro-architectural level.
Barra-sim [20] is a functional level GPU simulator based on the
UNISIM [21] framework, which simulates CUDA programs at the
assembly language level and is highly compatible with NVIDIA
G80-based GPUs. Ocelot [22] is a modular dynamic compilation

framework for heterogeneous system, which targets several back-
ends with self-developed translator. Ocelot also implemented its
own compiler from the IR like PTX to CPU code. AMD
FusionSim [23] is based on PTLsim [24] and GPGPU-sim to
simulate an x86 out-of-order CPU, a CUDA-capable GPU and a
CPU/GPU interconnected memory system. GPGPU-sim and
AMD FusionSim both are micro-architectural level simulators
while Ocelot and Barra-sim simulate at functional level.

The binary translation (BT) techniques can be divided into two
categories: static (SBT) and dynamic (DBT). SBT translates
source binary to target binary once before execution while DBT
translates on-the-fly as the execution goes. LLVM is a well-known
re-targetable compiler framework. LLBT [25] is a LLVM based

SBT translator that translates source binary into LLVM IR and
then retargets the LLVM IR to various ISAs by using the LLVM
compiler infrastructure. In [26], the authors developed a method-
based JIT compiler based on the LLVM framework that delivers
performance improvement comparable to that of an ahead-of-time
compiler. To translate HSAIL code, we need not to go for the full
power of DBT since HSAIL is an IR at a level higher than
machine codes and does not have the difficult issues associated

with machine codes such as code discovery, code locations, and
self-modification/self-reference behaviors [27] where DBT would
be more suitable than SBT. In HSAemu, an HSAIL kernel
function is translated by the device finalizer in a JIT fashion.

3. HSA PRELIMARIES
HSA is motivated to improve programmability, portability,
manageability and performance for the next-generation
heterogeneous computing. HSA attempts to fully exploit the
capabilities of heterogeneous parallel execution units by re-

architecting computer systems to tightly integrate disparate
compute elements on a platform while preserving a programming
model that software developers are familiar with.

For programmability, HSA proposes Heterogeneous Uniform
Memory Access (hUMA) to allow various computing elements to
share the same address space. This would allow programmers to
easily share data structures among different computing units,
without worrying about the complexity of managing data transfer

explicitly. Although various computing elements are sharing the
same address space, they are likely to apply local caches to deal
with latency and bandwidth issues. With a shared address space
and local caching, the issue of cache coherence appears. HSA
requires hardware devices to support coherent caches.

For increased portability, HSA proposes HSA Intermediate
Language (HSAIL) to allow OpenCL codes to be translated into
intermediate language and then distribute to various platforms.
This is similar to the case where a Java program is first translated
into bytecode, and the bytecode is distributed to run on various
platforms. HSAIL codes are translated by the device finalizer, just
like bytecodes could be JIT’ed into native code in a JVM.

For manageability and supporting QoS requirements, HSA
requires hardware devices to be preemptable. Each computing
unit could be interrupted and the interrupted job could be resumed
later. This would require an HSAIL program to have a defined

context, and can be context switched when a higher priority job is
scheduled by the hardware.

For increased performance, HSA attempts to reduce the
communication and dispatching latency between different

computing devices. HSA proposes Heterogeneous Queuing (hQ)
which uses user level queues with AQL to communicate with
different computing devices. This could avoid communication
delays caused by going through system calls.

These features of HSA are introduced in the following subsections.

3.1 hUMA
Traditional GPU uses a separate memory space from the CPU so
that programmers must handle explicit memory movements
between CPU memory and GPU memory. Instead, hUMA is a
shared memory architecture used in systems with many different
computing devices. hUMA refers to CPU and GPU sharing the
same memory address space with a coherent view. With hUMA,
applications can create data structures in a single unified address
space and initiate work items on the most appropriate hardware

for a given task. Sharing data between compute elements is as
simple as sending a pointer. Multiple compute tasks can work on
the same coherent memory regions, utilizing barriers and atomic
memory operations as needed to maintain data synchronization.
Thus, HSA allows programmers not to worry much about explicit
management of data copies and data partitioning. In addition, the
range of memory that the GPU can access in HSA is now as large
as the virtual memory space allows. It can significantly simplify
programming on GPU or other accelerators.

3.2 hQ
hQ is proposed to shorten work dispatching latency and
communication delay between HSA agents and HSA components.
To reduce dispatching latency, user mode queues can be allocated
and managed by applications. The user mode queues contain AQL
packets, which are inserted by applications. Every AQL packet is
composed of one kernel function in HSAIL binary, the arguments
of the kernel function and some additional kernel information,

such as work group size and the number of work groups. Each
AQL packet can be dispatched from the user mode queue to
hardware queues in computing device for execution. Through hQ,
user applications can directly dispatch a job to HSA components
without the help of the OS, such as the kernel mode drivers. This

enables low latency dispatching compared to traditional job
dispatching in OpenCL. HSA-compliant agents and components
can communicate with each other by recognizing the format of
AQL packets and the mechanism of queuing model. It helps to
coordinate the heterogeneity in the HSA computing environment.

3.3 HSAIL
HSA uses HSAIL to represent an intermediate format of GPGPU
computing kernels. The HSAIL abstracts the underlying different
instruction sets of HSA components into a uniform view. The
HSAIL program looks like a simple RISC-like assembly code
which has instructions to deal with unified memory accesses,
parallel execution and synchronization. The current HSAIL
defines 120 instructions, performing arithmetic, memory, branch,
image-related, parallel synchronization and device function

operations. HSAIL also supports vector instructions. This offers
opportunity to generate native SIMD instructions (such as SSE in
x86) with less translation time analysis. In addition, 4 types of
register width: 1, 32, 64, and 128 bits are supported. One bit
register is used for condition code, 32-bit and 64-bit support both
single and double precision floating point data. 32, 64, and 128
bits registers can also be used as vector registers for various types
of vector formats. For example, 128bits can be organized as
8bit×16, 32bit×4 or 64bit×2.

Developers can write their own programs in high-level languages,
such as OpenCL, and then translate them into either text format
(HSAIL) or binary format (BRIG) by a front-end compiler. The

front-end compiler can provide multiple processing and
optimization techniques based on HSA architectures. After
translated into HSAIL forms and distributed to various HSA
platforms, the HSA runtime can dispatch the HSAIL binary to a
HSAIL finalizer before running it on a HSA component. The
HSAIL finalizer can be considered as a back-end compiler to
translate HSAIL binary to the machine codes of the underlying
HSA component. HSAIL is a low-level IR, which has a finite
register set and no PHI nodes. A PHI node is an instruction used

to select a value depending on the predecessor of the current block
in the structure of the Single Statement Assignment (SSA) used by
LLVM. Finite register set can simplified register mapping
analysis and no PHI nodes can eliminate the SSA analysis. In
addition, HSAIL excludes high-level symbols such as C structures,
and most of optimizations have already applied in the phase of
front-end compiler. Therefore, the code generation in the phase of
HSAIL finalizer is relatively simple and fast. Once the generated

codes are executed in the HSA components, it supposed to benefit
from the features of HSA architecture.

As a GPGPU IR, HSAIL provides thorough parallel processing
semantics, which allows programmers/compilers to take deeper

understanding of the underlying architectures to what they are
doing. Data movements with the work groups and lanes are well-
defined. Consistency of data in memory is ensured by using
acquire and release mechanisms. Whenever data is acquired by a
certain work group, others are unable to acquire such data until
the data is released. Data consistency within work items can be
assured by using atomic instructions. Other synchronization
mechanisms, such as barriers, are also provided. However, the

barrier is a forced mechanism for all working items to synchronize
at the same time, which may unnecessarily decrease performance,
so a fine-grained barrier is introduced by HSAIL to synchronize a
specified number of work items within a work group.

4. HSAemu
Figure 1 shows the typical components of a HSA-compliant
processor that includes a single chip with a multi-core CPU and a

HSA Runtime

CPUSim GPU Command Monitor

AQL Command

Detector
AQL Command

Handler

hQ

Handler

CPU Thread Scheduler

HSAIL Translator

CPU

Code Cache

FastSim

DeepSim

Memory system GPU Thread Scheduler M2S Bridge

soft-MMU

GPU

Code Cache

M2S GPU

Module

GPU Helper Functions

hUMA

Helper

Kernel Info

Helper

Mathematic

Helper

Synchronization

Helper

Fig. 2. The overall architecture of HSAemu.

many-core GPU, a memory sub-system and a peripheral I/O
subsystem. The two computation units communicate with each
other via an interconnection network and access data in the shared
cache or main memory with the same virtual addresses. To design

HSAemu for such a heterogeneous system architecture, the
following design issues must be considered.

1. Meeting the HSA-compliant requirements: Unlike a traditional
system where the GPU module is considered as a peripheral

device on a PCI bus, in a typical HSA-based system, GPU is
controlled directly by CPU through anon-chip interconnection
network with the required hardware/software support for
running HSA-compliant applications.

2. Constructing a fast functional simulator: To accelerate the

simulation, we developed FastSim, which parallelizes the
emulation of the CPU and GPU cores by running multiple

threads on the underlying multi-core host machine. To achieve
good speedup, it is critical to efficiently manage the emulation
threads and handle synchronizations among the threads.

3. Enabling performance analysis with more detailed micro-
architecture simulators and profiling support: We developed
DeepSim, which provides the facilities for the user to
incorporate cycle-accurate CPU/GPU simulation models. This
enables the system developers to monitor and analyze detailed

hardware/software interactions for HSA applications and
middleware executed on both CPU and GPU.

The remaining of this section presents the overall architecture and
simulation flow of HSAemu and then discusses the design issues
and explain our solutions for each major component.

4.1 The Architecture of HSAemu
The block diagram shown in Figure 2 illustrates the overall
architecture and simulation flow of HSAemu. As the details of
each component in HSAemu are to be further discussed in the
following subsections, this subsection briefly explains the

simulation flow as the following:

 HSAemu Initialization: When HSAemu boots up, it is
initialized to emulate an HSA-compliant machine with a
configuration which describes the number of CPU cores, the
type of GPU simulation model, the size of main memory and
the type of peripherals. For the CPU-side simulation, CPUSim
creates multiple CPU simulation threads to simulate the guest
multi-core processor in parallel at the functional level. For the

GPU side, either FastSim or DeepSim can be selected to
simulate GPU. HSAemu also starts the GPU Command
Monitor (GCM) daemon thread, which serves to bridge the
CPU simulator and the GPU simulator and monitor the GPU
simulator. After the initialization, the emulated machine boots
up a guest operating system, such as Linux and Android.

 HSA-compliant Application Execution: On top of the
emulated machine, HSA-compliant applications can be
executed with the HSA Runtime which enables the
applications to utilize the features of the underlying HSA

system. For example, when an OpenCL program starts, it
utilizes HSA runtime API’s to (1) query the hardware
configuration information, (2) allocate input/output memory
buffers to create user mode AQL queues for dispatching kernel
jobs to the GPU, and (3) signal the GPU to acquire AQL
packets from the user mode queue and execute kernel jobs
when the GPU is ready. One of the features of HSA is the
hUMA shared memory architecture, and the main program on
the CPU, a.k.a. the agent code, can utilize hUMA to share

data with GPU by passing pointers, without coping data back
and forth. The AQL queues in user mode and device hardware
both must follow the specifications of hQ. When the agent
code calls an HSA API, an AQL command is issued to the
user mode queue, and the AQL Command Detector (ACD) in
CPUSim immediately detects the AQL command and notifies
the AQL Command Handler (ACH) in the GCM, which also
emulates the hQ with a hQ Handler and controls the execution

of commands on the GPU side. A version of HSAIL
Translator Module (HTM) is used to translate HSAIL’s BRIG
binary into the native binary for FastSim or DeepSim.

 GPU Helper Function Invocation: For the simulation of GPU
side, GPU Helper Functions may be invoked to assist the
GPU simulator in handling HSA-specific operations or
features missing in the simulator. The hUMA Helper
implements the shared memory mechanism defined by HSA.

When the GPU simulator accesses the global memory, hUMA
Helper may be invoked to handle virtual address translation.
HSAemu maintains a Software Memory Management Unit
(Soft-MMU) to emulate a hardware MMU for carrying out the
address translation. The Kernel Info Helper keeps track of the
kernel execution and may be called by the GPU simulator and
profiling tools to obtain the configuration and status of the on-
going kernel function. The Mathematic Helper provides the

mathematic functions which require special attention or are
not supported by the GPU simulator, e.g. transcendental
functions. The Synchronization Helper facilitates the
synchronization operations across CPU and GPU, e.g. barriers.

Fig. 1. Heterogeneous System Architecture.

4.2 The CPUSim Module
While simple emulators uses a time-sharing scheme to emulate a

multi-core CPU, CPUSim leverages the parallel CPU simulation
model of PQEMU to take advantage of the CPU cores in the host
machine [6]. As the number of cores in the CPU continues to
grow, it is essential to employ a parallel model; otherwise, the
speed gap between the actual processor and the emulated
processor will increase and hurt the usability of simulation.

PQEMU parallelize the execution of virtual CPU (VCPU) based
on two synchronization models, one is unified code cache (UCC)
model and another one is separate code cache (SCC) model. The
two models and respective hierarchical locking schemes
effectively address the needs of synchronization in a parallel
system emulator. Based on PQEMU, we have added AQL

Command Detector (ACD) to detect a command issued by the
application via the HSA API. When an AQL command is received,
CPUSim forwards this command to GPU Command Monitor.
Notice that, in our experimental platform, the HSA Runtime uses
software interrupt instructions, e.g. SWI instruction for ARM
processor, to identify the occurrence of an AQL command. The
detection mechanism really depends on the implementation by the
platform vendor.

4.3 The GPU Command Monitor (GCM)
The GCM handles AQL packets with two main components: AQL
Command Handler (ACH) and hQ Handler. The ACH receives
the AQL commands from CPUSim. It is implemented using a
conditional wait mechanism of the Pthread library. The hQ
Handler is used to dispatch work groups from AQL packets to one
of the GPU simulation models. After parsing the command, the
ACH passes the address of user mode AQL queue to hQ Handler,
and then the hQ Handler will copy the content of user mode AQL

queue in HSA runtime to the device AQL queue in hQ Handler.
Each AQL packet contains a kernel function in BRIG format,
arguments of kernel function, and kernel information, such as the
number of work groups, the dimension of a work group, and the
work group size. For dispatching an AQL packet, the hQ Handler
will dequeue AQL packets from the device AQL queue, and then
the hQ Handler repeats the following three steps until the copied
AQL queue is empty:

1. Interpret the AQL packet at the top of the queue and copy the
kernel function (HSAIL code in BRIG format) and arguments
(whose addresses are stored in the AQL packet) to the internal
memory of GCM.

2. Invoke the HSAIL Finalizer to translate the BRIG into either

host native binary for FastSim or GPU native binary for
DeepSim

3. Invoke FastSim or DeepSim to execute the translated kernel
function based on the kernel information.

Before the GPU simulation completes the execution of the current
translated kernel function, the status of the hQ Handler is set to
busy. Once the execution of the current translated kernel function
is completed by the GPU simulation, the status of the hQ Handler

will be reset to free and the hQ Handler is allowed to fetch the
next AQL packet. If no AQL packets in the copied AQL queue,
the GCM will block itself and waits for AQL command to start
dispatching the next command.

4.4 The HSAIL Translator Module
The HSAIL Translator Module (HTM) is called to translate kernel
functions in BRIG format, to run in one of the GPU simulation
models. HSAIL Translator consists of two components: an
external translator and a linking loader. When receiving BRIG

from the GCM, the HTM starts translating it to unlinked host

binary code by using an external translator. After the external
translation, the HTM calls the linking loader to link GPU-related
helper functions to the unlinked translated code. In the following,
we describe the external translator and linking loader in details.

Since it is not easy to implement a complete binary translator in a
full system emulator and a tightly-coupled design might decrease
flexibility, the translator of HTM is designed as a dynamic linked
library, called external translator. This loosely-coupled design of
translator has several advantages, including

 Ease of implementation: The external translator design can
reduce the implementation complexity of a translator since the
developer does not need to know the simulation mechanism of
HSAemu at all. The only thing to do is translating source

target codes to unlinked translated codes.
 Ease of reconfiguration: The external translator design has

more flexibility to reconfigure. For instance, the current
external translator in HSAemu is implemented for HSAIL.
But it could be replaced by another external translator for
SPIR or PTX.

 Ease of optimization: Our current external translator is based
on LLVM. LLVM can generate better optimized host native

codes than the tiny code generator (TCG) in QEMU. Other
than a comprehensive set of optimization phases, LLVM can
also translate a whole kernel function once at a time, instead
of one block at a time, as done in TCG. HSAIL is more like
bytecode than machine code. Its control flow instructions are
designed to expose all control flow paths within a function.
This feature enables complete code discovery and there the
entire function can be translated at once. Unlike the

simulation in CPUsim, which is based on DBT via TCG
translation in QEMU, HSAIL finalization via SBT allows for
more efficient simulation in FastSim.

 Ease of porting: LLVM is used as the compiler framework of
the external translator, so it is easy to port to machines other
than x86.

The external translator we designed for HSAemu is called LLVM
HSAIL translator. It is like a Just-in-Time (JIT) translator that
uses static IR translation techniques to translate kernel functions

to an unlinked object file. The external translator consists of three
components: Flow Constructor, HDecoder, and HAssembler. The
Flow Constructor is used to reconstruct the control flow of HSAIL
code in BRIG and feeds the control flow trees to HDecoder. The
HDecoder is used to translate HSAIL code to LLVM bitcode
based on the control flow trees. The HAssembler is used to
convert the LLVM bitcode to an unlinked object file.

There is a register allocation requirement when translating HSAIL
code to LLVM bitcode. In HSAIL code, the number of registers
used is finite and the same as that of hardware. However, LLVM
bitcode uses infinite virtual registers in order to keep bitcode in
static single assignment (SSA) format. To conform to SSA

requirement, the registers used by HSAIL code are represented as
a stack in HDecoder. The load/store operations to these registers
are implemented as push/pop stack operations. We are working on
a different approach using renaming to achieve the same purpose.

In an unlinked object file, there may have calls to the external
helper functions. The linking loader is used to resolve those
external helper functions in the unlinked object file to form an
executable. To link external helper functions, the linking loader
scans its symbol table to find the addresses of external helper
functions. To inline the helper functions when translating BRIG is
another possible approach to resolve external helper function
references. However, inlining may incur some side effects. The

first one is the inline technique cannot be applied to the helper

functions that deal with virtual memory access since some QEMU
global variables cannot be accessed directly. The second one is
that inlining of helper functions may significantly increase the
code size. It is difficult to predict the size of a program when
inlining is applied. Therefore, we prefer to use the linking
approach over the inlining one in the current design.

4.5 The FastSim Module
The purpose of the FastSim module is to efficiently perform the
execution of work groups from an AQL packet dispatched by
GCM. As GPU typically may have many compute units (CUs)

and each CU also contains many processing elements (PEs),
parallelizing the execution of GPU seems quite natural, but it can
still be tricky, especially when global memory and special
operations are encountered. To support an execution environment
of a simulated GPU, two implementations of CU thread
schedulers (static and dynamic) and several GPU helper functions
are provided. The CU thread scheduler first interprets kernel
information fetched from GCM to obtain the number of work

groups and the size of work group. Then, the CU thread scheduler
runs work groups by the GPU CU threads in parallel.

One can parallelize the execution of CUs, or parallelize the
execution of PEs, or parallelize the execution of both CUs and

PEs. In FastSim, we choose to parallelize the execution of CUs
and leave the execution of PEs within each CU sequentially. The
reasons are two-fold. First, parallel execution of all PEs in a GPU
may require way too many threads which incur excessive context
switch overhead. Second, the GPU simulation may use host
hardware to speed up the simulation, such as host GPU or SIMD
instructions available in CPU. To parallelize the execution of CUs
makes the mapping of the simulated CUs to physical CUs with

real SIMD compute unit easier. The implementation of FastSim
uses the SSE instruction of the host CPU to speed up the
execution of GPU simulation.

For the static scheduler, the work items are evenly distributed to
the CU threads by using the block partition method at the

beginning of GPU execution. In this manner, each CU gets the
same number of work items. But the execution time of each CU
may be different due to various workloads of working items.
Therefore, the static scheduler may suffer from load unbalancing
issues. In the dynamic scheduler, the working items are stored in a
queue. Working items are distributed to CU threads dynamically
based on the availability of CU threads. A lock is needed for the
work item queue due to multiple CU threads may compete for the

queue at the same time. The lock overhead may become the
bottleneck of GPU simulation. The experimental results in Section
5 shed some lights on the simulation speed under different
scheduling policies, but the user still needs to select the scheduler.

Note that the fact that the work items of a work group are
executed in a CU sequentially by FastSim may raise an issue for
the use of barrier instruction in a work group. To resolve the
synchronization issue, FastSim implements a light weight barrier
thread to guard the execution within CU. This light weight barrier
thread will make the execution of PEs of a CU in parallel during
the synchronization. Since we still want to limit the number of
threads, when we do the synchronization using the light weight

barrier thread in one CU, we will block the execution of other
CUs, so that there will not be too many threads.

4.6 The DeepSim Module
HSAemu provides an interface for the user to bridge an external
cycle-accurate GPU simulator. With the interface, we are able to
plug-in the Multi2Sim (M2S in short) GPU simulator. M2S starts

as a process virtual machine, which can run OpenCL applications
with M2S’s runtime library without a guest operating system.
M2S has two simulation models, functional model and timing
model. Both of them sequentially simulate each workgroup, each
wavefront and each work item while executing one kernel

function. The timing model can further simulate each pipelined
stage, including decode, read, execute, write and complete, to
caculate simulation cycles. More detailed simulation depends on
the model of GPU architecture.

In our case study, the AMD Southern Island series GPU is chosen
to used for cycle-by-cycle simulation. As shown in Figure 3, each
CU has one scalar unit and one vector unit. Each vector unit has
one vector L1 cache. Four scalar units share one scalar L1 cache.
Four CUs share one unified L2 cache. The L2 cache is attached to
a GPU memory.The detailed GPU is modeled with 32 CUs.The
DeepSim has two main components, M2S Bridge and M2S GPU

Module, to co-simulate with M2S. M2S is compiled as a library to
be linked with our M2S GPU Module. M2S Bridge will wait for a
kernel jobfrom GCM. GCM packs the necessary kernel
information for M2S GPU Module to execute, such as kernel
binary, kernel arguments, workgroup size and so on.

When M2S GPU Module starts to execute a kernel function,
global memory accesses will be redirected to Memory Helper
Function for hUMA simulation. By providing the DeepSim
module, more detailed profiling information can be collected,

including instruction counts of each CU, the utilization of each
CU, L1/L2 cache accesses, pipleine stalls and so on. In addition,
HSAemu can provide shared memory access information, such as
global memory access count and TLB miss count. The DeepSim
gives an example to extend HSAemu to support more accurate
simulation models, such as cycle-accuare CPU model or cache
model based on the infrastruction of HSA simulation.

4.7 GPU Helper Functions
HSAemu uses helper functions to support HSAIL instructions,
which may not be supported by a GPU simulator, such as shared
memory access, mathematical functions, kernel information
operation, and synchronization operations, When the HSAIL
translator encounters one of these instructions, it creates the

corresponding external helper function call. When an external
helper function call is executed during GPU simulation, the

Fig. 3. The AMD Southern Island Series GPU
architecture. Heterogeneous system architecture.

execution will be directed to the respective helper function. The
following four types of helper functions are implemented so far:

 Memory Helper Function: To meet the requirement of shared
virtual address space between CPU and GPU, memory access
in GPU must be performed through an MMU. The memory
helper function, a separate GPU soft-mmu with a page table
walker and a TLB, is used. In HSA, a GPU may redirect
accesses of a local segment memory to a private memory for
better performance. With the memory helper function,

HSAemu can also support this kind of hardware
implementation properly by redirecting the virtual address
references in the soft-MMU.

 Mathematical Helper Function: For real GPU architecture, it
may be more efficient to support special mathematical
instructions such as trigonometric instructions and so on.
However, these mathematical instructions may not be
supported in host CPU ISA. The mathematical helper function

is used to simulate such mathematical functions by calling the
corresponding functions in standard math library.

 Kernel Information Helper Function: To assist GPU
applications running adaptively to the underlying GPU, GPU
will provide query instructions about current hardware
situation and information. To simulate these query
instructions, the kernel information helper function is used to
collect and return information of GPU simulation module and

the current execution state.
 Synchronization Helper Function: In the current GPU design,

work items of a work group are parallel executed by PEs of a
CU. In FastSim, the work items of a work group are executed
in a GPU CU thread sequentially. This may raise a
synchronization issue from the usage of barrier instruction in a
work group. To handle the required synchronizations, in
FastSim, we implement a synchronization help function to

guard the execution within a GPU CU thread. The
synchronization help function is a lightweight GPU PE barrier
thread. It turns the execution of PEs of a CU from sequential
to parallel during the synchronization.

5. EXPERIMENTAL RESULTS

Table 1. Experimental Environment

HSA Application
Bitonic Sort, Fast Walsh Transform, Reduction,

N-Body

OpenCL Runtime A HSA compatible OpenCL runtime

Guest OS Linux-3.5.0-1-linaro-vexpress

Guest Machine
ARM vexpress-a9, GPU simulation, and 1

gigabyte memory

Host OS Ubuntu Linux release 12.04

Host Machine

Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz 4

cores with 8 Hyper Threads and 12 gigabytes

memory

In this section, HSAemu is evaluated in three aspects: 1)
functionally correctness and usefulness, 2) simulations accuracy

for both the functional model and the micro-architecture
simulation model, and 3) parallel speedup available from
multicore host machines. The results are discussed respectively in
Section 5.1, 5.2, and 5.3.

The configurations of our experimental environment are listed in
Table 1. As the software infrastructure of HSA is still being
developed as of this writing, we managed to adopt four OpenCL
benchmark programs as our test workload. The target system is an
ARM-based embedded system running Linux. In these case
studies, we show that HSAemu is valuable to the development of

HSA software stack and applications in an early
hardware/software co-design project. It enables software
development before the availability of the hardware.

5.1 Developing HSA Software with HSAemu
As Figure 4 shown, the infrastructure has been implemented to
support the three fundamental features defined in the HSA

specifications, i.e. hUMA, hQ, and HSAIL. In our case studies,
HSAemu runs a complete HSA software stack which is comprised
of a front-end compiler, an OpenCL runtime for HSA, an
operating system and a finalizer. Using the following steps, we
develop and test HSA-compliant applications:

1. Compile kernel function of application programs to HSAIL’s
BRIG binary format. Since the official front-end compiler of
HSA has not yet been released for OpenCL, it is difficult to
directly compile kernel functions of OpenCL programs to
BRIG. To avoid hand-writing HSAIL binary for all kernel
functions, a source-to-source translation tool, called

PTX2HSAIL is developed. Consequently, the kernel functions
of all benchmarks are compiled to PTX assembly code first by
NVIDIA ncc compiler, and then PTX2HSAIL is used to
translate the PTX codes to HSAIL.

2. Modify OpenCL code to utilize the features of HSA. With
HSA’s hUMA, OpenCL programs are not required to copy
data between main memory and GPU device memory. Hence
several OpenCL APIs, such as clCreateBuffer,

clEnqueueWriteBuffer, and clEnqueueReadBuffer are
considered as normal main memory accesses to allocate and

2

Application for HSA

OpenCL

Benchmark

1

Agent

Code

Kernel

Code

Front-end

Compiler

3
OpenCL Runtime

for HSA

Operating System

hQ HSAIL

Finalizer

CPU hUMA GPU

OpenGL Display Body Simulation

Current Frame

CPU

hUMA GPU

Next Frame

Fig. 4. A basic HSA software stack tested by HSAemu.

Fig. 5. An N-Body simulation application simulates 2048
bodies running on the HSAemu.

read/write. Here we use N-Body simulation program to
illustrates frequent data interactions between CPU and GPU.
As shown in Figure 5, the N-Body program is executed to
simulate 2048 bodies. All computations for calculating a new
position and a new velocity of each body are handled by the

kernel function executed in the GPU. On the other hand,
everybody in a visual frame will be painted to screen by the
agent code executed in the CPU. This implementation requires
frequent data interactions between CPU and GPU. However,
such data interactions are no longer explicit in HSA
environment. It is possible that implicit data transfers between
CPU/GPU are needed, depending on the implementation of
the GPU. For example, if local caches are implemented to

exploit data locality, an HSA compliant GPU may need to
transfer data from the shared memory to the local caches, and
transfer updated data from local caches back to memory. In
HSA programming, this burden of data transfer management
is shifted from programmers to processors.

3. Modify an OpenCL runtime for HSA. Since no official HSA
runtime has been released for OpenCL yet, we attempt to
implement a simplified HSA-compatible OpenCL runtime to

enable HSA features. This also illustrates the usefulness of
HSAemu as a hardware/software co-design tool. The main
changes in the OpenCL APIs are listed in Table 2. For hUMA,
it has been mentioned in the previous paragraphs that main
memory can be easily shared between CPU and GPU. Hense,
clCreateBuffer, clEnqueueWriteBuffer and
clEnqueueReadBuffercan simply allocate and read/write
buffers by normal main memory access methods without

handling GPU device memory access. For hQ, our HSA
compatible OpenCL runtime needs to rewrite
clCreateCommandQueue, clEnqueueNDRangeKernel and
clFinish to satisfy the specifications of hQ, including a user
mode queue, an AQL packet handler and a completion object
handler. In the last feature, clCreateProgramWithBinaryis
implemented to load HSAIL binary into main memory and
then clBuildProgram is implemented to translate HSAIL
binary to native binary for a specific HSA component. With

this runtime support, HSAemu can run OpenCL applications
with HSA features. Ideally, when the official HSA compatible
OpenCL runtime is released, it will replace our current
simplified HSA runtime in HSAemu.

The case studies also serve as a step to verify the functional
correctness of HSAemu as a hardware/software prototyping tool.
As the hardware and software of HSA become more mature, we
continue to refine HSAemu and work with vendors/developers to
make the HSA tools chain more complete.

Table 2. Modified OpenCL APIs for HSA

5.2 Comparison of FastSim and DeepSim
In this section, we first evaluate the simulation speed for FastSim
and DeepSim, and then describe what profiling information can be
collected by these two simulation models.

5.2.1 Simulation Performance Evaluation
The simulation time of FastSim and DeepSim was measured by
running four OpenCL benchmark programs, Bitonic Sort, Fast
Walsh Transform (FWT), Reduction and N-body. The first three

programs, obtained from AMD OpenCL benchmark suite, were
executed with data input size 65536. The N-body program
simulated 2048 bodies for one iteration. The simulation time for
each benchmark is listed in Table 3, which shows that FastSim is
faster than DeepSim up to 85 times and the speedup depends on
the workload of kernel functions to be executed in GPU.

Table 3. Simulation Speed of FastSim and DeepSim

Benchmark FastSim (sec) DeepSim (sec) Speedup

Bitonic Sort 7.47 153.07 20.49x

FWT 13.91 49.96 3.59x

Reduction 1.84 5.52 3.00x

N-body 4.02 341.74 85.0x

Table 4. Profiling information for N-Body by FastSim
workgroup size = 512

CU

ID

Global Memory

(ld/st)

Local Memory

(ld/st)

TLB

Miss

TLB Miss

Rate

0 20480/4096 4194304/16384 101 0.41%

1 0 0 0 0

2 20480/4096 4194304/16384 95 0.39%

3 20480/4096 4194304/16384 93 0.38%

4 0 0 0

5 0 0 0 0

6 0 0 0 0

7 20480/4096 4194304/16384 98 0.40%

Total 81920/16384 16777216/65536 387 0.39%

Table 5. Profiling information for N-Body by FastSim
workgroup size = 256

CU

ID

Global Memory

(ld/st)

Local Memory

(ld/st)

TLB

Miss

TLB Miss

Rate

0 10240/2048 2097152/8192 48 0.39%

1 10240/2048 2097152/8192 54 0.44%

2 10240/2048 2097152/8192 48 0.39%

3 10240/2048 2097152/8192 49 0.40%

4 10240/2048 2097152/8192 50 0.41%

5 10240/2048 2097152/8192 48 0.39%

6 10240/2048 2097152/8192 48 0.39%

7 10240/2048 2097152/8192 48 0.39%

Total 81920/16384 16777216/65536 393 0.40%

5.2.2 FastSim Profiling Information
We first run N-Body Simulation to collect profiling information
from FastSim. The N-Body Simulation is configured to simulate
2048 bodies in a single iteration. The workgroup size is
configured to 256 or 512. As shown in Table 4, when workgroup
size is set to 512, the number of work group is equal to 4 (i.e.
2048/512). Under this configuration, the CU utilization is only

50%, CU 1, 4, 5, and 6 are idle, as indicated by zero activity in
Table 4. When the workgroup size is equal to 256, the number of
work group is equal to 8 (i.e. 2048/256). This time, the CU
utilization is full, as shown in Table 5. Based on Table 4 and 5,
we can observe that the memory accesses are consistent, no matter
how workgroups are partitioned and assigned to different CUs.
For example, in both configurations, the total global memory ld/st
access count is equal to 81920/16384 and the total local memory

HSA

Feature
OpenCL API Description

hUMA

clCreateBuffer Create buffer by malloc syscall

clEnqueueWriteBuffer Write buffer by memcpy syscall

clEnqueueReadBuffer Read buffer by memcpy syscall

hQ

clCreateCommandQueue Create user mode queue for

HSA

clEnqueueNDRangeKernel Enqueue AQL packets to user

mode queue and signal HSA

component to execute

clFinish Wait for completion object set

by HSA components to finish

computation

HSAIL

clCreateProgramWithBinary Load HSASIL binary format

(BRIG) to memory

clBuildProgram Translate BRIG to native binary

of specific HSA component

ld/st access count is equal to 16777216/65536. The TLB miss
count and TLB miss rate are also similar for both configurations.

5.2.3 DeepSim Profiling Information
Using the N-Body Simulation with the same configurations as

stated in the previous section, DeepSim reports profiling
information for AMD Southern Island Series GPU, as shown in
Table 6 and 7. The tables also show detailed instruction break
downs so that we may conduct sanity check on the number of
global and local memory references between FastSim and
DeepSim. Multi2Sim reports many implementation detailed
information such as cache misses and pipeline stalls. In this paper,
we describe the functionality and capability of HSAemu, so more
detailed micro-architecture related discussions are left out.

Table 6. GPU profile collected by DeepSim for N-Body

Type Count Type Count

SimTime 1986299.67 ns Total Instructions 2827168

Frequency 925 MHz Branch Instr. 66112

NDRangeCount 1 LDS Instr. 263168

WorkGroupCount 8 ScalarALU Instr. 788864

 ScalarMem Instr. 448

 VectorALU Instr. 1708192

Cycle 1812119 VectorMem Instr. 384

Table 7. A CU profile collected by DeepSim for N-Body

Type Count Type Count

Total Instructions 353396 ScalarRegReads 4886264

Branch Instr. 8264 ScalarRegWrites 657992

LDS Instr. 32896 VectorRegReads 24699392

ScalarALU Instr. 98608 VectorRegWrites 15245312

ScalarMem Instr. 56 LDSReads 2097152

VectorALU Instr. 213524 LDSWrites 8192

VectorMem Instr. 48 Scalar L1 Hit Ratio 50.43%

 Vector L1 Hit Ratio 16.88%

 L2 Hit Ratio 80.84%

Fig. 6. Two OpenCL benchmarks, Bitonic Sort and FWT, are

simulated in the generic functional HSA model.

5.3 Speedup with Parallelized Simulation

Figure 6 shows the speedup of simulation from increasing the
number of CU threads in FastSim, which utilizes up to 8 cores to

perform fast CPU and GPU simulation. At this early stage, we use
a few hand-written kernel functions in standard HSAIL to test the
preliminary HSAemu. Three kernel functions tested are Nearest
Neighbor, Kmeans, and FWT. The first two benchmarks are
selected from the Rodinia benchmark suite 2.3. FWT is taken
from the AMD OpenCL benchmark suite.

For example, in Figure 7, the performance curves of both NN and
Kmeans benchmark level off at 8 cores when 8 physical cores are
in use, level off at 16 when 16 physical cores are in use, and level

off at 32, when 32 cores are in use. For this set of experiments, we

used the Linux command "taskset" to limit the number of

physical CPU cores for the emulation runs.

To further accelerating the simulation, we exploit the SIMD

capability available in each host CPU, where SSE3 instructions
can perform four floating point computations at a time. Figure 8
shows the resulted speedup after adding this feature. Our BRIG
finalizer is capable of generating SSE3 instructions to speed up
the simulation of CU threads. It delivers a 1.8X to 2.7X speedup
for Kmeans benchmark, and 2x to 3x speedup for FWT.

However, for the NN benchmark, the speedup is only 1.02X to
1.05X.This unimpressive speedup of the NN benchmark is due to
frequent calls to help functions in NN. In the NN benchmark, the
HSAIL code contains SQRT instruction. However, since the host

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

Number of CU threads

Input size = 1,048,576

Bitonic Sort Fast Walsh Transform

Fig. 7. Benchmarks running on the 32 physical cores.

Fig. 8. Execution time with SIMD.

machine does not have the SQRT instruction, the BRIG finalizer
(i.e. the LLVM based translator) generates a help function call to
QEMU in order to simulate this SQRT instruction. When a vector
data, i.e. a 128 bit register, is passed to the help function, extra
packing and unpacking operations are required. A 128 bit register

is first unpacked to four 32bit data items, and then passed to the
help function. After the help function finishes the work, the result
must be packed back to the 128 bit register. Unfortunately, in the
NN benchmark, such calls to the SQRT help function are quite
frequent, so the speed up from SSE3 instruction is pretty much
offset by help function overhead, and yield much less speedup
than the Kmeans and the FWT benchmark.

6. CONCLUTION AND FUTURE WORK
HSA is an emerging open industry standard to support high-
performance, energy-efficient heterogeneous computing. To
accelerate the design of HSA-compliant hardware and software,
many tools are needed, including compilers, runtime libraries,
simulators, and profiling tools. Our work on HSAemu serves to

bring these pieces together for hardware/software co-design
projects. We have shown the methodologies and strategies to
achieve functional correctness and usefulness, performance
modeling, and parallel speedup. In our case studies, we
demonstrate the use of HSAemu to model an HSA-compliant
system, develop platform-specific software stacks, and carry out
performance analysis for OpenCL applications.

As the early development of HSAemu has met our initial goals, by

releasing HSAemu as an open-source project, we continue to
enhance HSAemu together with vendors and researchers. We are
currently integrating performance modeling, monitoring, and
profiling tools into HSAemu to enable comprehensive
performance and power analysis on heterogeneous systems.

7. Acknowledgement
This work was partially supported by MOST of ROC, MediaTek,
and AIC under contract MOST-102-2218-E-007-004.

8. REFERENCES
[1] Bellard, F. QEMU, a fast and portable dynamic translator. In

USENIX ATC, 41-46, 2005.

[2] Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren,
D., Hallberg, G., Hogberg, J., Larsson, F. Simics: A full
system simulation platform. Computer. 35, 2 (2002), 50–58.

[3] AMD. A revolutionary, new architecture pioneered by AMD.
Retrieved April 20, 2014 from http://www.amd.com/en-
us/innovations/software-technologies/hsa

[4] HSA Foundation. HSA programmer’s reference manual:
HSAIL virtual ISA and programming model, compiler

writer’s guide, and object format (BRIG) v.95. Retrieved
April 20, 2014 from http://hsafoundation.com/standards/

[5] Lattner, C., and Adve, V. LLVM: a compilation framework
for lifelong program analysis & transformation. In CGO, 75–
86, 2004.

[6] Ding, J.H., Chang, P.C., Hsu, W.C., and Chung, Y.C.
PQEMU: a parallel system emulator based on QEMU. In
ICPADS, 276–283, 2011.

[7] Ubal, R., Sahuquillo, J., Petit, S., and López, P. Multi2Sim: a
simulation framework to evaluate multicore-multithread
processors. In HPCA, 62-68, 2007.

[8] Bakhoda, A., Yuan, G. L., Fung, W. W. L., Wong, H., and
Aamodt, T. M. Analyzing CUDA workloads using a detailed
GPU simulator. In ISPASS, 163–174, 2009.

[9] Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N.
S., Aamodt, T. M., and Reddi, V. J. GPUWattch: Enabling
Energy Optimizations in GPGPUs. In ISCA, 2013.

[10] Austin T., Larson E., and Ernst D. SimpleScalar: an
infrastructure for computer system modeling. Computer. 35,

2 (2002), 59–67.
[11] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A

Framework for Architectural-Level Power Analysis and
Optimization. In ISCA, 83-94, 2000.

[12] Sanchez, D., and Kozyrakis, C. ZSim: fast and accurate
microarchitectural simulation of thousand-core systems. In
ISCA, 2013.

[13] Witchel, E. and Rosenblum R. 1996. “Embra: fast and

flexible machine simulation,” In Proc. ACM SIGMETRICS
Intl. Conf. on Measurement and Modeling of Computer
Systems, 68-78, 1996.

[14] Bohrer, P., Peterson, J., Elnozahy, M., Rajamony, R., Gheith,
A., Rockhold, R., Lefurgy, C., et al. Mambo: a full system
simulator for the PowerPC architecture. ACM SIGMETRICS
Performance Evaluation Review, 31, 4 (2004), 8–12.

[15] Wang, Z., Liu, R., Chen, Y., Wu, X., Chen, H., Zhang, W.,

and Zang, B. 2011. COREMU: a scalable and portable
parallel full-system emulator. In PPoPP, 213–222, 2011.

[16] Wang, K., Zhang, Y., Wang, Y., and Shen, X. Parallelization
of IBM Mambo System Simulator in Functional Modes.
ACM SIGOPS Operating Systems Review, 42, 1 (2008). 71-
76.

[17] Lantz, R.E. Fast Functional Simulation with Parallel Embra.
In Proceedings of Workshop on Modeling, Benchmarking,

and Simulation (MoBS), 2008.
[18] Hung, S.-H., Shih C.-S.,Kuo T.-W, Tu C.-H., Tu, and Chang

C.-W. A Real-Time, Energy-Efficient System Software Suite
for Heterogeneous Multicore Platforms. In CODES+ISSS,
23-32, 2012.

[19] Stone, J. E., Gohara, D., and Shi, G. OpenCL: a parallel
programming standard for heterogeneous computing systems.
Computing in Science & Engineering. 12, 3 (2010), 66–73.

[20] Collange, S., Daumas, M., Defour, D., and Parello, D. 2010.

Barra: a parallel functional simulator for GPGPU. In Proc.
IEEE Intl. Symp. on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems. 351–360.

[21] August, D., Chang, J., Girbal, S., Gracia-Perez, D.,Mouchard,
G., Penry, D., Temam, O., and Vachharajani, N. UNISIM:
An Open Simulation Environment and Library for Complex
Architecture Design and Collaborative Development. IEEE
CAL, 6, 2(2007), 45-48.

[22] Diamos, G. F., Kerr, A. R., Yalamanchili, S., and Clark, N.
Ocelot: a dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In PACT,
353–364, 2010.

[23] Zakharenko, V., Aamodt, T., and Moshovos, A.
Characterizing the performance benefits of fused CPU/GPU
systems using FusionSim. In DATE, 685–688, 2013.

[24] Yourst, M. T. PTLsim: a cycle accurate full system x86-64

microarchitectural simulator. In ISPASS, 23–24, 2007.
[25] Shen, B.-Y., Chen, J.-Y., Hsu, W,-C., and Yang, W. LLBT:

An LLVM-Based Static Binary Translator. In CASES, 51-60,
2012.

[26] Perez, G. A., Kao, C.-M., Hsu,W.-C.,and Chung, Y.-C. A
Hybrid Just-In-Time Compiler for Android. In CASES, 41-50,
2012.

[27] Smith, J. E., and Nair, R.. Virtual machines: versatile

platforms for systems and processes. Elsevier, 2005.

