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ABSTRACT 

Heterogeneous System Architecture (HSA) is an open industry 
standard designed to support a large variety of data-parallel and 
task-parallel programming models. Currently, most of HSA 

hardware and software components are still in development. It is 
helpful to provide various heterogeneous simulation environments 
for HSA developers in developing HSA software stacks. This 
paper presents the design of HSAemu, a full system emulator for 
the HSA platform, and illustrates how those HSA features are 
implemented in the simulator. HSAemu provides an infrastructure 
of heterogeneous simulation environments by supporting required 
HSA features, including hUMA, hQ and HSAIL. Based on the 

infrastructure, HSAemu provide two simulation models, FastSim 
and DeepSim, for high-speed functional emulation and slow 
cycle-accurate simulation, respectively. In our preliminary 
experiments, HSAemu helps test a complete HSA software stack 
and profile system performance. Our case studies show that 
HSAemu is very useful as a hardware/software co-design tool for 
heterogeneous systems.   

Categories and Subject Descriptors 

C.1.3 [Processor Architectures]: Other Architecture Styles—
Heterogeneous (hybrid) Systems; C.1.6 [Simulation and 

Modeling]: Type of Simulation—Parallel. 

General Terms 

Performance, Design, Experimentation. 

Keywords 

HSA, GPU simulation, parallel simulation. 

1. INTRODUCTION 
Over the past decade, heterogeneous computing has been 
increasingly adopted in energy efficient computing platforms. 
Graphics Processing Unit (GPUs) have been successfully used as 
an accelerator to increase the performance and power efficiency 
for applications, including servers, desktops, and embedded 

systems. However, the current designs by integrating CPUs and 
GPUs into a heterogeneous computing platform have several 
drawbacks. On the hardware side, current CPUs and GPUs have 
been designed as separate processing elements and do not work 
together efficiently. For example, since each computing device 

has its own address space, applications are required to explicitly 
copy data from one side to another back and forth. This introduces 
significant programming burden for programmers, as the 
programmers must handle the required data movements and 
manage such data transfers when the local memory of the 
accelerator is not large enough for containing all the data at once. 
The programmers also pay attention to data locality exploitation 

in different memory hierarchies. In addition, when a program 
running on a CPU to request help from a GPU, it sends the job 
request to a queue waiting for the GPU to process via system calls, 
which in turn, go through a device driver managed by a 
completely separate scheduler. Furthermore, it is not feasible for a 
program running on a GPU to directly generate work-items, either 
for itself or for the CPU.  

Heterogeneous System Architecture (HSA) is an emerging open 
industry standard, proposed by the HSA foundation, to address the 
issues mentioned above. The essence of the HSA strategy is to 
create a tightly coupled processor design to effectively support 
heterogeneous computing. HSA intends to cover a large variety of 
data-parallel and task-parallel programming models by providing 

a unified view of fundamental computing elements for 
programmers to write applications. HSA also intends to include 
more types of accelerators such as ASICs and FPGAs in the future. 
This single unified programming platform is a strong foundation 
for the development of languages, frameworks, and applications 
of HSA. More specifically, the goals of HSA include: 

 Remove the CPU/GPU programmability barrier. 
 Reduce CPU/GPU communication latency. 
 Open the programming platform to a wider range of 

applications by enabling existing programming models. 
 Create a basis for the inclusion of additional processing 

elements beyond the CPUs and GPUs. 

To build up next-generation heterogeneous computing 
environments, HSA has provided specifications that define the 
hardware and software system architectures. Although there are 
no HSA-compliant processors available at this time, many of them 

are under development. In order to support software development 
in parallel to hardware development, the HSA community must 
provide a comprehensive system simulator. A full system 
simulator, such as QEMU [1] and Simics [2], will help developers 
for functional debugging and testing software stacks at early 
stages way before the available hardware. In addition, it can 
generate event traces and profiling information from complete 
software systems, including operating systems, runtime libraries, 
applications, and underlying simulation components. 

This paper presents the design of a full system HSA emulator, 
called HSAemu, which follows the specifications of the HSA 
standard. In short, the goals of HSAemu are: 

1. Provide a simulation infrastructure of HSA to help developers 
in developing software for the HSA platform. 

2. Develop a functional model to speed up simulation while 
running a complete HSA software stack. 
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3. Develop a detailed model to collect detailed profiling 
information from cycle accurate HSA components, to assist 
micro-architecture designs of HSA-compliant processors. 

To meet the first goal, HSAemu simulates a whole computer 

system based on HSA specifications, including a shared memory 
model (hUMA) [3], a queuing model for task dispatching (hQ) [3] 
and a virtual ISA for enhanced portability (HSAIL) [4]. To 
simulate hUMA so that both CPU and GPU can share the same 
virtual address space and page tables, a logically shared, 

physically separated soft-MMUs, are implemented. For hQ 
simulation, HSAemu provides a modified OpenCL runtime for 
HSA to bridge the communication between HSA components 
using Architected Queuing Language (AQL). For processing 
HSAIL, a LLVM [5] based translator is included to translate 
HSAIL binary to native codes of HSA components. 

To meet the second goal, the functional HSA simulator, FastSim, 
is further optimized for increased simulation speed. While running 
HSA software applications in HSAemu, it is compelling that the 
underlying parallelism available in the host machine should be 
exploited. To speed up the CPU model of HSAemu, we use 
PQEMU [6] for parallel CPU computation simulation. PQEMU 

effectively parallelizes the dynamic binary translation (DBT) 
engine in QEMU to achieve highly efficient parallel emulation on 
multi-core host machines. To speed up the GPU simulation of 
HSAemu, each GPU compute unit is simulated by a compute 
thread. A thread scheduler is assigned to dispatch work-groups to 
compute threads, each compute thread simulates a GPU compute 
unit so that multiple work-groups are simulated in parallel. 

To meet the third goal, we develop DeepSim to collect detailed 
micro-architecture information with a cycle accurate GPU 
simulation, Multi2Sim [7], which models AMD southern islands 
series. Compared to FastSim, DeepSim can gather more 
information about the implementation of a GPU, but is much 

slower than FastSim. Although FastSim does not gather such 
detailed profiling information as DeepSim, FastSim can gather 
system memory access events between CPU and GPU, such as 
TLB misses and page faults. HSAemu can be extended in multiple 
directions, for example, DeepSim may integrate with GPGPU-sim 
[8] and GPUWattch [9] to support GPU other than AMD devices. 

To evaluate the infrastructure of HSAemu, a heterogeneous 
computing simulation environment is configured to run an HSA 
software stack and an HSA-compatible N-body Simulation 
application. N-body simulation is an ideal example to show the 
frequent interactions between CPU and GPU and illustrate the 
benefit of the HSA architecture. Both simulation models, FastSim 
and DeepSim, are applied in the case studies to reveal their 

performance and profiling capability. Finally, the parallelism of 
GPU simulation is measured for FastSim. 

The rest of this paper is organized as follows. In section 2, the 
related works of heterogeneous computing simulation are 

presented. Section 3 introduces the background of HSA. Then an 
overall architecture design and implementation of HSAemu will 
be described in Section 4. Some preliminary experiment results 
are presented and discussed in section 5. Section 6 summarize this 
work and describes the future works of HSAemu. 

2. RELATED WORK 
A full-system simulator is an architecture simulator that simulates 
a computer system at such a level of detail that complete software 
stacks from real systems can run on the simulator without any 
modification. A full system simulator provides virtual hardware 
that is independent of the nature of the host computer. The full-

system model includes processor cores, peripheral devices, 
memories, buses, and network connections. SimpleScalar [10] is a 
widely used micro-architectural simulator for modeling 
implementation details of a processor. Wattch [11] is also a 
popular micro-architectural simulator for modeling power 

consumption of processors. ZSim [12] introduces a few novel 
simulation techniques, such as bound-weave and lightweight user-
level virtualization, to make thousand-core simulation practical.  

As opposed to micro-architectural simulations, functional 
emulations allow the interactions among processors, memory and 
peripherals to be observed without modeling microarchitectural 
details. Recent functional emulators, such as Embra [13], Mambo 
[14], QEMU [1] and Simics [2] usually adopt dynamic binary 

translation for increased simulation efficiency. In today’s multi-
core environment, parallelism exploitation becomes a major issue 
in emulator designs. For instance, PQEMU [6], COREMU [15], 
Parallel Mambo [16], and Parallel Embra [17] are all emulators 
that allow multiple virtual CPUs to be simulated concurrently on 
the host machine. While MCEmu [18] supports parallel 
simulation and performance profiling for heterogeneous systems, 
it is not HSA-compliant and lacks detailed GPU models. 

For GPU simulation, several simulators have been proposed in the 
literature. GPGPU-sim [8] provides a detailed simulation of a 
contemporary GPU running CUDA and OpenCL [19] workloads 
with an integrated energy model at micro-architectural level. 
Barra-sim [20] is a functional level GPU simulator based on the 
UNISIM [21] framework, which simulates CUDA programs at the 
assembly language level and is highly compatible with NVIDIA 
G80-based GPUs. Ocelot [22] is a modular dynamic compilation 

framework for heterogeneous system, which targets several back-
ends with self-developed translator. Ocelot also implemented its 
own compiler from the IR like PTX to CPU code. AMD 
FusionSim [23] is based on PTLsim [24] and GPGPU-sim to 
simulate an x86 out-of-order CPU, a CUDA-capable GPU and a 
CPU/GPU interconnected memory system. GPGPU-sim and 
AMD FusionSim both are micro-architectural level simulators 
while Ocelot and Barra-sim simulate at functional level.  

The binary translation (BT) techniques can be divided into two 
categories: static (SBT) and dynamic (DBT). SBT translates 
source binary to target binary once before execution while DBT 
translates on-the-fly as the execution goes. LLVM is a well-known 
re-targetable compiler framework. LLBT [25] is a LLVM based 

SBT translator that translates source binary into LLVM IR and 
then retargets the LLVM IR to various ISAs by using the LLVM 
compiler infrastructure. In [26], the authors developed a method-
based JIT compiler based on the LLVM framework that delivers 
performance improvement comparable to that of an ahead-of-time 
compiler. To translate HSAIL code, we need not to go for the full 
power of DBT since HSAIL is an IR at a level higher than 
machine codes and does not have the difficult issues associated 

with machine codes such as code discovery, code locations, and 
self-modification/self-reference behaviors [27] where DBT would 
be more suitable than SBT. In HSAemu, an HSAIL kernel 
function is translated by the device finalizer in a JIT fashion. 

3. HSA PRELIMARIES 
HSA is motivated to improve programmability, portability, 
manageability and performance for the next-generation 
heterogeneous computing. HSA attempts to fully exploit the 
capabilities of heterogeneous parallel execution units by re-

architecting computer systems to tightly integrate disparate 
compute elements on a platform while preserving a programming 
model that software developers are familiar with. 



For programmability, HSA proposes Heterogeneous Uniform 
Memory Access (hUMA) to allow various computing elements to 
share the same address space. This would allow programmers to 
easily share data structures among different computing units, 
without worrying about the complexity of managing data transfer 

explicitly. Although various computing elements are sharing the 
same address space, they are likely to apply local caches to deal 
with latency and bandwidth issues. With a shared address space 
and local caching, the issue of cache coherence appears. HSA 
requires hardware devices to support coherent caches.  

For increased portability, HSA proposes HSA Intermediate 
Language (HSAIL) to allow OpenCL codes to be translated into 
intermediate language and then distribute to various platforms. 
This is similar to the case where a Java program is first translated 
into bytecode, and the bytecode is distributed to run on various 
platforms. HSAIL codes are translated by the device finalizer, just 
like bytecodes could be JIT’ed into native code in a JVM.  

For manageability and supporting QoS requirements, HSA 
requires hardware devices to be preemptable. Each computing 
unit could be interrupted and the interrupted job could be resumed 
later. This would require an HSAIL program to have a defined 

context, and can be context switched when a higher priority job is 
scheduled by the hardware.  

For increased performance, HSA attempts to reduce the 
communication and dispatching latency between different 

computing devices. HSA proposes Heterogeneous Queuing (hQ) 
which uses user level queues with AQL to communicate with 
different computing devices. This could avoid communication 
delays caused by going through system calls.  

These features of HSA are introduced in the following subsections. 

3.1 hUMA 
Traditional GPU uses a separate memory space from the CPU so 
that programmers must handle explicit memory movements 
between CPU memory and GPU memory. Instead, hUMA is a 
shared memory architecture used in systems with many different 
computing devices. hUMA refers to CPU and GPU sharing the 
same memory address space with a coherent view. With hUMA, 
applications can create data structures in a single unified address 
space and initiate work items on the most appropriate hardware 

for a given task. Sharing data between compute elements is as 
simple as sending a pointer. Multiple compute tasks can work on 
the same coherent memory regions, utilizing barriers and atomic 
memory operations as needed to maintain data synchronization. 
Thus, HSA allows programmers not to worry much about explicit 
management of data copies and data partitioning. In addition, the 
range of memory that the GPU can access in HSA is now as large 
as the virtual memory space allows. It can significantly simplify 
programming on GPU or other accelerators. 

3.2 hQ  
hQ is proposed to shorten work dispatching latency and 
communication delay between HSA agents and HSA components. 
To reduce dispatching latency, user mode queues can be allocated 
and managed by applications. The user mode queues contain AQL 
packets, which are inserted by applications. Every AQL packet is 
composed of one kernel function in HSAIL binary, the arguments 
of the kernel function and some additional kernel information, 

such as work group size and the number of work groups. Each 
AQL packet can be dispatched from the user mode queue to 
hardware queues in computing device for execution. Through hQ, 
user applications can directly dispatch a job to HSA components 
without the help of the OS, such as the kernel mode drivers. This 

enables low latency dispatching compared to traditional job 
dispatching in OpenCL. HSA-compliant agents and components 
can communicate with each other by recognizing the format of 
AQL packets and the mechanism of queuing model. It helps to 
coordinate the heterogeneity in the HSA computing environment. 

3.3 HSAIL 
HSA uses HSAIL to represent an intermediate format of GPGPU 
computing kernels. The HSAIL abstracts the underlying different 
instruction sets of HSA components into a uniform view. The 
HSAIL program looks like a simple RISC-like assembly code 
which has instructions to deal with unified memory accesses, 
parallel execution and synchronization. The current HSAIL 
defines 120 instructions, performing arithmetic, memory, branch, 
image-related, parallel synchronization and device function 

operations. HSAIL also supports vector instructions. This offers 
opportunity to generate native SIMD instructions (such as SSE in 
x86) with less translation time analysis. In addition, 4 types of 
register width: 1, 32, 64, and 128 bits are supported. One bit 
register is used for condition code, 32-bit and 64-bit support both 
single and double precision floating point data. 32, 64, and 128 
bits registers can also be used as vector registers for various types 
of vector formats. For example, 128bits can be organized as 
8bit×16, 32bit×4 or 64bit×2. 

Developers can write their own programs in high-level languages, 
such as OpenCL, and then translate them into either text format 
(HSAIL) or binary format (BRIG) by a front-end compiler. The 

front-end compiler can provide multiple processing and 
optimization techniques based on HSA architectures. After 
translated into HSAIL forms and distributed to various HSA 
platforms, the HSA runtime can dispatch the HSAIL binary to a 
HSAIL finalizer before running it on a HSA component. The 
HSAIL finalizer can be considered as a back-end compiler to 
translate HSAIL binary to the machine codes of the underlying 
HSA component. HSAIL is a low-level IR, which has a finite 
register set and no PHI nodes. A PHI node is an instruction used 

to select a value depending on the predecessor of the current block 
in the structure of the Single Statement Assignment (SSA) used by 
LLVM. Finite register set can simplified register mapping 
analysis and no PHI nodes can eliminate the SSA analysis. In 
addition, HSAIL excludes high-level symbols such as C structures, 
and most of optimizations have already applied in the phase of 
front-end compiler. Therefore, the code generation in the phase of 
HSAIL finalizer is relatively simple and fast. Once the generated 

codes are executed in the HSA components, it supposed to benefit 
from the features of HSA architecture. 

As a GPGPU IR, HSAIL provides thorough parallel processing 
semantics, which allows programmers/compilers to take deeper 

understanding of the underlying architectures to what they are 
doing. Data movements with the work groups and lanes are well-
defined. Consistency of data in memory is ensured by using 
acquire and release mechanisms. Whenever data is acquired by a 
certain work group, others are unable to acquire such data until 
the data is released. Data consistency within work items can be 
assured by using atomic instructions. Other synchronization 
mechanisms, such as barriers, are also provided. However, the 

barrier is a forced mechanism for all working items to synchronize 
at the same time, which may unnecessarily decrease performance, 
so a fine-grained barrier is introduced by HSAIL to synchronize a 
specified number of work items within a work group. 

4. HSAemu 
Figure 1 shows the typical components of a HSA-compliant 
processor that includes a single chip with a multi-core CPU and a 
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Fig. 2. The overall architecture of HSAemu. 

many-core GPU, a memory sub-system and a peripheral I/O 
subsystem. The two computation units communicate with each 
other via an interconnection network and access data in the shared 
cache or main memory with the same virtual addresses. To design 

HSAemu for such a heterogeneous system architecture, the 
following design issues must be considered. 

1. Meeting the HSA-compliant requirements: Unlike a traditional 
system where the GPU module is considered as a peripheral 

device on a PCI bus, in a typical HSA-based system, GPU is 
controlled directly by CPU through anon-chip interconnection 
network with the required hardware/software support for 
running HSA-compliant applications. 

 
2. Constructing a fast functional simulator: To accelerate the 

simulation, we developed FastSim, which parallelizes the 
emulation of the CPU and GPU cores by running multiple 

threads on the underlying multi-core host machine. To achieve 
good speedup, it is critical to efficiently manage the emulation 
threads and handle synchronizations among the threads.  

3. Enabling performance analysis with more detailed micro-
architecture simulators and profiling support: We developed 
DeepSim, which provides the facilities for the user to 
incorporate cycle-accurate CPU/GPU simulation models. This 
enables the system developers to monitor and analyze detailed 

hardware/software interactions for HSA applications and 
middleware executed on both CPU and GPU. 

The remaining of this section presents the overall architecture and 
simulation flow of HSAemu and then discusses the design issues 
and explain our solutions for each major component. 

4.1 The Architecture of HSAemu 
The block diagram shown in Figure 2 illustrates the overall 
architecture and simulation flow of HSAemu. As the details of 
each component in HSAemu are to be further discussed in the 
following subsections, this subsection briefly explains the 

simulation flow as the following:  

 HSAemu Initialization: When HSAemu boots up, it is 
initialized to emulate an HSA-compliant machine with a 
configuration which describes the number of CPU cores, the 
type of GPU simulation model, the size of main memory and 
the type of peripherals. For the CPU-side simulation, CPUSim 
creates multiple CPU simulation threads to simulate the guest 
multi-core processor in parallel at the functional level. For the 

GPU side, either FastSim or DeepSim can be selected to 
simulate GPU. HSAemu also starts the GPU Command 
Monitor (GCM) daemon thread, which serves to bridge the 
CPU simulator and the GPU simulator and monitor the GPU 
simulator. After the initialization, the emulated machine boots 
up a guest operating system, such as Linux and Android.  

 HSA-compliant Application Execution: On top of the 
emulated machine, HSA-compliant applications can be 
executed with the HSA Runtime which enables the 
applications to utilize the features of the underlying HSA 

system. For example, when an OpenCL program starts, it 
utilizes HSA runtime API’s to (1) query the hardware 
configuration information, (2) allocate input/output memory 
buffers to create user mode AQL queues for dispatching kernel 
jobs to the GPU, and (3) signal the GPU to acquire AQL 
packets from the user mode queue and execute kernel jobs 
when the GPU is ready. One of the features of HSA is the 
hUMA shared memory architecture, and the main program on 
the CPU, a.k.a. the agent code, can utilize hUMA to share 

data with GPU by passing pointers, without coping data back 
and forth. The AQL queues in user mode and device hardware 
both must follow the specifications of hQ. When the agent 
code calls an HSA API, an AQL command is issued to the 
user mode queue, and the AQL Command Detector (ACD) in 
CPUSim immediately detects the AQL command and notifies 
the AQL Command Handler (ACH) in the GCM, which also 
emulates the hQ with a hQ Handler and controls the execution 

of commands on the GPU side. A version of HSAIL 
Translator Module (HTM) is used to translate HSAIL’s BRIG 
binary into the native binary for FastSim or DeepSim. 

 GPU Helper Function Invocation: For the simulation of GPU 
side, GPU Helper Functions may be invoked to assist the 
GPU simulator in handling HSA-specific operations or 
features missing in the simulator. The hUMA Helper 
implements the shared memory mechanism defined by HSA. 

When the GPU simulator accesses the global memory, hUMA 
Helper may be invoked to handle virtual address translation.  
HSAemu maintains a Software Memory Management Unit 
(Soft-MMU) to emulate a hardware MMU for carrying out the 
address translation. The Kernel Info Helper keeps track of the 
kernel execution and may be called by the GPU simulator and 
profiling tools to obtain the configuration and status of the on-
going kernel function. The Mathematic Helper provides the 

mathematic functions which require special attention or are 
not supported by the GPU simulator, e.g. transcendental 
functions. The Synchronization Helper facilitates the 
synchronization operations across CPU and GPU, e.g. barriers. 

Fig. 1. Heterogeneous System Architecture. 



4.2 The CPUSim Module 
While simple emulators uses a time-sharing scheme to emulate a 

multi-core CPU, CPUSim leverages the parallel CPU simulation 
model of PQEMU to take advantage of the CPU cores in the host 
machine [6]. As the number of cores in the CPU continues to 
grow, it is essential to employ a parallel model; otherwise, the 
speed gap between the actual processor and the emulated 
processor will increase and hurt the usability of simulation. 

PQEMU parallelize the execution of virtual CPU (VCPU) based 
on two synchronization models, one is unified code cache (UCC) 
model and another one is separate code cache (SCC) model. The 
two models and respective hierarchical locking schemes 
effectively address the needs of synchronization in a parallel 
system emulator. Based on PQEMU, we have added AQL 

Command Detector (ACD) to detect a command issued by the 
application via the HSA API. When an AQL command is received, 
CPUSim forwards this command to GPU Command Monitor. 
Notice that, in our experimental platform, the HSA Runtime uses 
software interrupt instructions, e.g. SWI instruction for ARM 
processor, to identify the occurrence of an AQL command. The 
detection mechanism really depends on the implementation by the 
platform vendor.   

4.3 The GPU Command Monitor (GCM) 
The GCM handles AQL packets with two main components: AQL 
Command Handler (ACH) and hQ Handler. The ACH receives 
the AQL commands from CPUSim. It is implemented using a 
conditional wait mechanism of the Pthread library. The hQ 
Handler is used to dispatch work groups from AQL packets to one 
of the GPU simulation models. After parsing the command, the 
ACH passes the address of user mode AQL queue to hQ Handler, 
and then the hQ Handler will copy the content of user mode AQL 

queue in HSA runtime to the device AQL queue in hQ Handler. 
Each AQL packet contains a kernel function in BRIG format, 
arguments of kernel function, and kernel information, such as the 
number of work groups, the dimension of a work group, and the 
work group size. For dispatching an AQL packet, the hQ Handler 
will dequeue AQL packets from the device AQL queue, and then 
the hQ Handler repeats the following three steps until the copied 
AQL queue is empty: 

1. Interpret the AQL packet at the top of the queue and copy the 
kernel function (HSAIL code in BRIG format) and arguments 
(whose addresses are stored in the AQL packet) to the internal 
memory of GCM. 

2. Invoke the HSAIL Finalizer to translate the BRIG into either 

host native binary for FastSim or GPU native binary for 
DeepSim 

3. Invoke FastSim or DeepSim to execute the translated kernel 
function based on the kernel information. 

Before the GPU simulation completes the execution of the current 
translated kernel function, the status of the hQ Handler is set to 
busy. Once the execution of the current translated kernel function 
is completed by the GPU simulation, the status of the hQ Handler 

will be reset to free and the hQ Handler is allowed to fetch the 
next AQL packet. If no AQL packets in the copied AQL queue, 
the GCM will block itself and waits for AQL command to start 
dispatching the next command. 

4.4 The HSAIL Translator Module 
The HSAIL Translator Module (HTM) is called to translate kernel 
functions in BRIG format, to run in one of the GPU simulation 
models. HSAIL Translator consists of two components: an 
external translator and a linking loader. When receiving BRIG 

from the GCM, the HTM starts translating it to unlinked host 

binary code by using an external translator. After the external 
translation, the HTM calls the linking loader to link GPU-related 
helper functions to the unlinked translated code. In the following, 
we describe the external translator and linking loader in details. 

Since it is not easy to implement a complete binary translator in a 
full system emulator and a tightly-coupled design might decrease 
flexibility, the translator of HTM is designed as a dynamic linked 
library, called external translator. This loosely-coupled design of 
translator has several advantages, including 

 Ease of implementation: The external translator design can 
reduce the implementation complexity of a translator since the 
developer does not need to know the simulation mechanism of 
HSAemu at all. The only thing to do is translating source 

target codes to unlinked translated codes. 
 Ease of reconfiguration: The external translator design has 

more flexibility to reconfigure. For instance, the current 
external translator in HSAemu is implemented for HSAIL.  
But it could be replaced by another external translator for 
SPIR or PTX. 

 Ease of optimization: Our current external translator is based 
on LLVM. LLVM can generate better optimized host native 

codes than the tiny code generator (TCG) in QEMU. Other 
than a comprehensive set of optimization phases, LLVM can 
also translate a whole kernel function once at a time, instead 
of one block at a time, as done in TCG. HSAIL is more like 
bytecode than machine code. Its control flow instructions are 
designed to expose all control flow paths within a function. 
This feature enables complete code discovery and there the 
entire function can be translated at once. Unlike the 

simulation in CPUsim, which is based on DBT via TCG 
translation in QEMU, HSAIL finalization via SBT allows for 
more efficient simulation in FastSim.  

 Ease of porting: LLVM is used as the compiler framework of 
the external translator, so it is easy to port to machines other 
than x86. 

The external translator we designed for HSAemu is called LLVM 
HSAIL translator. It is like a Just-in-Time (JIT) translator that 
uses static IR translation techniques to translate kernel functions 

to an unlinked object file. The external translator consists of three 
components: Flow Constructor, HDecoder, and HAssembler. The 
Flow Constructor is used to reconstruct the control flow of HSAIL 
code in BRIG and feeds the control flow trees to HDecoder. The 
HDecoder is used to translate HSAIL code to LLVM bitcode 
based on the control flow trees. The HAssembler is used to 
convert the LLVM bitcode to an unlinked object file. 

There is a register allocation requirement when translating HSAIL 
code to LLVM bitcode. In HSAIL code, the number of registers 
used is finite and the same as that of hardware. However, LLVM 
bitcode uses infinite virtual registers in order to keep bitcode in 
static single assignment (SSA) format. To conform to SSA 

requirement, the registers used by HSAIL code are represented as 
a stack in HDecoder. The load/store operations to these registers 
are implemented as push/pop stack operations. We are working on 
a different approach using renaming to achieve the same purpose. 

In an unlinked object file, there may have calls to the external 
helper functions. The linking loader is used to resolve those 
external helper functions in the unlinked object file to form an 
executable. To link external helper functions, the linking loader 
scans its symbol table to find the addresses of external helper 
functions. To inline the helper functions when translating BRIG is 
another possible approach to resolve external helper function 
references. However, inlining may incur some side effects. The 

first one is the inline technique cannot be applied to the helper 



functions that deal with virtual memory access since some QEMU 
global variables cannot be accessed directly. The second one is 
that inlining of helper functions may significantly increase the 
code size. It is difficult to predict the size of a program when 
inlining is applied. Therefore, we prefer to use the linking 
approach over the inlining one in the current design. 

4.5 The FastSim Module 
The purpose of the FastSim module is to efficiently perform the 
execution of work groups from an AQL packet dispatched by 
GCM. As GPU typically may have many compute units (CUs) 

and each CU also contains many processing elements (PEs), 
parallelizing the execution of GPU seems quite natural, but it can 
still be tricky, especially when global memory and special 
operations are encountered. To support an execution environment 
of a simulated GPU, two implementations of CU thread 
schedulers (static and dynamic) and several GPU helper functions 
are provided. The CU thread scheduler first interprets kernel 
information fetched from GCM to obtain the number of work 

groups and the size of work group. Then, the CU thread scheduler 
runs work groups by the GPU CU threads in parallel.  

One can parallelize the execution of CUs, or parallelize the 
execution of PEs, or parallelize the execution of both CUs and 

PEs. In FastSim, we choose to parallelize the execution of CUs 
and leave the execution of PEs within each CU sequentially. The 
reasons are two-fold. First, parallel execution of all PEs in a GPU 
may require way too many threads which incur excessive context 
switch overhead. Second, the GPU simulation may use host 
hardware to speed up the simulation, such as host GPU or SIMD 
instructions available in CPU. To parallelize the execution of CUs 
makes the mapping of the simulated CUs to physical CUs with 

real SIMD compute unit easier. The implementation of FastSim 
uses the SSE instruction of the host CPU to speed up the 
execution of GPU simulation. 

For the static scheduler, the work items are evenly distributed to 
the CU threads by using the block partition method at the 

beginning of GPU execution. In this manner, each CU gets the 
same number of work items. But the execution time of each CU 
may be different due to various workloads of working items. 
Therefore, the static scheduler may suffer from load unbalancing 
issues. In the dynamic scheduler, the working items are stored in a 
queue. Working items are distributed to CU threads dynamically 
based on the availability of CU threads. A lock is needed for the 
work item queue due to multiple CU threads may compete for the 

queue at the same time. The lock overhead may become the 
bottleneck of GPU simulation. The experimental results in Section 
5 shed some lights on the simulation speed under different 
scheduling policies, but the user still needs to select the scheduler. 

Note that the fact that the work items of a work group are 
executed in a CU sequentially by FastSim may raise an issue for 
the use of barrier instruction in a work group. To resolve the 
synchronization issue, FastSim implements a light weight barrier 
thread to guard the execution within CU. This light weight barrier 
thread will make the execution of PEs of a CU in parallel during 
the synchronization. Since we still want to limit the number of 
threads, when we do the synchronization using the light weight 

barrier thread in one CU, we will block the execution of other 
CUs, so that there will not be too many threads. 

4.6 The DeepSim Module 
HSAemu provides an interface for the user to bridge an external 
cycle-accurate GPU simulator. With the interface, we are able to 
plug-in the Multi2Sim (M2S in short) GPU simulator. M2S starts 

as a process virtual machine, which can run OpenCL applications 
with M2S’s runtime library without a guest operating system. 
M2S has two simulation models, functional model and timing 
model. Both of them sequentially simulate each workgroup, each 
wavefront and each work item while executing one kernel 

function. The timing model can further simulate each pipelined 
stage, including decode, read, execute, write and complete, to 
caculate simulation cycles. More detailed simulation depends on 
the model of GPU architecture. 

  

In our case study, the AMD Southern Island series GPU is chosen 
to used for cycle-by-cycle simulation. As shown in Figure 3, each 
CU has one scalar unit and one vector unit. Each vector unit has 
one vector L1 cache. Four scalar units share one scalar L1 cache. 
Four CUs share one unified L2 cache. The L2 cache is attached to 
a GPU memory.The detailed GPU is modeled with 32 CUs.The 
DeepSim has two main components, M2S Bridge and M2S GPU 

Module, to co-simulate with M2S. M2S is compiled as a library to 
be linked with our M2S GPU Module. M2S Bridge will wait for a 
kernel jobfrom GCM. GCM packs the necessary kernel 
information for M2S GPU Module to execute, such as kernel 
binary, kernel arguments, workgroup size and so on.  

When M2S GPU Module starts to execute a kernel function, 
global memory accesses will be redirected to Memory Helper 
Function for hUMA simulation. By providing the DeepSim 
module, more detailed profiling information can be collected, 

including instruction counts of each CU, the utilization of each 
CU, L1/L2 cache accesses, pipleine stalls and so on. In addition, 
HSAemu can provide shared memory access information, such as 
global memory access count and TLB miss count. The DeepSim 
gives an example to extend HSAemu to support more accurate 
simulation models, such as cycle-accuare CPU model or cache 
model based on the infrastruction of HSA simulation. 

4.7 GPU Helper Functions 
HSAemu uses helper functions to support HSAIL instructions, 
which may not be supported by a GPU simulator, such as shared 
memory access, mathematical functions, kernel information 
operation, and synchronization operations, When the HSAIL 
translator encounters one of these instructions, it creates the 

corresponding external helper function call. When an external 
helper function call is executed during GPU simulation, the 

Fig. 3. The AMD Southern Island Series GPU 
architecture. Heterogeneous system architecture. 



execution will be directed to the respective helper function. The 
following four types of helper functions are implemented so far: 

 Memory Helper Function: To meet the requirement of shared 
virtual address space between CPU and GPU, memory access 
in GPU must be performed through an MMU. The memory 
helper function, a separate GPU soft-mmu with a page table 
walker and a TLB, is used. In HSA, a GPU may redirect 
accesses of a local segment memory to a private memory for 
better performance. With the memory helper function, 

HSAemu can also support this kind of hardware 
implementation properly by redirecting the virtual address 
references in the soft-MMU. 

 Mathematical Helper Function: For real GPU architecture, it 
may be more efficient to support special mathematical 
instructions such as trigonometric instructions and so on. 
However, these mathematical instructions may not be 
supported in host CPU ISA. The mathematical helper function 

is used to simulate such mathematical functions by calling the 
corresponding functions in standard math library. 

 Kernel Information Helper Function: To assist GPU 
applications running adaptively to the underlying GPU, GPU 
will provide query instructions about current hardware 
situation and information. To simulate these query 
instructions, the kernel information helper function is used to 
collect and return information of GPU simulation module and 

the current execution state. 
 Synchronization Helper Function: In the current GPU design, 

work items of a work group are parallel executed by PEs of a 
CU. In FastSim, the work items of a work group are executed 
in a GPU CU thread sequentially. This may raise a 
synchronization issue from the usage of barrier instruction in a 
work group. To handle the required synchronizations, in 
FastSim, we implement a synchronization help function to 

guard the execution within a GPU CU thread. The 
synchronization help function is a lightweight GPU PE barrier 
thread. It turns the execution of PEs of a CU from sequential 
to parallel during the synchronization. 

5. EXPERIMENTAL RESULTS 

Table 1. Experimental Environment 

HSA Application 
Bitonic Sort, Fast Walsh Transform, Reduction, 

N-Body 

OpenCL Runtime A HSA compatible OpenCL runtime 

Guest OS Linux-3.5.0-1-linaro-vexpress 

Guest Machine 
ARM vexpress-a9, GPU simulation, and 1 

gigabyte memory 

Host OS Ubuntu Linux release 12.04 

Host Machine 

Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz 4 

cores with 8 Hyper Threads and 12 gigabytes 

memory 

 

In this section, HSAemu is evaluated in three aspects: 1) 
functionally correctness and usefulness, 2) simulations accuracy 

for both the functional model and the micro-architecture 
simulation model, and 3) parallel speedup available from 
multicore host machines. The results are discussed respectively in 
Section 5.1, 5.2, and 5.3. 

The configurations of our experimental environment are listed in 
Table 1. As the software infrastructure of HSA is still being 
developed as of this writing, we managed to adopt four OpenCL 
benchmark programs as our test workload. The target system is an 
ARM-based embedded system running Linux. In these case 
studies, we show that HSAemu is valuable to the development of 

HSA software stack and applications in an early 
hardware/software co-design project. It enables software 
development before the availability of the hardware. 

5.1 Developing HSA Software with HSAemu 
As Figure 4 shown, the infrastructure has been implemented to 
support the three fundamental features defined in the HSA 

 

specifications, i.e. hUMA, hQ, and HSAIL. In our case studies, 
HSAemu runs a complete HSA software stack which is comprised 
of a front-end compiler, an OpenCL runtime for HSA, an 
operating system and a finalizer. Using the following steps, we 
develop and test HSA-compliant applications: 

1. Compile kernel function of application programs to HSAIL’s 
BRIG binary format. Since the official front-end compiler of 
HSA has not yet been released for OpenCL, it is difficult to 
directly compile kernel functions of OpenCL programs to 
BRIG. To avoid hand-writing HSAIL binary for all kernel 
functions, a source-to-source translation tool, called 

PTX2HSAIL is developed. Consequently, the kernel functions 
of all benchmarks are compiled to PTX assembly code first by 
NVIDIA ncc compiler, and then PTX2HSAIL is used to 
translate the PTX codes to HSAIL.  

2. Modify OpenCL code to utilize the features of HSA. With 
HSA’s hUMA, OpenCL programs are not required to copy 
data between main memory and GPU device memory. Hence 
several OpenCL APIs, such as clCreateBuffer, 

clEnqueueWriteBuffer, and clEnqueueReadBuffer are 
considered as normal main memory accesses to allocate and 
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Fig. 4. A basic HSA software stack tested by HSAemu. 

Fig. 5. An N-Body simulation application simulates 2048 
bodies running on the HSAemu. 

 



read/write. Here we use N-Body simulation program to 
illustrates frequent data interactions between CPU and GPU. 
As shown in Figure 5, the N-Body program is executed to 
simulate 2048 bodies. All computations for calculating a new 
position and a new velocity of each body are handled by the 

kernel function executed in the GPU. On the other hand, 
everybody in a visual frame will be painted to screen by the 
agent code executed in the CPU. This implementation requires 
frequent data interactions between CPU and GPU. However, 
such data interactions are no longer explicit in HSA 
environment. It is possible that implicit data transfers between 
CPU/GPU are needed, depending on the implementation of 
the GPU. For example, if local caches are implemented to 

exploit data locality, an HSA compliant GPU may need to 
transfer data from the shared memory to the local caches, and 
transfer updated data from local caches back to memory. In 
HSA programming, this burden of data transfer management 
is shifted from programmers to processors.  

3. Modify an OpenCL runtime for HSA. Since no official HSA 
runtime has been released for OpenCL yet, we attempt to 
implement a simplified HSA-compatible OpenCL runtime to 

enable HSA features. This also illustrates the usefulness of 
HSAemu as a hardware/software co-design tool. The main 
changes in the OpenCL APIs are listed in Table 2. For hUMA, 
it has been mentioned in the previous paragraphs that main 
memory can be easily shared between CPU and GPU. Hense, 
clCreateBuffer, clEnqueueWriteBuffer and 
clEnqueueReadBuffercan simply allocate and read/write 
buffers by normal main memory access methods without 

handling GPU device memory access. For hQ, our HSA 
compatible OpenCL runtime needs to rewrite 
clCreateCommandQueue, clEnqueueNDRangeKernel and 
clFinish to satisfy the specifications of hQ, including a user 
mode queue, an AQL packet handler and a completion object 
handler. In the last feature, clCreateProgramWithBinaryis 
implemented to load HSAIL binary into main memory and 
then clBuildProgram is implemented to translate HSAIL 
binary to native binary for a specific HSA component. With 

this runtime support, HSAemu can run OpenCL applications 
with HSA features. Ideally, when the official HSA compatible 
OpenCL runtime is released, it will replace our current 
simplified HSA runtime in HSAemu. 

The case studies also serve as a step to verify the functional 
correctness of HSAemu as a hardware/software prototyping tool. 
As the hardware and software of HSA become more mature, we 
continue to refine HSAemu and work with vendors/developers to 
make the HSA tools chain more complete.  

Table 2. Modified OpenCL APIs for HSA 

 

5.2 Comparison of FastSim and DeepSim 
In this section, we first evaluate the simulation speed for FastSim 
and DeepSim, and then describe what profiling information can be 
collected by these two simulation models.  

5.2.1 Simulation Performance Evaluation 
The simulation time of FastSim and DeepSim was measured by 
running four OpenCL benchmark programs, Bitonic Sort, Fast 
Walsh Transform (FWT), Reduction and N-body. The first three 

programs, obtained from AMD OpenCL benchmark suite, were 
executed with data input size 65536. The N-body program 
simulated 2048 bodies for one iteration. The simulation time for 
each benchmark is listed in Table 3, which shows that FastSim is 
faster than DeepSim up to 85 times and the speedup depends on 
the workload of kernel functions to be executed in GPU.  

Table 3. Simulation Speed of FastSim and DeepSim 

Benchmark FastSim (sec) DeepSim (sec) Speedup 

Bitonic Sort 7.47 153.07 20.49x 

FWT 13.91 49.96 3.59x 

Reduction 1.84 5.52 3.00x 

N-body 4.02 341.74 85.0x 

Table 4. Profiling information for N-Body by FastSim 
workgroup size = 512 

CU 

ID 

Global Memory 

(ld/st) 

Local Memory 

(ld/st) 

TLB 

Miss 

TLB Miss 

Rate 

0 20480/4096 4194304/16384 101 0.41% 

1 0 0 0 0 

2 20480/4096 4194304/16384 95 0.39% 

3 20480/4096 4194304/16384 93 0.38% 

4 0 0 0  

5 0 0 0 0 

6 0 0 0 0 

7 20480/4096 4194304/16384 98 0.40% 

Total 81920/16384 16777216/65536 387 0.39% 

Table 5. Profiling information for N-Body by FastSim 
workgroup size = 256 

CU 

ID 

Global Memory 

(ld/st) 

Local Memory 

(ld/st) 

TLB 

Miss 

TLB Miss 

Rate 

0 10240/2048 2097152/8192 48 0.39% 

1 10240/2048 2097152/8192 54 0.44% 

2 10240/2048 2097152/8192 48 0.39% 

3 10240/2048 2097152/8192 49 0.40% 

4 10240/2048 2097152/8192 50 0.41% 

5 10240/2048 2097152/8192 48 0.39% 

6 10240/2048 2097152/8192 48 0.39% 

7 10240/2048 2097152/8192 48 0.39% 

Total 81920/16384 16777216/65536 393 0.40% 

5.2.2 FastSim Profiling Information 
We first run N-Body Simulation to collect profiling information 
from FastSim. The N-Body Simulation is configured to simulate 
2048 bodies in a single iteration. The workgroup size is 
configured to 256 or 512. As shown in Table 4, when workgroup 
size is set to 512, the number of work group is equal to 4 (i.e. 
2048/512). Under this configuration, the CU utilization is only 

50%, CU 1, 4, 5, and 6 are idle, as indicated by zero activity in 
Table 4. When the workgroup size is equal to 256, the number of 
work group is equal to 8 (i.e. 2048/256). This time, the CU 
utilization is full, as shown in Table 5. Based on Table 4 and 5, 
we can observe that the memory accesses are consistent, no matter 
how workgroups are partitioned and assigned to different CUs. 
For example, in both configurations, the total global memory ld/st 
access count is equal to 81920/16384 and the total local memory 

HSA 

Feature 
OpenCL API Description 

hUMA 

clCreateBuffer Create buffer by malloc syscall 

clEnqueueWriteBuffer Write buffer by memcpy syscall 

clEnqueueReadBuffer Read buffer by memcpy syscall 

hQ 

clCreateCommandQueue Create user mode queue for 

HSA 

clEnqueueNDRangeKernel Enqueue AQL packets to user 

mode queue and signal HSA 

component to execute 

clFinish Wait for completion object set 

by HSA components to finish 

computation 

HSAIL 

clCreateProgramWithBinary Load HSASIL binary format 

(BRIG) to memory 

clBuildProgram Translate BRIG to native binary 

of specific HSA component 



ld/st access count is equal to 16777216/65536. The TLB miss 
count and TLB miss rate are also similar for both configurations. 

5.2.3 DeepSim Profiling Information 
Using the N-Body Simulation with the same configurations as 

stated in the previous section, DeepSim reports profiling 
information for AMD Southern Island Series GPU, as shown in 
Table 6 and 7. The tables also show detailed instruction break 
downs so that we may conduct sanity check on the number of 
global and local memory references between FastSim and 
DeepSim. Multi2Sim reports many implementation detailed 
information such as cache misses and pipeline stalls. In this paper, 
we describe the functionality and capability of HSAemu, so more 
detailed micro-architecture related discussions are left out. 

Table 6. GPU profile collected by DeepSim for N-Body  

Type  Count Type Count 

SimTime  1986299.67 ns Total Instructions 2827168 

Frequency 925 MHz Branch Instr. 66112 

NDRangeCount 1 LDS Instr. 263168 

WorkGroupCount 8 ScalarALU Instr. 788864 

  ScalarMem Instr. 448 

  VectorALU Instr. 1708192 

Cycle 1812119 VectorMem Instr. 384 

Table 7. A CU profile collected by DeepSim for N-Body  

Type Count Type Count 

Total Instructions 353396 ScalarRegReads 4886264 

Branch Instr. 8264 ScalarRegWrites 657992 

LDS Instr. 32896 VectorRegReads 24699392 

ScalarALU Instr. 98608 VectorRegWrites 15245312 

ScalarMem Instr. 56 LDSReads 2097152 

VectorALU Instr. 213524 LDSWrites 8192 

VectorMem Instr. 48 Scalar L1 Hit Ratio  50.43% 

  Vector L1 Hit Ratio  16.88% 

  L2 Hit Ratio 80.84% 

 

 
Fig. 6. Two OpenCL benchmarks, Bitonic Sort and FWT, are 

simulated in the generic functional HSA model.  

5.3 Speedup with Parallelized Simulation 

Figure 6 shows the speedup of simulation from increasing the 
number of CU threads in FastSim, which utilizes up to 8 cores to 

perform fast CPU and GPU simulation. At this early stage, we use 
a few hand-written kernel functions in standard HSAIL to test the 
preliminary HSAemu. Three kernel functions tested are Nearest 
Neighbor, Kmeans, and FWT. The first two benchmarks are 
selected from the Rodinia benchmark suite 2.3. FWT is taken 
from the AMD OpenCL benchmark suite. 

For example, in Figure 7, the performance curves of both NN and 
Kmeans benchmark level off at 8 cores when 8 physical cores are 
in use, level off at 16 when 16 physical cores are in use, and level 

off at 32, when 32 cores are in use. For this set of experiments, we 

used the Linux command "taskset" to limit the number of 

physical CPU cores for the emulation runs. 

 
To further accelerating the simulation, we exploit the SIMD 

capability available in each host CPU, where SSE3 instructions 
can perform four floating point computations at a time. Figure 8 
shows the resulted speedup after adding this feature. Our BRIG 
finalizer is capable of generating SSE3 instructions to speed up 
the simulation of CU threads. It delivers a 1.8X to 2.7X speedup 
for Kmeans benchmark, and 2x to 3x speedup for FWT. 

However, for the NN benchmark, the speedup is only 1.02X to 
1.05X.This unimpressive speedup of the NN benchmark is due to 
frequent calls to help functions in NN. In the NN benchmark, the 
HSAIL code contains SQRT instruction. However, since the host 
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Fig. 7. Benchmarks running on the 32 physical cores.  
  

Fig. 8. Execution time with SIMD. 



machine does not have the SQRT instruction, the BRIG finalizer 
(i.e. the LLVM based translator) generates a help function call to 
QEMU in order to simulate this SQRT instruction. When a vector 
data, i.e. a 128 bit register, is passed to the help function, extra 
packing and unpacking operations are required. A 128 bit register 

is first unpacked to four 32bit data items, and then passed to the 
help function. After the help function finishes the work, the result 
must be packed back to the 128 bit register. Unfortunately, in the 
NN benchmark, such calls to the SQRT help function are quite 
frequent, so the speed up from SSE3 instruction is pretty much 
offset by help function overhead, and yield much less speedup 
than the Kmeans and the FWT benchmark. 

6. CONCLUTION AND FUTURE WORK 
HSA is an emerging open industry standard to support high-
performance, energy-efficient heterogeneous computing. To 
accelerate the design of HSA-compliant hardware and software, 
many tools are needed, including compilers, runtime libraries, 
simulators, and profiling tools. Our work on HSAemu serves to 

bring these pieces together for hardware/software co-design 
projects. We have shown the methodologies and strategies to 
achieve functional correctness and usefulness, performance 
modeling, and parallel speedup. In our case studies, we 
demonstrate the use of HSAemu to model an HSA-compliant 
system, develop platform-specific software stacks, and carry out 
performance analysis for OpenCL applications. 

As the early development of HSAemu has met our initial goals, by 

releasing HSAemu as an open-source project, we continue to 
enhance HSAemu together with vendors and researchers. We are 
currently integrating performance modeling, monitoring, and 
profiling tools into HSAemu to enable comprehensive 
performance and power analysis on heterogeneous systems. 
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