
GPU Performance Enhancement via Communication Cost Reduction:
Case Studies of Radix Sort and WSN Relay Node Placement Problem

Che-Rung Lee, Shih-Hsiang Lo, Nan-Hsi Chen, Yeh-Ching Chung
Department of Computer Science, National TsingHua University

HsinChu, Taiwan
cherung@gmail.com, albert@sslab.cs.nthu.edu.tw, senkrad1101@hotmail.com,

ychung@cs.nthu.edu.tw

I-Hsin Chung
IBM T.J.Watson Research

Yorktown, NY
ihchung@us.ibm.com

Abstract—As the computational power of Graphics Processing
Unit (GPU) increases, data transmission becomes the major
performance bottleneck. In this study, we investigate two
techniques, data streaming and data compression, to reduce
the communication cost on GPU. Data streaming enables
overlap of communication and computation, whereas data
compression reduces the data size transferred among different
memory spaces. Although both techniques increase
computation cost, overall performance can still be enhanced by
reducing communication cost. We demonstrate the
effectiveness of the two techniques via two case studies: radix
sort and 3-star, a deployment algorithm in wireless sensor
networks. For radix sort, a new algorithm, which mixes MSD
and LSD algorithms and employs data streaming, is presented.
Its performance is 25% faster than the fastest GPU radix sort
implementation currently available in the public domain. For
the 3-star algorithm, the speed increases several hundreds of
times faster than that obtained by the CPU code. The data
streaming and data compression, which is a hybrid CPU-GPU
algorithm, provide an additional 54% performance
improvement to the GPU implementation. Data compression
not only reduces communication cost, but also improves the
computation time, by which further performance enhancement
can be achieved.

Keywords- GPU, data compression, data streaming, radix
sort, wireless sensor networks.

I. INTRODUCTION
With the advance of graphics hardware technology,

programming and executing general applications on
Graphics Processing Units (GPUs) is more feasible.
Nowadays, a single GPU with hundreds or even thousands of
processing elements has great potential for improving the
performance of various computational intensive applications.
To harness the massive computational power of GPUs,
programmers must explore the parallelism of applications
and must utilize hardware resources efficiently. A
continuing challenge is reducing the communication cost
among different levels of memory spaces.

Many strategies for reducing the overhead of memory
access in GPUs have been investigated. Vectorization and
memory coalescing are two programming techniques
commonly used to reduce the cost of memory access on

GPUs [1][2][3][4][5]. Another common approach is massive
fine-grained threading, which improves processor utilization
and hides the communication latency [6]. This approach is
also effective for computing-bound applications, such as
matrix-matrix multiplication. Algorithmically,
communication avoiding methods [7][8] and cache-oblivious
algorithms [9] are also designed to minimize communication
cost. The underlying concepts of these algorithms have also
been used to enhance performance in GPU programming. In
the application level, various communication reduction
techniques that use the domain knowledge of data properties
have been reported in the literature [10][11]. In [12], a
CUDA API called Dymaxion is provided to optimize
memory mapping for programmers.

The data streaming and compression techniques
introduced in [13] reduces the communication overhead for
output data. Here, the techniques are generalized and
applied to other problems. The principle of data streaming
in input and output is to enable overlapping communication
and computation. Doing so requires effective data
partitioning and processing. For applications run on the
GPU, this is usually not problematic since tiled or block
algorithms are designed to partition and process data to
enable efficient use of the limited shared memory. Once a
block of computation is complete, the transmission of its
output and the computation of the next block can be
executed simultaneously.

However, overlapping communication and computation
may be insufficient for hiding the latency of communication
because of the large performance gap between
communication and computation. Therefore, another
common rescue technique is data compression. Although
data compression is widely used in data management to
reduce storage space and network bandwidth requirements,
applying compression to enhance GPU performance raises
different concerns. First, although complex compression
methods may improve the compression ratio, they may not
be effective when implemented in GPUs. The selected
compression method should optimize overall performance
even if does not achieve the best compression ratio. Second,
the data sender and receiver are CPU and GPU, or vice
versa, which have different architectural characters.

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.16

132

Designing asymmetric compression schemes that enable
both processor types to perform different computation
simultaneously is a continuing challenge in the GPU and
CPU computation.

Nevertheless, the processor-coprocessor relationship
between CPU and GPU does give advantages to compress
certain data, such as index. Since the data have been
partitioned in the streaming process, the output can be re-
indexed based on the data in the same partition. Although re-
indexing reduces index size, it requires extra computation by
both the GPU and CPU. However, because of the extreme
simplicity of this coding/decoding approach for
compression/decompression, both computations can be
hidden in the streaming process. As a result, the compression
still improves overall performance.

This study demonstrates how data streaming and
compression can be performed in two case studies: the radix
sort and a sensor deployment algorithm in wireless sensor
networks, called 3-star. The radix sort [14][15][16] outputs a
permutation of N input data (finite bit integers) that arranges
them in descending or ascending order. The 3-star algorithm
[17] is designed to solve a sensor deployment problem in
wireless sensor networks (WSNs). Given N sensors on a
plane, a 3-star is 3 sensor nodes whose pairwise distance is
larger than a given constant R, but the radius of their
circumscribed circle is less than R. The center of the
circumscribed circles of the 3-star is a potential location to
place a special sensor, called a relay node.

The rest of this paper is organized as follows. Section II
briefly introduces the GPU architecture, the background of
radix sort and the 3-star algorithm. Section III presents how
the data streaming and compression techniques are carried
out to the two case studies. Section IV gives the
experimental results of the studied cases. The last section
concludes the study and proposes future works.

II. BACKGROUND
This section briefly introduces the background of various

topics, including the GPU architecture, the radix sort
algorithm, and the 3-star algorithm in WSNs.

A. GPU Architecture
The GPU used in this study is a CUDA-enabled device

[18] with an array of multiprocessors and various memory
spaces. The hardware execution unit in the CUDA device is
called a warp, i.e., a group of threads. All threads in a warp
execute the same instructions synchronously. Each
multiprocessor can execute one or more warps concurrently.
Processed data could be placed in different levels of
memory hierarchy in the device, including registers, shared
memory, cache, constant memory, texture memory and
global memory.

A typical CUDA program is executed as follows. After
data are copied from the host (CPU) memory to the device
(GPU) memory, the host invokes a kernel function with the
thread configuration, such as the thread block size, etc.
When a kernel function is executed, all thread blocks are

distributed to multiprocessors, which then arrange the thread
blocks into warps and schedules them for execution. When
the kernel function is completed, the host copies data from
the device memory to the host memory.

Several performance concerns arise when programming
in CUDA. First, threads should access data in the low
latency memory (e.g., shared memory or cache) rather than
in the high latency memory (e.g., global memory). Even if
threads require data access from the global memory,
coalesced memory access can reduce the number of memory
transactions. Second, threads in a warp should avoid
different execution paths, which would cause warp
divergence, i.e., threads within a warp must perform
different execution paths sequentially.

The latest CUDA architecture, Fermi, allows concurrent
kernel execution [19], which means multiple kernel
functions can be executed simultaneously on the different
multi-processors. In this study, we will not consider this
ability.

B. Radix sort
Radix sort, a non-comparative sorting algorithm for

integers or finite bits data, requires only O(kN) time to sort N
data, where k is the number of bits of data [14]. Radix sort
functions as follows. First, it represents the data in a specific
radix. This conversion can be done implicitly by dividing
the finite bits of data into fixed length groups if the radix is
of a power of 2. The data are then hashed repeatedly into
buckets according to their digits, starting from the most
significant digit (MSD) or from the least significant digit
(LSD), until all digits are processed. During each hashing,
conflicting data are stored in a queue; after hashing is
complete, those queues are concatenated into a long list,
from the beginning of which the next hashing begins.

The major challenges of parallelizing radix sort queuing
hashed data and concatenating all queues into a list. The
prefix sum or scan technique is typically performed to solve
both problems [20]. Given an array L of numbers, the prefix
sum returns a list M of same size, where M[i] equals the sum
of L[1] to L[i-1]. Notably, parallel prefix sum of N elements
can be computed by using N processors in O (log N) time.

Radix sort implemented on GPUs has been studied
intensively because of its technical importance. Radix sort is
the fastest (non-comparative) sorting algorithms on GPU. In
[20], an efficient parallel scan method on GPU was
proposed, and one of its applications is radix sort. In [15], the
authors presented fast sorting algorithms, including radix sort
and merge sort. In [16], Merrill and Grimshaw presented a
tuned radix sort GPU implementation, which is integrated
into the Thrust package. The three-step process they
proposed for each digit is: upward reduce, spline scan, and
downward scatter. Their algorithm has been integrated to
the state-of-the-art package, Thrust [21].

C. Relay Node Placement Problem
A WSN consisting of a set of sensors is used for sensing

desired data and reporting them to a base station. The

133

sensors transmit data through the embedded wireless device
with limited effective transmission range R. Advanced
sensors not only sense and send data, they also forward data
for neighboring sensors. This study considers the sensors
capable of sensing, sending data, and forwarding data.
Given a set of sensor nodes on a plane, which may or may
not be fully connected, the problem of interest in this study
is how to deploy additional sensors (relay nodes) so that all
sensors form a connected network. Each sensor is modeled
as a point.

Under this setting, the problem of deploying the
minimum number of relay nodes to connect all sensors is
called the Single Tier Relay Node Placement problem
(STRNP), which turns out to be NP-hard [17][22][23]. A
simple approximation algorithm is to construct the
minimum spanning tree (MST) of the sensor nodes first, and
then to place relay nodes on the edges of the MST such that
no resulted edge is longer than R. This algorithm has an
approximation ratio of 5 [23]. A better algorithm in terms
of approximation ratio is called the 3-star algorithm [17].
A 3-star is a set of 3 sensor nodes, whose mutual distance is
larger than R, but the radius of their circumscribed circle is
less than R. Therefore, the three sensors can be connected
by placing a relay node at the center of their circumscribed
circle, instead of putting two relay nodes on the edge of a
triangle. The 3-star algorithm places the relay nodes in the
circumscribed center of potential 3-stars, and then runs the
MST algorithm again to connect unconnected components.
The approximation ratio of the 3-star algorithm can be
proven to be 3 [23].

The most time consuming task of the 3-star algorithm is
finding candidate of 3-stars, which takes O(N3) time to
check all 3-tuple of sensor nodes. This study only considers
the problem of how to find all potential 3-stars.

A literature search shows that no studies propose a GPU
implementation of the 3-star algorithm.

III. DATA STEAMING AND COMPRESSION TECHNIQUES

A. General strategy
A GPU program generally consists of three steps:
1. Import data from CPU memory to GPU memory,
2. Invoke GPU kernel function to compute, and
3. Export result from GPU memory to CPU memory.

The data streaming under this framework is to overlap those
three steps. To overlap the first and the second steps, one
requires the computation can be preceded on partial data and
regardless their content, e.g., matrix-matrix multiplication.
Preprocessing raw data is necessary if the computation is
content-dependent. Overlapping of the second and the third
step is much simpler and requires a much simpler condition,
i.e., data can be partitioned and processed separately. To
simplify this discussion, only the latter problem is discussed.

Suppose the data is partitioned into D1, D2, …, Dn. The
data streaming of the second and the third step overlaps the
computation of Di+1 with the output process of Di. The
algorithm of output streaming is outlined in Figure 1.

In Figure 1, the pair of clauses Parallel Do/End
Parallel Do indicates the tasks between them can be
processed at the same time. The terms CPU or GPU are
added to the front of each statement to specify which device
is responsible for the task. In CUDA, the Output
command corresponds to the function call,

cudaMemcpy(,,,cudaMemcpyDeviceToHost)

and the Compute command corresponds to the invocation
of kernel functions. Overlapping of communication and
computation requires the asynchronous function,
cudaMemcpyAsync(,,,).

Figure 1. Pseudo code of output data streaming

As stated in the document of NVIDIA CUDA library
[24], the cudaMemcpyAsync() function is asynchronous
with respect to the host, so the call may return before the
copy is completed. It requires page-locked host memory and
returns an error if a pointer to pageable memory is passed as
input. The copy can optionally be associated to a stream by
passing a non-zero stream argument. Therefore, for the
operation

cudaMemcpyHostToDevice
or cudaMemcpyDeviceToHost,

the copy of the specific stream can be overlapped with
operations in other streams.

The second technique for reducing the communication
cost is data compression, which enhances performance by
reducing the transferred data size. The pseudo code of output
data streaming and compression is given in Figure 2.

Figure 2. Pseudo code of output data streaming and compression

B. Radix sort
The state-or-art radix sort implementation on GPU is

based on the LSD (least significant digit first) algorithm,
which keeps all data integral during the entire computation.

GPU: Compute and compress D[1];
For i = 2,..., n
 Parallel Do
 CPU: Output and decompress D[i-1];
 GPU: Compute and compress D[i];
 End Parallel Do
End For
CPU: Output and decompress D[n];

GPU: Compute D[1];
For i = 2,..., n
 Parallel Do
 CPU: Output D[i-1];
 GPU: Compute D[i];
 End Parallel Do
End For
CPU: Output D[n];

134

However, partitioning data requires the MSD (most
significant digit first) algorithm, which functions like the
bucket sorting algorithm or the sample sort algorithm. The
MSD-based algorithm first hashes data into buckets
according to their most significant digits and then sorts data
in each bucket recursively. However, the MSD algorithm
may slow down when the bucket size is too small or when
the bucket number is too many.

The proposed algorithm combines MSD and LSD. After
the MSD algorithm partitions the data to a sufficiently small
size, the LSD algorithm sorts each partition. Figure 3
displays the profiling results of the LSD algorithm reported
in [16]. The computation and communication time for data
size from 102 to 108 is given, where communication time
include the transmission of key-value pairs. As can be seen,
the computation time levels up after N =106, which indicates
the stream microprocessors in GPU are not fully utilized
until N ≥ 106. Therefore, subdividing the data is unnecessary
when N is smaller than 106.

The size of the output data for radix sort is not massive.
However, when the data size scales up, the time of
communication still exceeds the time of computation, as
shown in Figure 3. Figure 4 shows the percentage of time
required for input and output. The figure shows that,
although the total communication time consumes over 50%
of the total time, the time of output alone is still shorter than
that of computation. Therefore, the output data need not be
compressed for radix sort.

The major problem of applying data streaming is the load
balance of each data partition. For uniformly distributed
data, all the buckets are of approximately equal size after
applying the MSD algorithm. Generally, however, the size
of buckets tends to be highly unbalanced. The proposed
solution is to make the MSD algorithm be a separated kernel
function and to allow CPU to perform load balancing
scheduling based on the returning results of the MSD
algorithm. For a large bucket, the MSD algorithm is again
used to split the bucket into smaller ones. For small buckets,
if they are in a sequence, then we can merge them together
and sort them as a bigger bucket. In Figure 5, for example,
bucket 2 is too large and buckets 3 to 8 are too small. After

calling the MSD algorithm, the CPU calls it again to split
bucket 2, to merge the data in bucket 3, 4, 5 into one LSD
call, and to merge the data in bucket 6, 7, 8 into another LSD
call.

Figure 5. Example of procedure for balancing bucket sizes after calling
the MSD algorithm.

C. The 3-star algorithm
The problem of finding 3-stars provides a natural

partition method. Recall that a 3-star is defined as 3 vertices
of a triangle where the edges of the vertices are all larger
than a constant R, but the radius of their circumscribed
circle is smaller than or equals to R. Figure 6 shows the
possible search space (the donut shaped area) for a given
sensor node. Suppose a center node is located at the center
of the circle. The donut-shaped shading area represents the
possible search spaces for the other two vertices of a 3-star.
Therefore, if the space is partitioned by a fixed-size grid,
where the grid size is 2R, only the sensor nodes in nine
neighboring grid cells need to be checked.

Figure 6. Possible searching space (shaded area) for the 3-stars with a
vertex located in the center of circle.

Figure 3. Computation and communication time in the Thrust radix sort
implementation.

Figure 4. Percentage of time for computation, input, and output in the
Thrust radix sort implementation.

 �� ��

R2

Split Merge Merge MergeM Mergee

1 2 3 4 5 6 7 8

135

Although this computation can be performed in parallel
on GPU in many different ways, the method used here is to
let each thread block to take of one grid cell and to check
the 3-stars that include at least care of one vertex in the grid
cell. Each thread is responsible to a sensor node and
searches all possible combinations of other two sensors
nodes in the nine neighboring grid cells. To avoid repeated
checking, each grid cell is indexed by the pair of its row
index and column index as shown below.

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)

When a thread block checks the grid cell of index (r, c), the
only grid cells it needs to check are (r, c), (r +1, c), (r -1, c
+1), (r, c +1), and (r, c +1). For instance, if a thread block
is assigned to the grid (2, 2), the grid cells it needs to check
are (1, 3), (2, 2), (2, 3), (3, 2), and (3, 3).

This approaches reduces the number of possible
combinations of grids that need to be checked to 5×5=25
since only one of the sensor nodes in (2, 2) is required, and
the other two can be in any of the neighboring 5 cells. The
number of grids that need to be checked can be reduced by
eliminating impossible combinations. For instance, three
sensor nodes in cell (2, 2), (1, 3), and (3,2) cannot form a 3-
star because the distance between (1, 3) and (3, 2) is larger
then 2R. Doing so can reduce the number of combinations
to 13.

Checking a 3-star for three given sensor nodes only
requires comparison of the radius of their circumscribed
circle to R. Let a, b, c be the length of the triangle formed
by three sensor nodes, and let s = (a+b+c)/2. The radius of
their circumscribed circle can be computed by

))()((2 csbsass
abcr

−−−
= . (1)

However, use of this formula requires computation of a,
b, c before computation of r. The distance d between two
points (x1, y1) and (x2, y2) can be computed by

2
21

2
21)()(yyxxd −+−= . (2)

Both computations require numerous invocations of floating
point operations such as square and square root, which are
computationally expensive. To avoid floating point
operations, a lookup table is used to retrieve a, b, and c from
the distance pair (|x1−x2|, |y1−y2|), since all coordinates are
all integers and their differences are bounded.

After obtaining the distance a, b, and c, one can use
another lookup table to check the feasibility of 3-star. Since
the ranges of a and b are finite, they can be arranged into a
2-dimentional table. The upper bound and the lower bound
of c that can make three sensors a 3-star is given in this

table. Therefore, checking the range of c and the actual
length of the third edge reveals whether the given sensors
are 3-star. To speed up the computation, all table entries are
pre-computed and loaded to the texture memory.

When outputting 3-stars, the IDs of three sensor nodes
must be reported, which requires 12 bytes for three integers.
The used technique for reducing sizes of IDs is to compress
the output, which divides the IDs into three parts: Cell ID
(CID), Segment ID (SID), and Local ID (LID).

(CID, SID, LID). (3)

Since the report of 3-stars in the same cell and the same
segment is aggregated together, only the local IDs are
required in most cases. Additionally, since there are only 13
possible cases, the CPU can know the CID of all three
sensor nodes. Figure 7 illustrates the format of the
compressed indices for 3-stars in a thread block.

Figure 7. List of 3-stars in the compression form.

IV. EXPERIMENTS AND RESULTS

A. Experimental environment
The experimental platform has one Intel i7 920

processor 2.67 GHz with 6 GB DRAM. The OS is 64-bit
Linux, kernel version 2.6.27. The GPU used in the
experiments is a Tesla C2050, which contains 448 CUDA
cores and 3GB GDDR5 memory. The host programs use
GCC 4.3 and enable optimizations, –O3 and –DNDEBUG.
The device programs use CUDA compiler driver 4.0. The
execution time recorded for each test case was the average
obtained in 10 runs.

B. Radix Sort
After modifying the radix sort program in the Thrust

package, its performance was compared with that of the
original code. The radix sort programs were tested using
two different data distributions: uniform and normal. The
radix in use is 16.

For uniformly distributed data, tests were run for
program size of 104, 105, 106, 107 and 108. Table I compares
the performance of the original radix sort with that of the
modified program for different program sizes. The unit of
time is microseconds. The comparison shows that the
performance improvement obtained by the modified
program increases with program size. The time required to

CID1 Case

SID1 SID2 SID3

LID1 num LID2,
LID3

… LID2,
LID3

SID1 SID2 SID3

LID1 num LID2,
LID3

… LID2,
LID3

Report by a thread Report by a thread
Report by a thread block

136

output data can be reduced to 6% (speedup is 16). Overall,
the modified program decreases computation time by 20%
and 25% for program sizes 107 and 108, respectively, but it
increases computation time for other program sizes due to
the overhead of performing LSD calls many times.

TABLE I. PERFORMANCE COMPARISON OF THE ORIGNAL AND THE
MODIFIED RADIX SORT PROGRAM FOR 104, 105, 106, 107, AND 108
UNIFORMLY DISTRIBUTED DATA (MICROSECOND)

��������	
��� �
�
���� ���
�
���
���� ���� �����
���� ����� �����
���� ����� ������
���� ������ ������
���� ������� �������

TABLE II. PROFILE OF RADIX SORT PROGRAMS FOR 108 UNIFORMLY
DISTRIBUTED DATA (MILLISECOND)

�����
��� �
�
���� ���
�
���
��� !�
��� ��"��� ��"���
	��
��#$!��� �"��� �"���
	!������ ���"��� ���"���
���!�%&��'� ���"��� ���"���
���!�%'��&� ���"��� ���"���
(!)��
���������
������� �"��� �"���
*���������� �� ������� �"��� ���"���
+������
��� ���"��� ���"���

Table II compares the profiles of the original radix sort

and the modified radix sort programs for 108 uniformly
distributed integer data. The unit of time is milliseconds.
The first three operations, reduction, spline-scan, and
scatter, are major operations in the radix sort algorithm.
The next two operations, MemcpyHtoD and MemcpyDtoH,
are data movements from the host to the device and from the
device to the host, respectively. As can be seen, except for
spline-scan, all operations of the modified program are as
fast as those of the original program. The purpose of the
spline-scan is to calculate the offsets of the numbers within
a block. Because the MSB algorithm is invoked once and
the LSB algorithm is invoked 16 times, the time spent on
spline-scan in the modified program is about 15 times of the
original program, which is roughly equal to the ratio of the
number of calls made by both programs (17 times.
Although the spline-scan is much slower in the modified
program, it occupies only a small fraction of the entire
computation. Therefore, the additional overhead is
negligible.

The next two operations are performed only by the
modified program. After invoking the MSB algorithm,
Bucketing and alignment operation divides the data into
smaller chunks (buckets) and aligns the data in each bucket
to 4 integers. A comparison shows that the cost of the
operation is low compared to other operations. The last
operation is the overlapping of the output data, which is
performed by data streaming. Since computation time

(reduction+scan+scatter) is longer than the time required for
MemcpyHtoD, most of the time spent on data output can be
hidden by computation. Additionally, data output consumes
about one third of the entire time, the overall improvement
is significant.

As explained in Section III.B, normal distributed data
requires an additional load balance operation to ensure that
the buckets are of approximately equal size. Essentially, the
load balance operation subdivides the large buckets into
smaller ones by calling the MSB algorithm again. Table III
lists the profiling results of the original program and the
modified program for 108 normally distributed data. The
table shows that the time spent on the load balance
operation is negligible. However, the increased number of
buckets and the smaller bucket sizes result in a 50-fold
increase in spline-scan time. The time required for the
reduction operation also increases substantially.
Fortunately, overlapping of data output enables a 21%
reduction in overall time.

TABLE III. PROFILE FOR RADIX SORT PROGRAMS FOR 108 NORMALLY
DISTRIBUTED DATA (MILLISECOND)

�����
��� �
�
���� ���
�
���
��� !�
�� ��"�� ��"��
	�
���$!��� �"��� ��"���
	!������ ���"��� ���"���
���!�%&��'� ���"��� ���"���
���!�%'��&� ���"��� ���"���
(!)��
���������
������� �"��� �"���
,����-����!�� �"��� �"���
*��������������� �� �� �"��� ���"���
+������
��� ���"��� ���"���

C. The 3-star Algorithm
The computation of the 3-star algorithm is similar to that

required to solve the rectangle intersection problem [13].
Even when the input size is not large, the potential output
can be enormous. Figure 8 illustrates a sensor placement
scenario that have O(N3) 3-stars, in which sensors are
located at one of three clusters evenly. Each sensor node in
a cluster can match two other sensor nodes at two other
clusters.

Figure 8. Sensor placement scenario that have O(N3) 3-stars.

137

In practice, however, sensors are rarely deployed in this
manner. Even if they were placed in this manner, relay
nodes are easily located at the center of three clusters.
Therefore, the experiments in this study did not consider
extreme cases to demonstrate the power of data streaming
and compression, even though an excellent performance
improvement was ensured. Instead, this study considers the
more likely scenario in which sensors are uniform-randomly
placed on a 2000×2000 plane where the sensor
communication radius is set to 50. The number of sensor
nodes was varied from 1,600 to 102,400. Figure 9 displays
the relation between the number of sensor nodes and the
number of 3-stars in logarithmic scales. The figure shows
that the number of sensor nodes grows cubically with the
number of sensor nodes.

The following four GPU implementations are presented:
(1) Baseline
(2) Baseline + streaming
(3) Baseline + compression
(4) Baseline + compression + streaming.

Figure 10 compares the performance of a sequential
CPU code and four GPU implementations for various data
sizes. The sequential code is executed on one Intel i7 920
core with frequency 2.67 GHz, and the GPU code is
executed on 448 CUDA cores with frequency 1.15GHz.
The CPU implementation is also optimized by performing
data partitioning and cell reduction, as mentioned in III.C,
but not by using the table lookup. The performance test
shows that the GPU (4) implementation obtains a nearly
1000-fold speed increase for N=102,400. If the frequency of
processing core and the number of cores are taken into
account, the GPU implementation is about 5 times more
efficient than the CPU implementation.

Figure 11 shows the profiling results for four GPU
implementations for N=102,400, in which the time of five
major tasks, LOAD, COMP, REPORT, DataOut, and
DECODE, are compared. From the figure, one can see that
the performance bottleneck is computation, COMP.
Comparison of the second GPU implementation
(baseline+streaming) to the baseline implementation shows

no data streaming advantage. In fact, REPORT time is
increased in the second implementation. Although DataOut
performance improves, the improvement is insignificant
after compensating for the loss in REPORT. The overall
performance improvement achieved by data streaming
approximates 26%.

Data compression obtained interesting results. The data
compression was expected to substantially reduce the cost
of data output. Although OUTPUT and DataOut time
decrease, LOAD and COMP time also decrease at a certain
ratio, which is unexpected since the output data is
compressed after LOAD and COMP, not before.

This phenomenon actually results from the different size
of declared local variables. Without data compression, 1024
integers must be temporarily allocated for temporary storage
of output data. When the data compression is applied, only
256 integers are required to hold the data. This small
difference affects the performance since scheduling the
thread blocks in the NVIDIA GPU depends on the allocated
resources. If substantial resources such as registers per
thread block or per thread block are requested, the number
of thread blocks that can be executed simultaneously in one
streaming multiprocessor is limited.

In summary, when only the data compression is applied,
a 33% performance improvement over the baseline
implementation can be achieved. When data compression is
cooperated with data streaming, the overall performance
improvement can reach as high as 54%.

V. CONCLUSION AND FUTURE WORK
This study investigated the effects of two

communication reduction techniques, data streaming and
data compression, on GPU performance. The two
techniques are demonstrated in two applications: radix sort
and the 3-star algorithm. The proposed concept is to
partition the data, and then use asynchronous memory copy
to overlap the computation and communication. Data
compression reduces data size during data movement.

This study only focused on the two applications.
However, data streaming and compression can be applied to

Figure 9. Relation between the number of 3-stars and the number of
sensor nodes on a 2000×2000 plane.

Figure 10. Performance comparison of CPU and GPU implementations on
a 2000×2000 plane.

138

enhance performance in other GPU tasks. We expect the
two techniques can be applied to more applications, and
have more sophisticated development and usages.

There are several directions in our future work. First,
using separate but concurrent kernel functions can enable
the use of more complex data compression techniques and
improves the compression ratio. Second, by the concurrent
kernel execution on GPUs, the computations could also be
streamed for enhancing performance. Third, many details,
such as load balancing and the side effects of data
compression, require further study and analysis.

ACKNOWLEDGMENTS
The authors would like to thank the National Science

Council of Taiwan for financially/partially supporting this
research under Contract No. 100-2218-E-007-013-, and
thank the anonymous reviewers for their valuable comments
and suggestions. Ted Knoy is appreciated for his editorial
assistance.

REFERENCES
[1] B. Jang, S. Do, H. Pien, and D. Kaeli, "Architecture-aware

Optimization Targeting Multithreaded Stream Computing,"
Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, Washington, D.C., 2009.

[2] J. Byunghyun, D. Kaeli, D. Synho, and H. Pien, "Multi-GPU
Implementation of Iterative Tomographic Reconstruction
Algorithms," in Biomedical Imaging: From Nano to Macro, 2009.
ISBI '09. IEEE International Symposium on, 2009, pp. 185-188.

[3] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens,
"Efficient Computation of Sum-products on GPUs through Software-
managed Cache," Proceedings of the 22nd annual international
conference on Supercomputing, Island of Kos, Greece, 2008.

[4] B. Jang, P. Mistry, D. Schaa, R. Dominguez, and D. Kaeli, "Data
Transformations Enabling Loop Vectorization on Multithreaded Data
Parallel Architectures," Proceedings of the 15th ACM SIGPLAN,
2010.

[5] K. G. Naga, L. Scott, G. Jim, and M. Dinesh, "A Memory Model for
Scientific Algorithms on Graphics Processors," IEEE/ACM SC 2006,
pp. 6-6.

[6] V. Volkov and J. W. Demmel, "Benchmarking GPUs to Tune Dense
Linear Algebra," IEEE SC 2008. pp. 1-11.

[7] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer,
"Communication-Avoiding QR Decomposition for GPUs," IPDPS
2011.

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, "Minimizing
Communication in Numerical Linear Algebra," UC Berkeley Tech
Report EECS-2011-15.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, "Cache-
Oblivious Algorithms," Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, pp. 285-297.

[10] Cole Trapnell, Michael C. Schatz, “Optimizing Data Intensive
GPGPU Computations for DNA Sequence Alignment”, Parallel
Computing, Vol. 35, No. 8-9. 2009, pp. 429-440.

[11] Gharaibeh, Abdullah and Ripeanu, Matei, “Size Matters: Space/Time
Tradeoffs to Improve GPGPU Applications Performance”, SC 2010,
pp. 1-12.

[12] Shuai Che, Jeremy W. Sheaffer and Kevin Skadron, “Dymaxion:
Optimizing Memory Access Patterns for Heterogeneous Systems”,
SC 2011.

[13] Shih-Hsiang Lo, Che-Rung Lee, Yeh-Ching Chung, and I-Hsin
Chung, “A Parallel Rectangle Intersection Algorithm on GPU+CPU”,
CCGRID 2011, pp. 43-52.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, “Introduction to Algorithms”, 2nd ed.: McGraw-Hill,
2001.

[15] Nadathur Satish, Mark Harris, and Michael Garland, "Designing
Efficient Sorting Algorithms for Manycore GPUs," IPDPS 2009

[16] D. Merrill and A. Grimshaw, “High Performance and Scalable Radix
Sorting: A Case Study of Implementing Dynamic Parallelism for
GPU Computing,” Parallel Processing Letters, vol. 21, no. 2, pp. 245-
272, 2011.

[17] Cheng, D.Z. Du, L. Wang and B. Xu, “Relay Sensor Placement in
Wireless Sensor Networks”, ACM/Springer WINET, Vol. 14, Issue 3
(2008), pp. 347-355

[18] CUDA Programming Guide, 3.2, NVIDIA. Available:
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolki
t/docs/CUDA_C_Programming_Guide.pdf

[19] Tuning CUDA Applications for Fermi. Available:
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs
/NVIDIA_FermiTuningGuide.pdf

[20] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens,
"Scan Primitives for GPU Computing," Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS, 2007, pp. 97--106.

[21] Thrust, http://code.google.com/p/thrust/
[22] G. Lin and G. Xue, “Steiner Tree Problem with Minimum Number of

Steiner Points and Bounded Edge-length”, Information Processing
Letters, Vol. 69(1999), pp. 53-57.

[23] D. Chen, D.Z. Du, X.D. Hu, G. Lin, L. Wang and G. Xue,
“Approximations for Steiner Trees with Minimum Number of Steiner
Points”, Journal of Global Optimization, Vol. 18 (2000), pp. 17–33.

[24] NVIDIA CUDA Library Documentation 2.3,
http://www.clear.rice.edu/comp422/resources/cuda/html/index.html

[25] R. Rice and J. Plaunt, "Adaptive Variable-Length Coding for
Efficient Compression of Spacecraft Television Data," IEEE
Transactions on Communication Technology, vol. 19, pp. 889-897,
1971.

[26] NVIDIA Compute Visual Profiler Available:
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolki
t/docs/VisualProfiler/Compute_Visual_Profiler_User_Guide.pdf.

Figure 11. Profiles of four implementations of the 3-star algorithm for
N=102,400 on a 2000×2000 plane.

139

