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Abstract—As the computational power of Graphics Processing 
Unit (GPU) increases, data transmission becomes the major 
performance bottleneck. In this study, we investigate two 
techniques, data streaming and data compression, to reduce 
the communication cost on GPU. Data streaming enables 
overlap of communication and computation, whereas data 
compression reduces the data size transferred among different 
memory spaces. Although both techniques increase 
computation cost, overall performance can still be enhanced by 
reducing communication cost. We demonstrate the 
effectiveness of the two techniques via two case studies: radix 
sort and 3-star, a deployment algorithm in wireless sensor 
networks.  For radix sort, a new algorithm, which mixes MSD 
and LSD algorithms and employs data streaming, is presented.  
Its performance is 25% faster than the fastest GPU radix sort 
implementation currently available in the public domain.  For 
the 3-star algorithm, the speed increases several hundreds of 
times faster than that obtained by the CPU code. The data 
streaming and data compression, which is a hybrid CPU-GPU  
algorithm, provide an additional 54% performance 
improvement to the GPU implementation. Data compression 
not only reduces communication cost, but also improves the 
computation time, by which further performance enhancement 
can be achieved. 

Keywords- GPU, data compression, data streaming, radix 
sort, wireless sensor networks.  

I.  INTRODUCTION 
With the advance of graphics hardware technology, 

programming and executing general applications on 
Graphics Processing Units (GPUs) is more feasible.  
Nowadays, a single GPU with hundreds or even thousands of 
processing elements has great potential for improving the 
performance of various computational intensive applications. 
To harness the massive computational power of GPUs, 
programmers must explore the parallelism of applications 
and must utilize hardware resources efficiently.  A 
continuing challenge is reducing the communication cost 
among different levels of memory spaces.   

Many strategies for reducing the overhead of memory 
access in GPUs have been investigated.  Vectorization and 
memory coalescing are two programming techniques 
commonly used to reduce the cost of memory access on 

GPUs [1][2][3][4][5]. Another common approach is massive 
fine-grained threading, which improves processor utilization 
and hides the communication latency [6]. This approach is 
also effective for computing-bound applications, such as 
matrix-matrix multiplication. Algorithmically, 
communication avoiding methods [7][8] and cache-oblivious 
algorithms [9] are also designed to minimize communication 
cost. The underlying concepts of these algorithms have also 
been used to enhance performance in GPU programming. In 
the application level, various communication reduction 
techniques that use the domain knowledge of data properties 
have been reported in the literature [10][11]. In [12], a 
CUDA API called Dymaxion is provided to optimize 
memory mapping for programmers. 

The data streaming and compression techniques 
introduced in [13] reduces the communication overhead for 
output data.  Here, the techniques are generalized and 
applied to other problems.   The principle of data streaming 
in input and output is to enable overlapping communication 
and computation. Doing so requires effective data 
partitioning and processing. For applications run on the 
GPU, this is usually not problematic since tiled or block 
algorithms are designed to partition and process data to 
enable efficient use of the limited shared memory.  Once a 
block of computation is complete, the transmission of its 
output and the computation of the next block can be 
executed simultaneously. 

However, overlapping communication and computation 
may be insufficient for hiding the latency of communication 
because of the large performance gap between 
communication and computation. Therefore, another 
common rescue technique is data compression.  Although 
data compression is widely used in data management to 
reduce storage space and network bandwidth requirements, 
applying compression to enhance GPU performance raises  
different concerns.  First, although complex compression 
methods may improve the compression ratio, they may not 
be effective when implemented in GPUs.  The selected 
compression method should optimize overall performance 
even if does not achieve the best compression ratio.  Second, 
the data sender and receiver are CPU and GPU, or vice 
versa, which have different architectural characters. 
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Designing asymmetric compression schemes that enable 
both processor types to perform different computation 
simultaneously is a continuing challenge in the GPU and 
CPU computation. 

Nevertheless, the processor-coprocessor relationship 
between CPU and GPU does give advantages to compress 
certain data, such as index. Since the data have been 
partitioned in the streaming process, the output can be re-
indexed based on the data in the same partition. Although re-
indexing reduces index size, it requires extra computation by 
both the GPU and CPU. However, because of the extreme 
simplicity of this coding/decoding approach for 
compression/decompression, both computations can be 
hidden in the streaming process. As a result, the compression 
still improves overall performance. 

This study demonstrates how data streaming and 
compression can be performed in two case studies: the radix 
sort and a sensor deployment algorithm in wireless sensor 
networks, called 3-star.  The radix sort [14][15][16] outputs a 
permutation of N input data (finite bit integers) that arranges 
them in descending or ascending order. The 3-star algorithm 
[17] is designed to solve a sensor deployment problem in 
wireless sensor networks (WSNs).  Given N sensors on a 
plane, a 3-star is 3 sensor nodes whose pairwise distance is 
larger than a given constant R, but the radius of their 
circumscribed circle is less than R.  The center of the 
circumscribed circles of the 3-star is a potential location to 
place a special sensor, called a relay node.  

The rest of this paper is organized as follows. Section II 
briefly introduces the GPU architecture, the background of 
radix sort and the 3-star algorithm.  Section III presents how 
the data streaming and compression techniques are carried 
out to the two case studies. Section IV gives the 
experimental results of the studied cases.  The last section 
concludes the study and proposes future works.  

II. BACKGROUND 
This section briefly introduces the background of various 

topics, including the GPU architecture, the radix sort 
algorithm, and the 3-star algorithm in WSNs. 

A. GPU Architecture 
The GPU used in this study is a CUDA-enabled device 

[18] with an array of multiprocessors and various memory 
spaces.  The hardware execution unit in the CUDA device is 
called a warp, i.e., a group of threads. All threads in a warp 
execute the same instructions synchronously. Each 
multiprocessor can execute one or more warps concurrently. 
Processed data could be placed in different levels of 
memory hierarchy in the device, including registers, shared 
memory, cache, constant memory, texture memory and 
global memory.  

A typical CUDA program is executed as follows.  After 
data are copied from the host (CPU) memory to the device 
(GPU) memory, the host invokes a kernel function with the 
thread configuration, such as the thread block size, etc.  
When a kernel function is executed, all thread blocks are 

distributed to multiprocessors, which then arrange the thread 
blocks into warps and schedules them for execution. When 
the kernel function is completed, the host copies data from 
the device memory to the host memory.  

Several performance concerns arise when programming 
in CUDA.  First, threads should access data in the low 
latency memory (e.g., shared memory or cache) rather than 
in the high latency memory (e.g., global memory). Even if 
threads require data access from the global memory, 
coalesced memory access can reduce the number of memory 
transactions. Second, threads in a warp should avoid 
different execution paths, which would cause warp 
divergence, i.e., threads within a warp must perform 
different execution paths sequentially.  

The latest CUDA architecture, Fermi, allows concurrent 
kernel execution [19], which means multiple kernel 
functions can be executed simultaneously on the different 
multi-processors.  In this study, we will not consider this 
ability.  

B. Radix sort 
Radix sort, a non-comparative sorting algorithm for 

integers or finite bits data, requires only O(kN) time to sort N 
data, where k is the number of bits of data [14].  Radix sort 
functions as follows.  First, it represents the data in a specific 
radix.  This conversion can be done implicitly by dividing 
the finite bits of data into fixed length groups if the radix is 
of a power of 2.  The data are then hashed repeatedly into 
buckets according to their digits, starting from the most 
significant digit (MSD) or from the least significant digit 
(LSD), until all digits are processed.  During each hashing, 
conflicting data are stored in a queue; after hashing is 
complete, those queues are concatenated into a long list, 
from the beginning of which the next hashing begins.  

The major challenges of parallelizing radix sort queuing 
hashed data and concatenating all queues into a list. The 
prefix sum or scan technique is typically performed to solve 
both problems [20].  Given an array L of numbers, the prefix 
sum returns a list M of same size, where M[i] equals the sum 
of L[1] to L[i-1]. Notably, parallel prefix sum of N elements 
can be computed by using N processors in O (log N) time. 

Radix sort implemented on GPUs has been studied 
intensively because of its technical importance.  Radix sort is 
the fastest (non-comparative) sorting algorithms on GPU.  In 
[20], an efficient parallel scan method on GPU was 
proposed, and one of its applications is radix sort. In [15], the 
authors presented fast sorting algorithms, including radix sort 
and merge sort. In [16], Merrill and Grimshaw presented a 
tuned radix sort GPU implementation, which is integrated 
into the Thrust package.  The three-step process they 
proposed for each digit is: upward reduce, spline scan, and 
downward scatter.   Their algorithm has been integrated to 
the state-of-the-art package, Thrust [21]. 

C. Relay Node Placement Problem  
A WSN consisting of a set of sensors is used for sensing 

desired data and reporting them to a base station.  The 
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sensors transmit data through the embedded wireless device 
with limited effective transmission range R. Advanced 
sensors not only sense and send data, they also forward data 
for neighboring sensors. This study considers the sensors 
capable of sensing, sending data, and forwarding data. 
Given a set of sensor nodes on a plane, which may or may 
not be fully connected, the problem of interest in this study 
is how to deploy additional sensors (relay nodes) so that all 
sensors form a connected network.  Each sensor is modeled 
as a point. 

Under this setting, the problem of deploying the 
minimum number of relay nodes to connect all sensors is 
called the Single Tier Relay Node Placement problem 
(STRNP), which turns out to be NP-hard [17][22][23].  A 
simple approximation algorithm is to construct the 
minimum spanning tree (MST) of the sensor nodes first, and 
then to place relay nodes on the edges of the MST such that 
no resulted edge is longer than R.  This algorithm has an 
approximation ratio of 5 [23].  A better algorithm in terms 
of approximation ratio is called the 3-star algorithm [17].   
A 3-star is a set of 3 sensor nodes, whose mutual distance is 
larger than R, but the radius of their circumscribed circle is 
less than R.  Therefore, the three sensors can be connected 
by placing a relay node at the center of their circumscribed 
circle, instead of putting two relay nodes on the edge of a 
triangle.  The 3-star algorithm places the relay nodes in the 
circumscribed center of potential 3-stars, and then runs the 
MST algorithm again to connect unconnected components.  
The approximation ratio of the 3-star algorithm can be 
proven to be 3 [23].  

The most time consuming task of the 3-star algorithm is 
finding candidate of 3-stars, which takes O(N3) time to 
check all 3-tuple of sensor nodes.  This study only considers 
the problem of how to find all potential 3-stars. 

A literature search shows that no studies propose a GPU 
implementation of the 3-star algorithm.  

III. DATA STEAMING AND COMPRESSION TECHNIQUES 

A. General strategy 
A GPU program generally consists of three steps:  
1. Import data from CPU memory to GPU memory,  
2. Invoke GPU kernel function to compute, and 
3. Export result from GPU memory to CPU memory. 

The data streaming under this framework is to overlap those 
three steps.  To overlap the first and the second steps, one 
requires the computation can be preceded on partial data and 
regardless their content, e.g., matrix-matrix multiplication.   
Preprocessing raw data is necessary if the computation is 
content-dependent.  Overlapping of the second and the third 
step is much simpler and requires a much simpler condition, 
i.e., data can be partitioned and processed separately.  To 
simplify this discussion, only the latter problem is discussed. 

Suppose the data is partitioned into D1, D2, …, Dn.  The 
data streaming of the second and the third step overlaps the 
computation of Di+1 with the output process of Di.  The 
algorithm of output streaming is outlined in Figure 1.   

In Figure 1, the pair of clauses Parallel Do/End 
Parallel Do indicates the tasks between them can be 
processed at the same time.  The terms CPU or GPU are 
added to the front of each statement to specify which device 
is responsible for the task.  In CUDA, the Output 
command corresponds to the function call, 

cudaMemcpy(,,,cudaMemcpyDeviceToHost) 

and the Compute command corresponds to the invocation 
of kernel functions. Overlapping of communication and 
computation requires the asynchronous function, 
cudaMemcpyAsync(,,,). 
 

 
Figure 1.  Pseudo code of output data streaming   

As stated in the document of NVIDIA CUDA library 
[24], the cudaMemcpyAsync() function is asynchronous 
with respect to the host, so the call may return before the 
copy is completed. It requires page-locked host memory and 
returns an error if a pointer to pageable memory is passed as 
input. The copy can optionally be associated to a stream by 
passing a non-zero stream argument. Therefore, for the 
operation  

cudaMemcpyHostToDevice 
or cudaMemcpyDeviceToHost, 

 
the copy of the specific stream can be overlapped with 
operations in other streams. 

The second technique for reducing the communication 
cost is data compression, which enhances performance by 
reducing the transferred data size. The pseudo code of output 
data streaming and compression is given in Figure 2. 
 

 
Figure 2.  Pseudo code of output data streaming and compression 

B. Radix sort 
The state-or-art radix sort implementation on GPU is 

based on the LSD (least significant digit first) algorithm, 
which keeps all data integral during the entire computation.   

GPU: Compute and compress D[1]; 
For i = 2,..., n 
  Parallel Do 
    CPU: Output and decompress D[i-1]; 
    GPU: Compute and compress D[i];  
  End Parallel Do 
End For 
CPU: Output and decompress D[n]; 

GPU: Compute D[1]; 
For i = 2,..., n 
   Parallel Do 
      CPU: Output D[i-1]; 
      GPU: Compute D[i]; 
   End Parallel Do 
End For 
CPU: Output D[n]; 
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However, partitioning data requires the MSD (most 
significant digit first) algorithm, which functions like the 
bucket sorting algorithm or the sample sort algorithm. The 
MSD-based algorithm first hashes data into buckets 
according to their most significant digits and then sorts data 
in each bucket recursively.  However, the MSD algorithm 
may slow down when the bucket size is too small or when 
the bucket number is too many. 

The proposed algorithm combines MSD and LSD.  After 
the MSD algorithm partitions the data to a sufficiently small 
size, the LSD algorithm sorts each partition. Figure 3 
displays the profiling results of the LSD algorithm reported 
in [16]. The computation and communication time for data 
size from 102 to 108 is given, where communication time 
include the transmission of key-value pairs. As can be seen, 
the computation time levels up after N =106, which indicates 
the stream microprocessors in GPU are not fully utilized 
until N ≥ 106.  Therefore, subdividing the data is unnecessary 
when N is smaller than 106.   

The size of the output data for radix sort is not massive.  
However, when the data size scales up, the time of 
communication still exceeds the time of computation, as 
shown in Figure 3.  Figure 4 shows the percentage of time 
required for input and output. The figure shows that, 
although the total communication time consumes over 50% 
of the total time, the time of output alone is still shorter than 
that of computation.  Therefore, the output data need not be 
compressed for radix sort. 

The major problem of applying data streaming is the load 
balance of each data partition.  For uniformly distributed 
data, all the buckets are of approximately equal size after 
applying the MSD algorithm.  Generally, however, the size 
of buckets tends to be highly unbalanced. The proposed 
solution is to make the MSD algorithm be a separated kernel 
function and to allow CPU to perform load balancing 
scheduling based on the returning results of the MSD 
algorithm.  For a large bucket, the MSD algorithm is again 
used to split the bucket into smaller ones.  For small buckets, 
if they are in a sequence, then we can merge them together 
and sort them as a bigger bucket. In Figure 5, for example, 
bucket 2 is too large and buckets 3 to 8 are too small.  After 

calling the MSD algorithm, the CPU calls it again to split 
bucket 2, to merge the data in bucket 3, 4, 5 into one LSD 
call, and to merge the data in bucket 6, 7, 8 into another LSD 
call. 

 
Figure 5.  Example of procedure for balancing bucket sizes after calling 
the MSD algorithm. 

C. The 3-star algorithm 
The problem of finding 3-stars provides a natural 

partition method.  Recall that a 3-star is defined as 3 vertices 
of a triangle where the edges of the vertices are all larger 
than a constant R, but the radius of their circumscribed 
circle is smaller than or equals to R. Figure 6 shows the 
possible search space (the donut shaped area) for a given 
sensor node.  Suppose a center node is located at the center 
of the circle.  The donut-shaped shading area represents the 
possible search spaces for the other two vertices of a 3-star.  
Therefore, if the space is partitioned by a fixed-size grid, 
where the grid size is 2R, only the sensor nodes in nine 
neighboring grid cells need to be checked.  
 

 
Figure 6.  Possible searching space (shaded area) for the 3-stars with a 
vertex located in the center of circle. 

Figure 3.  Computation and communication time in the Thrust radix sort 
implementation.  

 
Figure 4.  Percentage of time for computation, input, and output in the 
Thrust radix sort implementation. 

 ��  ��  

R2

Split  Merge  Merge MergeM Mergee

1                                2                          3 4 5 6 7 8  
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Although this computation can be performed in parallel 
on GPU in many different ways, the method used here is to 
let each thread block to take of one grid cell and to check 
the 3-stars that include at least care of one vertex in the grid 
cell.  Each thread is responsible to a sensor node and 
searches all possible combinations of other two sensors 
nodes in the nine neighboring grid cells. To avoid repeated 
checking, each grid cell is indexed by the pair of its row 
index and column index as shown below.   

 
(1,1) (1,2) (1,3) (1,4) 
(2,1) (2,2) (2,3) (2,4) 
(3,1) (3,2) (3,3) (3,4) 
(4,1) (4,2) (4,3) (4,4) 

 
When a thread block checks the grid cell of index (r, c), the 
only grid cells it needs to check are (r, c), (r +1, c), (r -1, c 
+1), (r, c +1), and (r, c +1). For instance, if a thread block 
is assigned to the grid (2, 2), the grid cells it needs to check 
are (1, 3), (2, 2), (2, 3), (3, 2), and (3, 3).   

This approaches reduces the number of possible 
combinations of grids that need to be checked to 5×5=25 
since only one of the sensor nodes in (2, 2) is required, and 
the other two can be in any of the neighboring 5 cells. The 
number of grids that need to be checked can be reduced by 
eliminating impossible combinations.  For instance, three 
sensor nodes in cell (2, 2), (1, 3), and (3,2) cannot form a 3-
star because the distance between (1, 3) and (3, 2) is larger 
then 2R.  Doing so can reduce the number of combinations 
to 13.  

Checking a 3-star for three given sensor nodes only 
requires comparison of the radius of their circumscribed 
circle to R.  Let a, b, c be the length of the triangle formed 
by three sensor nodes, and let s = (a+b+c)/2.  The radius of 
their circumscribed circle can be computed by 

 

))()((2 csbsass
abcr

−−−
= . (1) 

However, use of this formula requires computation of a, 
b, c before computation of r.  The distance d between two 
points (x1, y1) and (x2, y2) can be computed by 
 

2
21

2
21 )()( yyxxd −+−= . (2) 

 
Both computations require numerous invocations of floating 
point operations such as square and square root, which are 
computationally expensive.  To avoid floating point 
operations, a lookup table is used to retrieve a, b, and c from 
the distance pair (|x1−x2|, |y1−y2|), since all coordinates are 
all integers and their differences are bounded.   

After obtaining the distance a, b, and c, one can use 
another lookup table to check the feasibility of 3-star.  Since 
the ranges of a and b are finite, they can be arranged into a 
2-dimentional table.  The upper bound and the lower bound 
of c that can make three sensors a 3-star is given in this 

table.  Therefore, checking the range of c and the actual 
length of the third edge reveals whether the given sensors 
are 3-star.  To speed up the computation, all table entries are 
pre-computed and loaded to the texture memory. 

When outputting 3-stars, the IDs of three sensor nodes 
must be reported, which requires 12 bytes for three integers.  
The used technique for reducing sizes of IDs is to compress 
the output, which divides the IDs into three parts: Cell ID 
(CID), Segment ID (SID), and Local ID (LID).   

(CID, SID, LID). (3) 

Since the report of 3-stars in the same cell and the same 
segment is aggregated together, only the local IDs are 
required in most cases.  Additionally, since there are only 13 
possible cases, the CPU can know the CID of all three 
sensor nodes. Figure 7 illustrates the format of the 
compressed indices for 3-stars in a thread block. 

 

 
Figure 7.  List of 3-stars in the compression form. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental environment 
The experimental platform has one Intel i7 920 

processor 2.67 GHz with 6 GB DRAM.  The OS is 64-bit 
Linux, kernel version 2.6.27.  The GPU used in the 
experiments is a Tesla C2050, which contains 448 CUDA 
cores and 3GB GDDR5 memory.  The host programs use 
GCC 4.3 and enable optimizations, –O3 and –DNDEBUG. 
The device programs use CUDA compiler driver 4.0. The 
execution time recorded for each test case was the average 
obtained in 10 runs.   

B. Radix Sort 
After modifying the radix sort program in the Thrust 

package, its performance was compared with that of the 
original code. The radix sort programs were tested using 
two different data distributions: uniform and normal.  The 
radix in use is 16.   

For uniformly distributed data, tests were run for 
program size of 104, 105, 106, 107 and 108.  Table I compares 
the performance of the original radix sort with that of the 
modified program for different program sizes. The unit of 
time is microseconds. The comparison shows that the 
performance improvement obtained by the modified 
program increases with program size. The time required to 

CID1 Case 

SID1 SID2 SID3 

LID1 num LID2,
LID3 

… LID2,
LID3 

SID1 SID2 SID3 

LID1 num LID2,
LID3 

… LID2,
LID3 

Report by a thread Report by a thread 
Report by a thread block 
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output data can be reduced to 6% (speedup is 16). Overall, 
the modified program decreases computation time by 20% 
and 25% for program sizes 107 and 108, respectively, but it 
increases computation time for other program sizes due to 
the overhead of performing LSD calls many times.  

TABLE I. PERFORMANCE COMPARISON OF THE ORIGNAL AND THE 
MODIFIED RADIX SORT PROGRAM FOR 104, 105, 106, 107, AND 108 
UNIFORMLY DISTRIBUTED DATA (MICROSECOND) 
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TABLE II.  PROFILE OF RADIX SORT PROGRAMS FOR 108 UNIFORMLY 
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Table II compares the profiles of the original radix sort 

and the modified radix sort programs for 108 uniformly 
distributed integer data. The unit of time is milliseconds.  
The first three operations, reduction, spline-scan, and 
scatter, are major operations in the radix sort algorithm.  
The next two operations, MemcpyHtoD and MemcpyDtoH, 
are data movements from the host to the device and from the 
device to the host, respectively. As can be seen, except for 
spline-scan, all operations of the modified program are as 
fast as those of the original program. The purpose of the 
spline-scan is to calculate the offsets of the numbers within 
a block. Because the MSB algorithm is invoked once and 
the LSB algorithm is invoked 16 times, the time spent on 
spline-scan in the modified program is about 15 times of the 
original program, which is roughly equal to the ratio of the 
number of calls made by both programs (17 times.  
Although the spline-scan is much slower in the modified 
program, it occupies only a small fraction of the entire 
computation. Therefore, the additional overhead is 
negligible. 

The next two operations are performed only by the 
modified program. After invoking the MSB algorithm, 
Bucketing and alignment operation divides the data into 
smaller chunks (buckets) and aligns the data in each bucket 
to 4 integers. A comparison shows that the cost of the 
operation is low compared to other operations. The last 
operation is the overlapping of the output data, which is 
performed by data streaming.  Since computation time 

(reduction+scan+scatter) is longer than the time required for 
MemcpyHtoD, most of the time spent on data output can be 
hidden by computation.  Additionally, data output consumes 
about one third of the entire time, the overall improvement 
is significant.  

As explained in Section III.B, normal distributed data 
requires an additional load balance operation to ensure that 
the buckets are of approximately equal size. Essentially, the 
load balance operation subdivides the large buckets into 
smaller ones by calling the MSB algorithm again. Table III 
lists the profiling results of the original program and the 
modified program for 108 normally distributed data. The 
table shows that the time spent on the load balance 
operation is negligible.  However, the increased number of 
buckets and the smaller bucket sizes result in a 50-fold 
increase in spline-scan time. The time required for the 
reduction operation also increases substantially.    
Fortunately, overlapping of data output enables a 21% 
reduction in overall time.   

TABLE III.  PROFILE FOR RADIX SORT PROGRAMS FOR 108 NORMALLY 
DISTRIBUTED DATA (MILLISECOND) 

�����
��� �
�
���� ���
�
���
��� !�
�� ��"�� ��"��
	�
���$!��� �"��� ��"���
	!������ ���"��� ���"���
���!�%&��'� ���"��� ���"���
���!�%'��&� ���"��� ���"���
( !)��
���������
������� �"��� �"���
,����-����!�� �"��� �"���
*��������������� �� �� �"��� ���"���
+������
��� ���"��� ���"���

 

C. The 3-star Algorithm 
The computation of the 3-star algorithm is similar to that 

required to solve the rectangle intersection problem [13]. 
Even when the input size is not large, the potential output 
can be enormous.  Figure 8 illustrates a sensor placement 
scenario that have O(N3) 3-stars, in which sensors are 
located at one of three clusters evenly.  Each sensor node in 
a cluster can match two other sensor nodes at two other 
clusters.  
 

 
Figure 8.  Sensor placement scenario that have O(N3) 3-stars. 
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In practice, however, sensors are rarely deployed in this 
manner. Even if they were placed in this manner, relay 
nodes are easily located at the center of three clusters.  
Therefore, the experiments in this study did not consider 
extreme cases to demonstrate the power of data streaming 
and compression, even though an excellent performance 
improvement was ensured.  Instead, this study considers the 
more likely scenario in which sensors are uniform-randomly 
placed on a 2000×2000 plane where the sensor 
communication radius is set to 50.  The number of sensor 
nodes was varied from 1,600 to 102,400. Figure 9 displays 
the relation between the number of sensor nodes and the 
number of 3-stars in logarithmic scales.  The figure shows 
that the number of sensor nodes grows cubically with the 
number of sensor nodes. 

The following four GPU implementations are presented: 
(1) Baseline 
(2) Baseline + streaming 
(3) Baseline + compression 
(4) Baseline + compression + streaming. 

Figure 10 compares the performance of a sequential 
CPU code and four GPU implementations for various data 
sizes. The sequential code is executed on one Intel i7 920 
core with frequency 2.67 GHz, and the GPU code is 
executed on 448 CUDA cores with frequency 1.15GHz.  
The CPU implementation is also optimized by performing 
data partitioning and cell reduction, as mentioned in III.C, 
but not by using the table lookup.  The performance test 
shows that the GPU (4) implementation obtains a nearly 
1000-fold speed increase for N=102,400. If the frequency of 
processing core and the number of cores are taken into 
account, the GPU implementation is about 5 times more 
efficient than the CPU implementation.   

Figure 11 shows the profiling results for four GPU 
implementations for N=102,400, in which the time of five 
major tasks, LOAD, COMP, REPORT, DataOut, and 
DECODE, are compared.  From the figure, one can see that 
the performance bottleneck is computation, COMP. 
Comparison of the second GPU implementation 
(baseline+streaming) to the baseline implementation shows 

no data streaming advantage. In fact, REPORT time is 
increased in the second implementation. Although DataOut 
performance improves, the improvement is insignificant 
after compensating for the loss in REPORT. The overall 
performance improvement achieved by data streaming 
approximates 26%. 

Data compression obtained interesting results. The data 
compression was expected to substantially reduce the cost 
of data output. Although OUTPUT and DataOut time 
decrease, LOAD and COMP time also decrease at a certain 
ratio, which is unexpected since the output data is 
compressed after LOAD and COMP, not before.  

This phenomenon actually results from the different size 
of declared local variables. Without data compression, 1024 
integers must be temporarily allocated for temporary storage 
of output data. When the data compression is applied, only 
256 integers are required to hold the data. This small 
difference affects the performance since scheduling the 
thread blocks in the NVIDIA GPU depends on the allocated 
resources. If substantial resources such as registers per 
thread block or per thread block are requested, the number 
of thread blocks that can be executed simultaneously in one 
streaming multiprocessor is limited.   

In summary, when only the data compression is applied, 
a 33% performance improvement over the baseline 
implementation can be achieved.  When data compression is 
cooperated with data streaming, the overall performance 
improvement can reach as high as 54%.   

V. CONCLUSION AND FUTURE WORK 
This study investigated the effects of two 

communication reduction techniques, data streaming and 
data compression, on GPU performance. The two 
techniques are demonstrated in two applications: radix sort 
and the 3-star algorithm.  The proposed concept is to 
partition the data, and then use asynchronous memory copy 
to overlap the computation and communication. Data 
compression reduces data size during data movement.  

This study only focused on the two applications. 
However, data streaming and compression can be applied to 

Figure 9.  Relation between the number of 3-stars and the number of 
sensor nodes on a 2000×2000 plane. 

 
Figure 10.  Performance comparison of CPU and GPU implementations on 
a 2000×2000 plane. 
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enhance performance in other GPU tasks. We expect the 
two techniques can be applied to more applications, and 
have more sophisticated development and usages. 

There are several directions in our future work. First, 
using separate but concurrent kernel functions can enable 
the use of more complex data compression techniques and 
improves the compression ratio. Second, by the concurrent 
kernel execution on GPUs, the computations could also be 
streamed for enhancing performance. Third, many details, 
such as load balancing and the side effects of data 
compression, require further study and analysis.   
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Figure 11.  Profiles of four implementations of the 3-star algorithm for 
N=102,400 on a 2000×2000 plane. 
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