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Abstract—A full system emulator, such as QEMU, can provide 
a versatile virtual platform for software development. However, 
most current system simulators do not have sufficient support 
for multi-processor emulations to effectively utilize the 
underlying parallelism presented by today’s multi-core 
processors. In this paper, we focus on parallelizing a system 
emulator and implement a prototype parallel emulator based 
on the widely used QEMU. Using this parallel QEMU, 
emulating an ARM11MPCore platform on a quad-core Intel i7 
machine with the SPLASH-2 benchmarks, we have achieved 
3.8x speedup over the original QEMU design. We have also 
evaluated and compared the performance impact of two 
different parallelization strategies, one with minimum sharing 
among emulated CPU, and one with maximum sharing. 
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I. INTRODUCTION

A full system emulator allows entire software stack 
running without code modification. It is commonly 
employed in OS and application development before target 
hardware is available. Many full system emulators are 
available today, such as Simics [12], SimOS [11], Embra 
[15], Bochs [8] and QEMU [6], and most of them adopt 
Dynamic Binary Translation (DBT) techniques [3] to 
achieve high emulation speed. Although DBT is effective in 
increasing emulation speed under single-thread execution 
environment, it does present a challenge for emulating multi-
threaded execution because the DBT engine must be 
parallelized first. Due to the complexity of parallelizing the 
DBT engine, many system emulators choose to emulate 
multi-threaded guest applications sequentially in a round-
robin fashion. This common approach fails to take advantage 
of parallelism existed in the guest multi-threaded application, 
and parallelism available in the underlying host hardware. In 
this paper, we discuss the design and implementation of a 
parallelized QEMU, called PQEMU. 

Parallelizing such a system emulator is challenging 
because both concurrent code generation (i.e. parallelizing 
the DBT engine) and parallel code execution (i.e. managing 
thread execution in the code cache) are important. In a 
parallel system emulator, each guest core can be represented 
by a host emulation thread, executing dynamically translated 

codes from guest threads in the code cache independently. 
However, there are dependences among those seemingly 
independent emulation threads, which must be handled 
correctly. For example, any modification to the guest code 
(as in self-modifying programs) would require a serialization 
to those emulation threads since the dynamically translated 
code might be modified. SMC (Self-Modifying Code) may 
seem like unusual events for application programs. However, 
the increasingly popular use of JIT techniques in high-level 
language virtual machines makes SMC more common. 
Furthermore, for system emulations, SMC happens more 
often when the guest OS reclaims memory pages (reuse 
pages containing binary code).  The original 
synchronizations among parallel threads from the guest 
applications must also be handled correctly in the 
dynamically translated code. For example, these atomic 
instructions in the guest binary must be translated into host 
binary with identical behavior to ensure correctness of 
emulation. 

To increase the parallelism of the DBT engine, it seems 
straightforward to minimize resource sharing between 
emulated guest CPU cores. For example, the code cache that 
stores dynamically translated codes could be separated. This 
separate code cache design (SCC) can minimize 
synchronization needs because when one guest core is 
translating its current guest code, the other does not need to 
wait for the completion. When two are using the same guest 
code, it is acceptable or even desirable to have two copies of 
translated code in their separate code caches. However, this 
separate code cache design has its own downsides, as it may 
incur more code translations as well as increased memory 
requirement for code cache, especially when emulating many 
guest cores. To further understand the tradeoff between 
translation overhead, resource utilization and 
synchronization overhead, our PQEMU prototype  explores 
two alternative implementation strategies, one for the unified 
code cache design (UCC), which allows all guest cores to 
share a common code cache, and one for the separate code 
cache design (SCC), which allows each guest core to have its 
own code cache. Notice that if the guest application is a 
parallel program, such as the SPLASH-2 [13] benchmark,
they are likely to share a large portion of the code. However, 
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if the guest workload is composed of many different jobs, the
code sharing will be minimal. 

Using the SPLASH-2 benchmark as the guest workload, 
our PQEMU prototype on average performs 3.8x faster than 
the original sequential QEMU when emulating a virtual 
ARM11MPCore [7] guest platform on a quad-core Intel i7 
based system. This paper made the following contributions: 

� It reports required work when paralleling a DBT-
based system emulator, in terms of both code 
generation and execution phases. 

� It implements two alternatives (SCC vs. UCC) to 
investigate the tradeoffs among translation overhead, 
memory resource utilization and synchronization 
overhead when parallelizing a DBT based system 
emulator. 

� It shows both implementations can effectively utilize 
the parallelism existed in the guest application and 
the parallelism available in the host multi-core 
system. When emulating an ARM11MPCore on an 
Intel i7 quad-core based system, both PQEMU 
implementations can be 3.7-3.8X faster than the 
original QEMU using the SPLASH-2 benchmark. 

The rest of this paper is organized as following: Section 
II describes the conventional design of a system emulator 
with DBT as the main acceleration technique, and challenges 
for parallelizing such designs. Section III provides the 
parallelization steps toward two alternatives (UCC and SCC 
designs) and their implementations in PQEMU. Section IV 
evaluates the performance of PQEMU variants with 
comprehensive discussion. Section V briefly discusses 
related work and section VI summaries and concludes. 

II. BACKGROUND

For system emulators using DBT to increase emulation 
speed, the guest binary code must be first translated into 
equivalent host binary, in unit of basic block or trace. For 
QEMU, this unit is called a Translated Block (TB). Such 
TBs will be stored in the Code Cache to avoid repeated 

translations from the same guest binary code. Once the TB is 
ready, the emulation will be directed to execute the TB. At 
the end of TB execution, the emulator goes back to the 
emulation manager. This life cycle of emulation is illustrated 
in Fig. 1 (dark grey boxes are states in which the emulator 
executes in the code cache; while others are in the emulation 
manager). To reduce expensive transitions (architecture 
states must be saved and restored) between the native 
execution in the code cache and the emulation manager, the 
emulator Chains subsequently executed TBs to constitute a 
TB chain. Later code cache execution will be going through 
a series of TBs, not just one TB, until the chain breaks. The 
chain of TB will grow longer and longer. Eventually, all 
important guest codes are translated into TBs and get 
chained together. When this happens, the emulation will stay 
executing in the code cache, and rarely come back to the 
execution manager. 

To reuse the codes in code cache, Find Fast and Find 
Slow will locate the target TB by the guest PC prior to the 
Build code generation phase. A pointer to the executed TB 
will be cached in a guest-core-private field to make best use 
of TB execution locality, and this field will be examined first 
in Find Fast before resorting to a slower but more complete 
search in Find Slow. Code generation occurs in Build after 
all TBs search attempts are failed, and Flush is called when 
the code cache overflows. In QEMU, Flush simply removes 
all translated TBs from the code cache. 

Step into Execute, the emulator will execute (a chain of) 
TB in the code cache and make substantial emulation 
progress. It returns to the emulation manager after executing 
an unchained TB, or encountering a guest exception. The 
former results from guest interrupt delivery and Self 
Modifying Code (SMC) event. The arrival of a guest 
interrupt will trigger Unchain to allow the returning to the 
emulation manager for guest interrupt handling at Check 
Interrupt; while SMC takes place when guest core tries to 
modify the memory content which has codes already being 
translated in the code cache. All offending TBs will be 
erased in Invalidate by removing their indices in the guest-
core-private field and a central hash table in Find Slow and 
the emulator leaves the code cache when the target TB is 
eliminated. The latter guest exception handling in Restore 
requires extra recovery to maintain precise architectural 
states before leaving the code cache, since exceptions could 
arise anywhere during TB execution (for example, a guest 
page fault may arise during the emulation of a guest memory 
instruction). 

Pending guest interrupts are handled in Check Interrupt 
by resetting the guest program counter to a specific vector 
address, according to the source of guest interrupt. Halt and 
CPU Idle are designated for guest instructions waiting for a 
specific hardware event, such as the ARM wfi (wait-for- 
interrupt). 

A. Extend to Emulating a Multi-core Machine 
Functionally, emulating a multi-core machine would be 

as simple as duplicating all guest-core-private data structures
to reflect every architectural state of guest multi-core, yet 
memory and I/O systems are still shared among all guest 
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Figure 1. Typical flow of a full system emulator using dynamic 
binary translation.
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cores to mimic the SMP architecture in the real world. This 
incurs the concurrency problem as guest cores might write 
the same memory location simultaneously. Conventional 
emulators adopt a time-sharing scheme to simplify the 
problem, such that the emulation of guest cores goes in a 
round-robin fashion, which turns the memory and I/O 
accesses exclusive to guest cores in emulation. This 
sequential emulation model also helps in design of I/O 
emulation (callout functions that perform guest I/O 
operations for the virtual platform) - no race-condition could 
possibly happen. To minimize code translation efforts, some 
DBT engines will generate more versatile code sequences
that all TB accesses to guest architectural states go through 
indirect references, e.g. using base register plus displacement 
addressing mode. 

The design works well in traditional uni-processor 
environment. However, running such emulators on today's 
multi-core system is inefficient, because all guest core 
emulations will be aggregated on a single emulation thread 
on a single host core, leaving all other cores idle as a thread 
is the smallest indivisible task unit in the host OS. 

B. Toward Multi-core on Multi-core 
To fully utilize the power of multi-cores in the host 

machine, the emulator must create multiple threads so that 
the host OS could schedule them on the host cores separately. 
An emulation thread is in the parallel emulator is equivalent 
to a guest core. Because the emulation spends most of time 
in code execution, emulation threads would be computation-
intensive and distributed evenly on the host cores. The net 
effect is one guest core is simulated by one emulation thread 
and is scheduled to run on one host core, and multiple guest 
cores could be simulated concurrently as running on real 
hardware. If there are more guest cores than available host 
cores, we currently have no reliable way to emulate without 
distortion with respect to real execution, and hence it is not 
discussed in this paper. 

Such multi-thread emulator designs improve not only 
emulation speed but also the real concurrent execution 
behavior. Because a guest multi-threaded program could 
exploit parallelism on real machines, more intrinsic 
characteristics about guest multi-threaded program could be 
observed by such parallel emulators, without turning to real 
hardware. That gives great flexibility to software 
development, especially when hardware is inaccessible or 
not available. However, parallel emulation would add 
complexity to guest I/O and memory access emulation, since 
they could be raised at the same time, and to the same 
location.  This could incur race conditions if mutual 
exclusion is not enforced. Reverting to aforementioned 
sequential model would be the last choice, since memory 
instructions are very frequent in typical programs. 

Inside the emulator, I/O access from guest cores will be 
redirected to the I/O emulation functions, which bridge host 
system calls to functionality of guest peripherals. For 
example, a common realization of virtual platform timer is a 
host alarm registered for emulation threads. Alarm is set by a 
timer period, and a guest interrupt is generated whenever the 
emulator receives an alarm signal from the host OS. In a 

multi-threaded emulator, reentrant is a must for I/O 
emulation function to support concurrent invocations from 
different guest cores. There will be no memory ordering 
issue for MMIO (Memory Mapped I/O) access inside the 
emulator, since calling the I/O emulation function is 
synchronous to the guest core emulation. Specifically, the 
I/O function is invoked right after the guest core executes a
memory instruction within the MMIO address space. Unless 
the function call ends, emulation will not proceed to the next 
guest instruction. In effect, the memory ordering for MMIO 
accesses follows the guest program order exactly inside the 
emulator, without relying on guest memory serialization 
instructions. 

For write accesses to the same memory location, the 
hardware arbitrator determines the order of write requests 
(and thus final content), which is completely invisible to 
software. To those software operations sensitive to write 
sequence, program will use atomic instructions instead of 
plain memory write to guarantee their effects, or at least 
know whether the write goes as intended (and redo the 
operation if not). An example for the former case is updating 
a shared counter via atomic add instruction, where race 
conditions might happen if implemented in typical read- 
modify-write instruction sequences; while the latter includes 
the implementation of a software lock, that all pending 
candidates tries until the lock is grabbed. 

Parallel emulators must enforce atomicity guest 
program demands, or program will behave incorrectly. 
Consider the case guest atomic add instruction is translated 
to a series of read-modify-write host codes. When it is 
executed on parallel emulator without synchronization 
beforehand among emulation threads, race-condition could 
happen. To make best use of host hardware, parallel 
emulator will generate host atomic instructions for those 
guest atomic instructions. The difficulty lies in the diversity 
of semantic transformation between guest and host, because 
the atomic instructions are architecture-specific. 

III. DESIGN AND IMPLEMENTATION

We attempt to describe a uni-core system emulator using 
DBT as a state machine, where state S � {CPU Idle, Find 
Fast, Find Slow, Build, Flush, Chain, Execute, Invalidate, 
Unchain, Restore, Check Interrupt}, and transition function 
δ is illustrated in Fig. 1. For multi-core emulation, we use 
notation Sn and δn to specify the state and transition function 
of guest core n. In conventional round-robin designs, the 
emulation goes for each guest core sequentially, one at a
time by a single emulation thread, and thus state Si and Sj for 
guest core i and j are totally independent, even if they all use 
the same transition function δ, i.e. δi = δj = δ.

However, since guest core i and j might access the same 
shared component of the emulator from different host cores 
in parallel emulation, Si and Sj are partially dependent in 
states other than CPU Idle and Check Interrupt. By example 
of QEMU, shared components are shown in the middle oval 
shapes of Fig. 2, along with their relationships to emulation 
states that might access them concurrently. Detailed 
explanations about these shared components are described as 
follow: 
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� TCG translation engine (TCG): it is the binary 
translation engine in system emulator, used by Build
for new TB generation or Restore for guest 
architecture state recovery. 

� Code Cache (CC): the storage space for TB output 
after Build, code translation phase. Chain and 
Unchain will patch the last branch instruction of a 
TB directly in code cache; while Flush and 
Invalidate erase one or more TB. 

� TB Descriptor (TBD): it holds the meta-information 
of a TB in code cache, e.g. starting guest PC value of 
TB. It is an identification for TB and being 
initialized in Build, updated at Chain or Unchain (to 
the fields of chaining status), and reset in Flush or 
Invalidate. 

� TB Descriptor Array (TBDA): to simplify the 
management of TB descriptors, array of descriptors 
will be pre- allocated during QEMU initialization 
phase. Build will consume one entry for the new TB. 
If no entry is available, Flush will be triggered to 
reclaim all descriptors, by dropping all TBs in code 
cache. 

� TB Hash Table (TBHT): it is the central hash table 
in key of guest PC value that Find Slow searches 
after Find Fast fails. Every in-use TBD has an index 
in this hash table to reference to, and states 
modifying a TBD would update its index,
correspondingly. 

� TB Descriptor Pointer (TBDP): it is a field private 
to each guest core that holds the index (duplicated 
from previous hash table) to recently-used TBD. It 
speeds up the TB lookup for guest loop code, as 
Find Fast will check this field first before Find Slow
searches the central hash table. 

� Memory Page Descriptor (MPD): to accelerate the 
detection of guest SMC activity, emulator must 
efficiently find all offended TBs for every guest 
write that changes the guest code already being 
translated in code cache. QEMU uses this descriptor 
to record TBs having codes lying in the same guest 
page. Only the TBs in the same MPD will be check 
for possible SMC write. Again, Build inserts new 
TB to a descriptor; while Invalidate and Flush delete 
them. 

To parallelize the QEMU system emulator, we deploy 
locks to serialize accesses to the shared components, see 

Fig. 2. We explore two alternative designs for the initial 
PQEMU implementations, one is to share the same code 
cache for all VCPUs and the other is to have a private code 
cache for each VCPU. 

A. Unified Code Cache (UCC) Design 
In this option, no sharing components are duplicated for 

minimum memory usage in PQEMU. To minimize 
serialization overhead, locks will be applied only if 
necessary. We consider the case using two threads for 
parallel emulation particularly, since this case could reduce 
to other configurations with more emulation threads. All 
synchronization requirements between state Si and Sj for 
guest core i and j are tabulated in Table , where emulation 
states are those that might touch the shared components of 
the parallel emulator. Possible conditions are Independent,
Dependent, and Synchronous, in order of synchronization 
strength required. For example, Restore and Find Slow are
Independent because they never use the same shared 
component. On the contrary, Restore and Build are 
Synchronous since TCG translation engine is shared among 
all emulation threads. Dependent signifies the combination
that even though something is shared for state Si and Sj by
Fig. 2, no simultaneous access would happen in real life. For 
instance, Build shares CC and TBD components with 
Chain/Unchain/Execute, but they are intrinsically
independent because a TB in translation will not be 
referenced since it is not created yet. The same reason 
applies to Chain/Unchain and Execute, assuming branch 
instruction patching (host memory write) is atomic on the 
host machine, i.e. no emulation threads would ever observe
the branch instruction at the end of TB is partially updated.

To derive lock-applying rules for UCC parallel emulator 
design, we group emulation states in Fig. 1 as four 
independent sets: 

� Construct = {Find Fast, Find Slow, Build and 
Restore} 

� Link = {Chain and Unchain} 
� Use = {Execute}, 
� Destruct = {Flush and Invalidate} 
All synchronizations in Table could now be 

generalized in the following rules for correct and efficient 
parallel emulation, no matter how many guest cores are 
being emulated:

� Any two states live in the same set must run 
sequentially, except those pure read operations like 

Restore

Find SlowBuildChain Unchain

FlushExecute

CC TBD TBDA TBHTTCG MPD

Invalidate

TBDP

Find Fast  

Figure 2. Sharing components (middle ovals) and emulation states that 
might access them concurrently (grey rectangles) in QEMU.

TABLE I. SYNCHRONIZATIONS BETWEEN TWO EMULATION STATES 
FOR UCC DESIGN IN TWO-THREAD PARALLEL EMULATION.

UCC N S B R C U E F I
FiNd Fast I I I I I I I S S
Find Slow I I S I I I I S S

Build I S S S D D D S S
Restore I I S S D D I S S
Chain I I D D S S D S S

Unchain I I D D S S D S S
Execute I I D I D D I S S
Flush S S S S S S S S S

Invalidate S S S S S S S S S
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Find Fast, Find Slow and Execute; otherwise they 
could go parallel. 

� Destruct requires an exclusive access for efficiency 
reason, since the states will modify most of sharing 
components all at once. 

We deploy locks only at state combinations in 
Synchronous, where the modified emulation flow for UCC 
parallel emulator is shown in Fig. 3. We introduce 
exclusive_rwlock, build_lock and chain_lock to satisfy the 
parallel emulation rules. In the beginning, emulation thread 
grabs read lock of exclusive_rwlock to activate the emulation 
of particular guest core. This guarantees the exclusiveness of 
Destruct (rule 2), that write exclusive_rwlock is obtained 
before Flush and Invalidate proceed. To reduce the waiting 
time for write lock, thread in-wait will inject fake guest 
interrupts to other guest cores in emulation (lock will be 
released before entering Check Interrupt), if wait time 
expired. The build_lock is dedicated for code generation 
activity, and chain_lock is for TB chaining / unchaining, as 
its name suggests. 

Due to the asynchronous nature of guest interrupts, it is 
delivered through a host signal in QEMU, which triggers TB 
unchaining. To avoid deadlock with regular emulation flow, 
a thread acquires chain_lock before entering Unchain must 
go through try-lock. In case the interrupt flag of guest core 
asserts too long, i.e. try-lock fails, fake interrupts will be 
injected to those guest cores periodically, for unchaining. 
The interrupt response time might theoretically get worse, 
but in practice it is negligible to both user and guest OS 
codes, as the contention of chain_lock is low.

We designate an unchaining check to handle the situation 
that an emulation thread is trapped in Execute. For a guest 
program with small code footprint, like multi-thread BARNS 
in SPLASH-2, effect of unchaining is transient that an 
emulation thread could barely see, let along leaving the code 
cache. Specifically, one emulation thread is intended to 

Check Interrupt (quit the emulation), while another is ready 
to do chaining. Incidentally they patch the same TB, which 
gets chained immediately after being unchained. Because 
threads share the code cache, the one intended to leave will 
be stuck if it misses the time TB is unchained. We defer the 
release of chain_lock in Unchain till emulation thread exits 
Execute to avoid the problem, because no chaining will be 
made in-between. 

B. Find Slow Optimization for UCC Design 
According to rule 1 of UCC design, states in the same set 

will run sequentially to protect shared components. Find 
Slow and Build are such examples in Construct with rather 
frequent usage in the parallel emulator (code translation 
takes longer time than other emulation activities). An 
obvious optimization for UCC design would be Independent
relationship between Find Slow and Build (see Table ). By 
this optimization, Construct is redefined as {Build and 
Restore}, along with new set definition Search = {Find Fast
and Find Slow}. We revise the rule 1 as:

� Any two states live in the same set must run 
sequentially, except Search; otherwise they could go 
parallel. 

This effectively removes the build_lock around Find
Slow, and code translation will not block code execution 
anymore. But it also introduces the redundancy problem 
when two emulation threads are going to execute the same 
not-yet-translated guest block. Both threads will trigger code 
translation as none could find corresponded TB in the code 
cache. Yet the pending one (due to build_lock) does not 
cancel its translation request after the first is finished, for 
Build never checks TB existence before translation. Because 
translation output is guest-core independent (TB is shared 
among all emulation threads in PQEMU by default), 
redundancy problem here is merely memory waste, not issue 
of correctness. 

C. Separate Code Cache (SCC) Design 
To exploit more parallelism, we have SCC PQEMU 

design which duplicates all sharing components in Fig. 2 for 
every emulation thread. The only exception is MPD
descriptor for fast SMC detection, one per guest page. As 
guest memory is common to all guest cores, we should not 
localize MPD for each emulation thread. Since code cache 
and TCG translation engine are privatized, most 
synchronizations in Table for UCC design become 
unnecessary (see Table ). The only serialization appears in 
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Figure 3. Modified emulation flow for PQEMU using UCC design. Lock E, 
C, and B (boxes in light, middle and dark grey) represent exclusive_rwlock, 
chain_lock and build_lock locks, respectively.

TABLE II. SYNCHRONIZATIONS BETWEEN TWO EMULATION STATES 
FOR SCC DESIGN IN TWO-THREAD PARALLEL EMULATION.

SCC N S B R C U E F I
FiNd Fast I I I I I I I I S
Find Slow I I I I I I I I S

Build I I I I I I I I S
Restore I I I I I I I I S
Chain I I I I I I I I S

Unchain I I I I I I I I S
Execute I I I I I I I I S
Flush I I I I I I I I S

Invalidate S S S S S S S S S
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Invalidate, for guest SMC activity. To minimize cross-thread 
overhead, sharing components for each emulation thread are 
duplicated in POSIX manner. Thread could directly 
manipulate others’ duplicates fields, instead of relying on 
costly inter-process communication mechanism. SCC is 
expected to have lower contention than UCC when 
delivering interrupt, because unchaining now is private to 
each guest core. The exclusive_rwlock offers exclusiveness 
for Invalidate, as in UCC design. The modified emulation 
flow for SCC PQEMU is illustrated in Fig. 4. 

D. Memory and I/O Systems in PQEMU 
Because QEMU does not emulate hardware cache, the 

only coherence problem is between code cache and guest 
memory, which is already included in PQEMU designs, i.e. 
Invalidate for guest SMC activity. For guest ARM atomic 
instruction swp (swap among two registers and a memory 
location), PQEMU will generate TB with x86 #Lock XCHG
instruction with some glue codes, since their instruction 
semantics are mutually transformable. While for ldrex/strex
pair (load- linked and store-conditional on ARM platform), 
output code will follow the concept of transactional memory. 
Specifically, PQEMU will keep a table for all on-the-fly
ldrex addresses, together with its memory content snapshot. 
Whenever strex is executed, its write address will be erased 
from the table. It succeeds if and only if the write-to memory 
content is not changed (determined by comparison to 
previous snapshot), and write address is still on the table. We 
deploy an additional lock for the table (not those appeared 
before), for it shares among all guest cores. 

For I/O in parallel emulation, initial PQEMU inherits the 
old sequential model from QEMU, which halts all 
emulations when performing guest I/O. Later experimental 
variant removes such serialization since guest OS has already 
serialized the accesses to the same I/O device. However, it 
requires a thorough examination about how guest peripheral 
emulation functions are invoked from guest OS. It will be 

very complex for peculiar guest architecture like x86, and 
this feature is currently marked experimental. 

IV. EXPERIMENTAL RESULTS

Table  lists the experimental setups and various 
configurations. Our PQEMU is implemented on QEMU 
0.12.1, and Coremu [16] is the most up-to-date result in 
literature. Each SPLASH-2 [11] program is tested with one, 
two and four working threads, in measure of total execution 
time (initial single-thread setup time excluded). 

We can see that the measured parallelization overhead of 
PQEMU designs in Fig. 5, benchmarks with one working 
thread (upper). On average, we have 5~10% slowdown 
compared to the baseline QEMU (as the 100% line). SCC 
designs usually have higher overhead, because the use of 
thread-local storage for some guest-core-private fields. 

Lower part of Fig. 5 shows the benchmark results using 
four working threads. For computation-intensive benchmark 
like SPLASH-2, most guest interrupts are timers for guest 
OS context switches. Without experimental I/O 
parallelization, all emulation threads suspend when handling 
a guest interrupt, and P-UCC could only achieve 1.81x 
speedup on average. For P-UCC+IO, the speedup increases 
to 2.88x over the baseline QEMU; and P-UCC+IO+FS
further advances to 3.72x speed up when Find Slow
optimization is applied. For the SCC designs, only I/O 
parallelization matters because the code cache is private to 
each emulation thread (and no concurrent code generation 
and execution). Due to less lock contention and overhead, 
the SCC design will slightly outperform the equivalent UCC 
designs (P-SCC to P-UCC, and P-SCC+IO to P-
UCC+IO+FS), in around 2~4%. The tradeoffs between UCC 
and SCC designs are given as follow: 
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Figure 4. Modified emulation flow for PQEMU using SCC design. Due to 
sharing components duplication, only lock E exclusive_rwlock is required, in 
comparison to UCC design.

TABLE III. PARALLEL SYSTEM EMULATOR DESIGNS (UPPER),
EXPERIMENTAL ENVIRONMENT (MIDDLE) AND SPLASH-2
BENCHMARK SETTINGS.

Parallel System Emulator Designs
QEMU Baseline QEMU 0.12.1
P-UCC PQEMU using unified code cache design

P-UCC+IO P-UCC with experimental parallel I/O model
P-UCC+IO+FS P-UCC+IO with find slow optimization

P-SCC PQEMU using separate code cache design
P-SCC+IO P-SCC with experimental parallel I/O model

Coremu Another parallel emulator design[16]
Experimental Environment

Benchmark SPLASH-2 suite using ARM v6 ISA
Guest OS Linux 2.6.27

Guest machine ARM11MPCore (x4 ARMv6 processors)
Guest platform RealView EB board, 256 MB RAM

System emulator QEMU and various PQEMU designs
Host OS x86_64 Fedora 12 (Linux 2.6.31.12) 

Host machine Intel i7 920 (4 cores, 8 SMT) @ 2.66 GHz, 12 
GB RAM

SPLASH-2 Benchmark Settings
BARNES Default

RADIOSITY -batch -test
CHOLESKY -B32 –C16384, with input cholesky.tk29.O

WATER-N / -S Default
FMM Default
FFT -m20 –n65536 –l4

OCEAN -n258 –e1e-07 –r20000 –t28800
LU/LU-NON –n512 –b16
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� SCC needs more memory space and translation time, 
but it eliminates most synchronization except SMC 
Invalidate and emulation of guest atomic 
instructions in Execute.

� Invalidate in SCC incurs more overhead, because 
update has to apply to all duplicated sharing 
components. It is currently observed only at guest 
Linux boot-up, possibly because the memory 
pressure of SPLASH -2 is too small. 

� Latency of guest interrupt in UCC is slightly worse 
than SCC, because of the contention for TB chaining 
and unchaining. 

� UCC and SCC have the same Restore counts, since 
it depends on memory exception counts of guest 
program, not PQEMU implementation. But SCC 
experiences 1.15 to 3.00 times more Build than UCC, 
the downside of duplicating code cache– more code 
translations will be called for.

� Both will significantly re-shape the traffic of host 
cache. UCC is expected to have more cache 
coherence traffic, while SCC tends to experience 
higher cold-misses (due to duplicated yet identical 
TBs). 

� SCC may be too costly in terms of the memory 
overhead when emulating a many-core guest 
machine. Ideally, SCC design is best for running 
different applications (throughput benchmarks),
while UCC is for parallel applications with massive 
code sharing. A hybrid implementation which can be 
adaptive to the guest applications may be worth 
pursuing in the future. 

Coremu [16] is another parallel emulator design, based 
on QEMU also. The parallelization comes from invoking 
many sing-core emulators at a time, one for each guest core. 

It resembles SCC in host process level, yet the inter-guest-
core update (SMC for example) would be costly since it 
relies on the inter-process communication, not direct 
manipulation as in our designs. Coremu currently uses big 
lock to implement sequential I/O model, without all 
emulation threads fall back to emulation manager as in P-
SCC and P-UCC. Such design exploits 80% more 
parallelism between I/O emulation and guest code execution 
(P-SCC to Coremu), while duplicated code cache only 
introduces 12% overhead (P-SCC to P-UCC). For UCC 
design, such disadvantage could be compensated using Find 
Slow optimization, where 90% more speedup is feasible 
(difference in P-UCC+IO and P-UCC+IO+FS). In short, I/O 
would be the greatest obstacle in parallel emulator designs.
Merely parallelizing the core computation part would not be 
sufficient to efficiently exploit multi-core capabilities. 

V. RELATED WORK

Architectural simulations include micro-architectural and 
functional simulations. Well-known examples of micro-
architectural simulation include SimpleScalar [5] for cycle 
simulations and Wattch [4] for power consumption 
simulations. To further observe the interactions between 
application threads and the OS, some full system simulators 
incorporate micro-architectural simulation capabilities, for 
example, RSIM [14], SimOS [11], Simics [12], Mambo [2] 
and M5 [1] support system simulations and selective micro-
architectural simulations. 

For some applications, such as validating an application 
in a different ISA, functional simulations alone would be 
sufficient. Both QEMU [6] and Bochs [8] are examples of 
full system emulators, and SimOS [11], Simics [12] have 
mode for fast functional simulation. Functional simulations 
also allow the interactions among processors, memory and 
peripherals to be observed. Recent functional emulators 

Figure 5. Performance by computation time of SPLASH-2 benchmarks using one (upper) and four (lower) working threads. We treat baseline QEMU as 
100% basis.
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usually equip with dynamic binary translation [3] for 
increased simulation efficiency. In today’s multi-core 
environment, parallelism exploitation becomes a major issue 
in emulator designs. For example, IBM Mambo [9] and 
Parallel Embra [10] are parallel version of Mambo [2] and 
Embra [15] respectively. Mambo [2] regards the emulation 
as a series of hardware operations, and their execution are 
scheduled by tsim inside the simulator. Embra [15] then 
focuses on the parallelization of such user-space schedulers.
Parallel Embra [10] leaves such scheduling work to the host 
OS, and uses the round-robin scheduling if there are more 
guest cores than the number of physical cores in the host 
machine. The authors also give a brief discussion of
challenges in designing a parallel emulator for the MIPS 
machine. 

Coremu [16] is the latest research that shoots for the 
same target of this paper – supporting parallel emulation 
with QEMU. However, its parallelization approach comes 
from a quite different direction by lunching multiple 
emulators at the same time. This “multi-emulator” design is 
similar to the SCC design at process level in PQEMU. 
However, the synchronization overhead between processes 
in Coremu is greater, even with their optimized message 
passing interface. Portability to new architectures is the main 
concern of Coremu while PQEMU is targeting at greater 
simulation efficiency. 

VI. CONCLUSION AND FUTURE WORK

Full system emulators have been widely employed in 
software development cycle, especially before hardware is 
available. To fully utilize the processor-level parallelism of 
recent multi-core systems, emulators must also go parallel. In 
this paper, we have identified the challenges in designing and 
implementing such parallel emulators, and prototyped a
parallel QEMU called PQEMU. The concept to parallelize a 
dynamic binary translator centric simulator is generalized as 
an emulator-neutral mathematical model, and can be applied 
to other system emulators than QEMU. The implementation 
of PQEMU takes care of architectural dependent features (in 
this study, the guest architecture is ARM11 MPCore) such as 
the handling of atomic instructions and I/O requests. We 
have experimented with two design alternatives, notably the 
Unified Code Cache (UCC) design and the Separate Code 
Cache (SCC) design, to explore the tradeoffs between 
memory space and emulation speed. Intuitively, SCC 
requires less synchronization overhead. However, our 
experiments show that the difference is not significant since 
the emulation of typical guest programs do not spend 
majority of time in dynamic code translation – once the code 
is translated and stored in the code cache, the emulation will 
remain in the native execution in the code cache. In addition, 
since typical multi-threaded programs share a large portion 
of code among threads, the increased memory space 
requirements of SCC may become a major issue as the 
emulation scales up to many cores. Most existing parallel 
system emulator implementations are based on the SCC 

design; hence, our UCC design offers an attractive 
alternative. 
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