
PQEMU: A Parallel System Emulator Based on QEMU

Jiun-Hung Ding
MediaTek-NTHU Joint Lab

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan, ROC
adjunhon@sslab.cs.nthu.edu.tw

Po-Chun Chang1, Wei-Chung Hsu2

MediaTek-NTHU Joint Lab
Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan, ROC
Pochang0403@gmail.com1

hsu@cs.nctu.edu.tw2

Yeh-Ching Chung
MediaTek-NTHU Joint Lab

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan, ROC
ychung@cs.nthu.edu.tw

Abstract—A full system emulator, such as QEMU, can provide
a versatile virtual platform for software development. However,
most current system simulators do not have sufficient support
for multi-processor emulations to effectively utilize the
underlying parallelism presented by today’s multi-core
processors. In this paper, we focus on parallelizing a system
emulator and implement a prototype parallel emulator based
on the widely used QEMU. Using this parallel QEMU,
emulating an ARM11MPCore platform on a quad-core Intel i7
machine with the SPLASH-2 benchmarks, we have achieved
3.8x speedup over the original QEMU design. We have also
evaluated and compared the performance impact of two
different parallelization strategies, one with minimum sharing
among emulated CPU, and one with maximum sharing.

Keywords – Multi-core; Emulator; Parallel; Sychronization

I. INTRODUCTION

A full system emulator allows entire software stack
running without code modification. It is commonly
employed in OS and application development before target
hardware is available. Many full system emulators are
available today, such as Simics [12], SimOS [11], Embra
[15], Bochs [8] and QEMU [6], and most of them adopt
Dynamic Binary Translation (DBT) techniques [3] to
achieve high emulation speed. Although DBT is effective in
increasing emulation speed under single-thread execution
environment, it does present a challenge for emulating multi-
threaded execution because the DBT engine must be
parallelized first. Due to the complexity of parallelizing the
DBT engine, many system emulators choose to emulate
multi-threaded guest applications sequentially in a round-
robin fashion. This common approach fails to take advantage
of parallelism existed in the guest multi-threaded application,
and parallelism available in the underlying host hardware. In
this paper, we discuss the design and implementation of a
parallelized QEMU, called PQEMU.

Parallelizing such a system emulator is challenging
because both concurrent code generation (i.e. parallelizing
the DBT engine) and parallel code execution (i.e. managing
thread execution in the code cache) are important. In a
parallel system emulator, each guest core can be represented
by a host emulation thread, executing dynamically translated

codes from guest threads in the code cache independently.
However, there are dependences among those seemingly
independent emulation threads, which must be handled
correctly. For example, any modification to the guest code
(as in self-modifying programs) would require a serialization
to those emulation threads since the dynamically translated
code might be modified. SMC (Self-Modifying Code) may
seem like unusual events for application programs. However,
the increasingly popular use of JIT techniques in high-level
language virtual machines makes SMC more common.
Furthermore, for system emulations, SMC happens more
often when the guest OS reclaims memory pages (reuse
pages containing binary code). The original
synchronizations among parallel threads from the guest
applications must also be handled correctly in the
dynamically translated code. For example, these atomic
instructions in the guest binary must be translated into host
binary with identical behavior to ensure correctness of
emulation.

To increase the parallelism of the DBT engine, it seems
straightforward to minimize resource sharing between
emulated guest CPU cores. For example, the code cache that
stores dynamically translated codes could be separated. This
separate code cache design (SCC) can minimize
synchronization needs because when one guest core is
translating its current guest code, the other does not need to
wait for the completion. When two are using the same guest
code, it is acceptable or even desirable to have two copies of
translated code in their separate code caches. However, this
separate code cache design has its own downsides, as it may
incur more code translations as well as increased memory
requirement for code cache, especially when emulating many
guest cores. To further understand the tradeoff between
translation overhead, resource utilization and
synchronization overhead, our PQEMU prototype explores
two alternative implementation strategies, one for the unified
code cache design (UCC), which allows all guest cores to
share a common code cache, and one for the separate code
cache design (SCC), which allows each guest core to have its
own code cache. Notice that if the guest application is a
parallel program, such as the SPLASH-2 [13] benchmark,
they are likely to share a large portion of the code. However,

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.102

276

if the guest workload is composed of many different jobs, the
code sharing will be minimal.

Using the SPLASH-2 benchmark as the guest workload,
our PQEMU prototype on average performs 3.8x faster than
the original sequential QEMU when emulating a virtual
ARM11MPCore [7] guest platform on a quad-core Intel i7
based system. This paper made the following contributions:

� It reports required work when paralleling a DBT-
based system emulator, in terms of both code
generation and execution phases.

� It implements two alternatives (SCC vs. UCC) to
investigate the tradeoffs among translation overhead,
memory resource utilization and synchronization
overhead when parallelizing a DBT based system
emulator.

� It shows both implementations can effectively utilize
the parallelism existed in the guest application and
the parallelism available in the host multi-core
system. When emulating an ARM11MPCore on an
Intel i7 quad-core based system, both PQEMU
implementations can be 3.7-3.8X faster than the
original QEMU using the SPLASH-2 benchmark.

The rest of this paper is organized as following: Section
II describes the conventional design of a system emulator
with DBT as the main acceleration technique, and challenges
for parallelizing such designs. Section III provides the
parallelization steps toward two alternatives (UCC and SCC
designs) and their implementations in PQEMU. Section IV
evaluates the performance of PQEMU variants with
comprehensive discussion. Section V briefly discusses
related work and section VI summaries and concludes.

II. BACKGROUND

For system emulators using DBT to increase emulation
speed, the guest binary code must be first translated into
equivalent host binary, in unit of basic block or trace. For
QEMU, this unit is called a Translated Block (TB). Such
TBs will be stored in the Code Cache to avoid repeated

translations from the same guest binary code. Once the TB is
ready, the emulation will be directed to execute the TB. At
the end of TB execution, the emulator goes back to the
emulation manager. This life cycle of emulation is illustrated
in Fig. 1 (dark grey boxes are states in which the emulator
executes in the code cache; while others are in the emulation
manager). To reduce expensive transitions (architecture
states must be saved and restored) between the native
execution in the code cache and the emulation manager, the
emulator Chains subsequently executed TBs to constitute a
TB chain. Later code cache execution will be going through
a series of TBs, not just one TB, until the chain breaks. The
chain of TB will grow longer and longer. Eventually, all
important guest codes are translated into TBs and get
chained together. When this happens, the emulation will stay
executing in the code cache, and rarely come back to the
execution manager.

To reuse the codes in code cache, Find Fast and Find
Slow will locate the target TB by the guest PC prior to the
Build code generation phase. A pointer to the executed TB
will be cached in a guest-core-private field to make best use
of TB execution locality, and this field will be examined first
in Find Fast before resorting to a slower but more complete
search in Find Slow. Code generation occurs in Build after
all TBs search attempts are failed, and Flush is called when
the code cache overflows. In QEMU, Flush simply removes
all translated TBs from the code cache.

Step into Execute, the emulator will execute (a chain of)
TB in the code cache and make substantial emulation
progress. It returns to the emulation manager after executing
an unchained TB, or encountering a guest exception. The
former results from guest interrupt delivery and Self
Modifying Code (SMC) event. The arrival of a guest
interrupt will trigger Unchain to allow the returning to the
emulation manager for guest interrupt handling at Check
Interrupt; while SMC takes place when guest core tries to
modify the memory content which has codes already being
translated in the code cache. All offending TBs will be
erased in Invalidate by removing their indices in the guest-
core-private field and a central hash table in Find Slow and
the emulator leaves the code cache when the target TB is
eliminated. The latter guest exception handling in Restore
requires extra recovery to maintain precise architectural
states before leaving the code cache, since exceptions could
arise anywhere during TB execution (for example, a guest
page fault may arise during the emulation of a guest memory
instruction).

Pending guest interrupts are handled in Check Interrupt
by resetting the guest program counter to a specific vector
address, according to the source of guest interrupt. Halt and
CPU Idle are designated for guest instructions waiting for a
specific hardware event, such as the ARM wfi (wait-for-
interrupt).

A. Extend to Emulating a Multi-core Machine
Functionally, emulating a multi-core machine would be

as simple as duplicating all guest-core-private data structures
to reflect every architectural state of guest multi-core, yet
memory and I/O systems are still shared among all guest

Hit

MissFind Fast

Invalidate

Build

Execute
Unchain

Restore

Flush

SMC

Interrupt

Exception

Full

Halt?
No

Yes

Chain

Find Slow
Miss

Hit

Done

CPU Idle

Check
Interrupt

Figure 1. Typical flow of a full system emulator using dynamic
binary translation.

277

cores to mimic the SMP architecture in the real world. This
incurs the concurrency problem as guest cores might write
the same memory location simultaneously. Conventional
emulators adopt a time-sharing scheme to simplify the
problem, such that the emulation of guest cores goes in a
round-robin fashion, which turns the memory and I/O
accesses exclusive to guest cores in emulation. This
sequential emulation model also helps in design of I/O
emulation (callout functions that perform guest I/O
operations for the virtual platform) - no race-condition could
possibly happen. To minimize code translation efforts, some
DBT engines will generate more versatile code sequences
that all TB accesses to guest architectural states go through
indirect references, e.g. using base register plus displacement
addressing mode.

The design works well in traditional uni-processor
environment. However, running such emulators on today's
multi-core system is inefficient, because all guest core
emulations will be aggregated on a single emulation thread
on a single host core, leaving all other cores idle as a thread
is the smallest indivisible task unit in the host OS.

B. Toward Multi-core on Multi-core
To fully utilize the power of multi-cores in the host

machine, the emulator must create multiple threads so that
the host OS could schedule them on the host cores separately.
An emulation thread is in the parallel emulator is equivalent
to a guest core. Because the emulation spends most of time
in code execution, emulation threads would be computation-
intensive and distributed evenly on the host cores. The net
effect is one guest core is simulated by one emulation thread
and is scheduled to run on one host core, and multiple guest
cores could be simulated concurrently as running on real
hardware. If there are more guest cores than available host
cores, we currently have no reliable way to emulate without
distortion with respect to real execution, and hence it is not
discussed in this paper.

Such multi-thread emulator designs improve not only
emulation speed but also the real concurrent execution
behavior. Because a guest multi-threaded program could
exploit parallelism on real machines, more intrinsic
characteristics about guest multi-threaded program could be
observed by such parallel emulators, without turning to real
hardware. That gives great flexibility to software
development, especially when hardware is inaccessible or
not available. However, parallel emulation would add
complexity to guest I/O and memory access emulation, since
they could be raised at the same time, and to the same
location. This could incur race conditions if mutual
exclusion is not enforced. Reverting to aforementioned
sequential model would be the last choice, since memory
instructions are very frequent in typical programs.

Inside the emulator, I/O access from guest cores will be
redirected to the I/O emulation functions, which bridge host
system calls to functionality of guest peripherals. For
example, a common realization of virtual platform timer is a
host alarm registered for emulation threads. Alarm is set by a
timer period, and a guest interrupt is generated whenever the
emulator receives an alarm signal from the host OS. In a

multi-threaded emulator, reentrant is a must for I/O
emulation function to support concurrent invocations from
different guest cores. There will be no memory ordering
issue for MMIO (Memory Mapped I/O) access inside the
emulator, since calling the I/O emulation function is
synchronous to the guest core emulation. Specifically, the
I/O function is invoked right after the guest core executes a
memory instruction within the MMIO address space. Unless
the function call ends, emulation will not proceed to the next
guest instruction. In effect, the memory ordering for MMIO
accesses follows the guest program order exactly inside the
emulator, without relying on guest memory serialization
instructions.

For write accesses to the same memory location, the
hardware arbitrator determines the order of write requests
(and thus final content), which is completely invisible to
software. To those software operations sensitive to write
sequence, program will use atomic instructions instead of
plain memory write to guarantee their effects, or at least
know whether the write goes as intended (and redo the
operation if not). An example for the former case is updating
a shared counter via atomic add instruction, where race
conditions might happen if implemented in typical read-
modify-write instruction sequences; while the latter includes
the implementation of a software lock, that all pending
candidates tries until the lock is grabbed.

Parallel emulators must enforce atomicity guest
program demands, or program will behave incorrectly.
Consider the case guest atomic add instruction is translated
to a series of read-modify-write host codes. When it is
executed on parallel emulator without synchronization
beforehand among emulation threads, race-condition could
happen. To make best use of host hardware, parallel
emulator will generate host atomic instructions for those
guest atomic instructions. The difficulty lies in the diversity
of semantic transformation between guest and host, because
the atomic instructions are architecture-specific.

III. DESIGN AND IMPLEMENTATION

We attempt to describe a uni-core system emulator using
DBT as a state machine, where state S � {CPU Idle, Find
Fast, Find Slow, Build, Flush, Chain, Execute, Invalidate,
Unchain, Restore, Check Interrupt}, and transition function
δ is illustrated in Fig. 1. For multi-core emulation, we use
notation Sn and δn to specify the state and transition function
of guest core n. In conventional round-robin designs, the
emulation goes for each guest core sequentially, one at a
time by a single emulation thread, and thus state Si and Sj for
guest core i and j are totally independent, even if they all use
the same transition function δ, i.e. δi = δj = δ.

However, since guest core i and j might access the same
shared component of the emulator from different host cores
in parallel emulation, Si and Sj are partially dependent in
states other than CPU Idle and Check Interrupt. By example
of QEMU, shared components are shown in the middle oval
shapes of Fig. 2, along with their relationships to emulation
states that might access them concurrently. Detailed
explanations about these shared components are described as
follow:

278

� TCG translation engine (TCG): it is the binary
translation engine in system emulator, used by Build
for new TB generation or Restore for guest
architecture state recovery.

� Code Cache (CC): the storage space for TB output
after Build, code translation phase. Chain and
Unchain will patch the last branch instruction of a
TB directly in code cache; while Flush and
Invalidate erase one or more TB.

� TB Descriptor (TBD): it holds the meta-information
of a TB in code cache, e.g. starting guest PC value of
TB. It is an identification for TB and being
initialized in Build, updated at Chain or Unchain (to
the fields of chaining status), and reset in Flush or
Invalidate.

� TB Descriptor Array (TBDA): to simplify the
management of TB descriptors, array of descriptors
will be pre- allocated during QEMU initialization
phase. Build will consume one entry for the new TB.
If no entry is available, Flush will be triggered to
reclaim all descriptors, by dropping all TBs in code
cache.

� TB Hash Table (TBHT): it is the central hash table
in key of guest PC value that Find Slow searches
after Find Fast fails. Every in-use TBD has an index
in this hash table to reference to, and states
modifying a TBD would update its index,
correspondingly.

� TB Descriptor Pointer (TBDP): it is a field private
to each guest core that holds the index (duplicated
from previous hash table) to recently-used TBD. It
speeds up the TB lookup for guest loop code, as
Find Fast will check this field first before Find Slow
searches the central hash table.

� Memory Page Descriptor (MPD): to accelerate the
detection of guest SMC activity, emulator must
efficiently find all offended TBs for every guest
write that changes the guest code already being
translated in code cache. QEMU uses this descriptor
to record TBs having codes lying in the same guest
page. Only the TBs in the same MPD will be check
for possible SMC write. Again, Build inserts new
TB to a descriptor; while Invalidate and Flush delete
them.

To parallelize the QEMU system emulator, we deploy
locks to serialize accesses to the shared components, see

Fig. 2. We explore two alternative designs for the initial
PQEMU implementations, one is to share the same code
cache for all VCPUs and the other is to have a private code
cache for each VCPU.

A. Unified Code Cache (UCC) Design
In this option, no sharing components are duplicated for

minimum memory usage in PQEMU. To minimize
serialization overhead, locks will be applied only if
necessary. We consider the case using two threads for
parallel emulation particularly, since this case could reduce
to other configurations with more emulation threads. All
synchronization requirements between state Si and Sj for
guest core i and j are tabulated in Table , where emulation
states are those that might touch the shared components of
the parallel emulator. Possible conditions are Independent,
Dependent, and Synchronous, in order of synchronization
strength required. For example, Restore and Find Slow are
Independent because they never use the same shared
component. On the contrary, Restore and Build are
Synchronous since TCG translation engine is shared among
all emulation threads. Dependent signifies the combination
that even though something is shared for state Si and Sj by
Fig. 2, no simultaneous access would happen in real life. For
instance, Build shares CC and TBD components with
Chain/Unchain/Execute, but they are intrinsically
independent because a TB in translation will not be
referenced since it is not created yet. The same reason
applies to Chain/Unchain and Execute, assuming branch
instruction patching (host memory write) is atomic on the
host machine, i.e. no emulation threads would ever observe
the branch instruction at the end of TB is partially updated.

To derive lock-applying rules for UCC parallel emulator
design, we group emulation states in Fig. 1 as four
independent sets:

� Construct = {Find Fast, Find Slow, Build and
Restore}

� Link = {Chain and Unchain}
� Use = {Execute},
� Destruct = {Flush and Invalidate}
All synchronizations in Table could now be

generalized in the following rules for correct and efficient
parallel emulation, no matter how many guest cores are
being emulated:

� Any two states live in the same set must run
sequentially, except those pure read operations like

Restore

Find SlowBuildChain Unchain

FlushExecute

CC TBD TBDA TBHTTCG MPD

Invalidate

TBDP

Find Fast

Figure 2. Sharing components (middle ovals) and emulation states that
might access them concurrently (grey rectangles) in QEMU.

TABLE I. SYNCHRONIZATIONS BETWEEN TWO EMULATION STATES
FOR UCC DESIGN IN TWO-THREAD PARALLEL EMULATION.

UCC N S B R C U E F I
FiNd Fast I I I I I I I S S
Find Slow I I S I I I I S S

Build I S S S D D D S S
Restore I I S S D D I S S
Chain I I D D S S D S S

Unchain I I D D S S D S S
Execute I I D I D D I S S
Flush S S S S S S S S S

Invalidate S S S S S S S S S

279

Find Fast, Find Slow and Execute; otherwise they
could go parallel.

� Destruct requires an exclusive access for efficiency
reason, since the states will modify most of sharing
components all at once.

We deploy locks only at state combinations in
Synchronous, where the modified emulation flow for UCC
parallel emulator is shown in Fig. 3. We introduce
exclusive_rwlock, build_lock and chain_lock to satisfy the
parallel emulation rules. In the beginning, emulation thread
grabs read lock of exclusive_rwlock to activate the emulation
of particular guest core. This guarantees the exclusiveness of
Destruct (rule 2), that write exclusive_rwlock is obtained
before Flush and Invalidate proceed. To reduce the waiting
time for write lock, thread in-wait will inject fake guest
interrupts to other guest cores in emulation (lock will be
released before entering Check Interrupt), if wait time
expired. The build_lock is dedicated for code generation
activity, and chain_lock is for TB chaining / unchaining, as
its name suggests.

Due to the asynchronous nature of guest interrupts, it is
delivered through a host signal in QEMU, which triggers TB
unchaining. To avoid deadlock with regular emulation flow,
a thread acquires chain_lock before entering Unchain must
go through try-lock. In case the interrupt flag of guest core
asserts too long, i.e. try-lock fails, fake interrupts will be
injected to those guest cores periodically, for unchaining.
The interrupt response time might theoretically get worse,
but in practice it is negligible to both user and guest OS
codes, as the contention of chain_lock is low.

We designate an unchaining check to handle the situation
that an emulation thread is trapped in Execute. For a guest
program with small code footprint, like multi-thread BARNS
in SPLASH-2, effect of unchaining is transient that an
emulation thread could barely see, let along leaving the code
cache. Specifically, one emulation thread is intended to

Check Interrupt (quit the emulation), while another is ready
to do chaining. Incidentally they patch the same TB, which
gets chained immediately after being unchained. Because
threads share the code cache, the one intended to leave will
be stuck if it misses the time TB is unchained. We defer the
release of chain_lock in Unchain till emulation thread exits
Execute to avoid the problem, because no chaining will be
made in-between.

B. Find Slow Optimization for UCC Design
According to rule 1 of UCC design, states in the same set

will run sequentially to protect shared components. Find
Slow and Build are such examples in Construct with rather
frequent usage in the parallel emulator (code translation
takes longer time than other emulation activities). An
obvious optimization for UCC design would be Independent
relationship between Find Slow and Build (see Table). By
this optimization, Construct is redefined as {Build and
Restore}, along with new set definition Search = {Find Fast
and Find Slow}. We revise the rule 1 as:

� Any two states live in the same set must run
sequentially, except Search; otherwise they could go
parallel.

This effectively removes the build_lock around Find
Slow, and code translation will not block code execution
anymore. But it also introduces the redundancy problem
when two emulation threads are going to execute the same
not-yet-translated guest block. Both threads will trigger code
translation as none could find corresponded TB in the code
cache. Yet the pending one (due to build_lock) does not
cancel its translation request after the first is finished, for
Build never checks TB existence before translation. Because
translation output is guest-core independent (TB is shared
among all emulation threads in PQEMU by default),
redundancy problem here is merely memory waste, not issue
of correctness.

C. Separate Code Cache (SCC) Design
To exploit more parallelism, we have SCC PQEMU

design which duplicates all sharing components in Fig. 2 for
every emulation thread. The only exception is MPD
descriptor for fast SMC detection, one per guest page. As
guest memory is common to all guest cores, we should not
localize MPD for each emulation thread. Since code cache
and TCG translation engine are privatized, most
synchronizations in Table for UCC design become
unnecessary (see Table). The only serialization appears in

SMC

Hit
Miss

Find Fast

Build

Execute

Unchain

Restore

Flush

Interrupt

Exception

Full

Halt?No

Yes

Chain

Find Slow
Miss

Hit

Done

Read lock E

Read unlock E

Write unlock E

Write lock E

Wait

Lock C

Unlock C

Try-lock C

Unlock C

Check unchain

Lock B

Unlock B

Lock B

Unlock B

Lock B

Unlock B

Full

Read lock E

Read unlock E

Invalidate

Write unlock E

Write lock E

Read lock E

Read unlock E

CPU Idle

Check
Interrupt

Figure 3. Modified emulation flow for PQEMU using UCC design. Lock E,
C, and B (boxes in light, middle and dark grey) represent exclusive_rwlock,
chain_lock and build_lock locks, respectively.

TABLE II. SYNCHRONIZATIONS BETWEEN TWO EMULATION STATES
FOR SCC DESIGN IN TWO-THREAD PARALLEL EMULATION.

SCC N S B R C U E F I
FiNd Fast I I I I I I I I S
Find Slow I I I I I I I I S

Build I I I I I I I I S
Restore I I I I I I I I S
Chain I I I I I I I I S

Unchain I I I I I I I I S
Execute I I I I I I I I S
Flush I I I I I I I I S

Invalidate S S S S S S S S S

280

Invalidate, for guest SMC activity. To minimize cross-thread
overhead, sharing components for each emulation thread are
duplicated in POSIX manner. Thread could directly
manipulate others’ duplicates fields, instead of relying on
costly inter-process communication mechanism. SCC is
expected to have lower contention than UCC when
delivering interrupt, because unchaining now is private to
each guest core. The exclusive_rwlock offers exclusiveness
for Invalidate, as in UCC design. The modified emulation
flow for SCC PQEMU is illustrated in Fig. 4.

D. Memory and I/O Systems in PQEMU
Because QEMU does not emulate hardware cache, the

only coherence problem is between code cache and guest
memory, which is already included in PQEMU designs, i.e.
Invalidate for guest SMC activity. For guest ARM atomic
instruction swp (swap among two registers and a memory
location), PQEMU will generate TB with x86 #Lock XCHG
instruction with some glue codes, since their instruction
semantics are mutually transformable. While for ldrex/strex
pair (load- linked and store-conditional on ARM platform),
output code will follow the concept of transactional memory.
Specifically, PQEMU will keep a table for all on-the-fly
ldrex addresses, together with its memory content snapshot.
Whenever strex is executed, its write address will be erased
from the table. It succeeds if and only if the write-to memory
content is not changed (determined by comparison to
previous snapshot), and write address is still on the table. We
deploy an additional lock for the table (not those appeared
before), for it shares among all guest cores.

For I/O in parallel emulation, initial PQEMU inherits the
old sequential model from QEMU, which halts all
emulations when performing guest I/O. Later experimental
variant removes such serialization since guest OS has already
serialized the accesses to the same I/O device. However, it
requires a thorough examination about how guest peripheral
emulation functions are invoked from guest OS. It will be

very complex for peculiar guest architecture like x86, and
this feature is currently marked experimental.

IV. EXPERIMENTAL RESULTS

Table lists the experimental setups and various
configurations. Our PQEMU is implemented on QEMU
0.12.1, and Coremu [16] is the most up-to-date result in
literature. Each SPLASH-2 [11] program is tested with one,
two and four working threads, in measure of total execution
time (initial single-thread setup time excluded).

We can see that the measured parallelization overhead of
PQEMU designs in Fig. 5, benchmarks with one working
thread (upper). On average, we have 5~10% slowdown
compared to the baseline QEMU (as the 100% line). SCC
designs usually have higher overhead, because the use of
thread-local storage for some guest-core-private fields.

Lower part of Fig. 5 shows the benchmark results using
four working threads. For computation-intensive benchmark
like SPLASH-2, most guest interrupts are timers for guest
OS context switches. Without experimental I/O
parallelization, all emulation threads suspend when handling
a guest interrupt, and P-UCC could only achieve 1.81x
speedup on average. For P-UCC+IO, the speedup increases
to 2.88x over the baseline QEMU; and P-UCC+IO+FS
further advances to 3.72x speed up when Find Slow
optimization is applied. For the SCC designs, only I/O
parallelization matters because the code cache is private to
each emulation thread (and no concurrent code generation
and execution). Due to less lock contention and overhead,
the SCC design will slightly outperform the equivalent UCC
designs (P-SCC to P-UCC, and P-SCC+IO to P-
UCC+IO+FS), in around 2~4%. The tradeoffs between UCC
and SCC designs are given as follow:

SMC

Hit
MissFind Fast

Build

Execute

Unchain

Restore

Flush

Interrupt

Exception

Halt?No

Yes

Chain

Find Slow
Miss Hit

Done

Read lock E

Read unlock E

Wait

Full

Invalidate

Write unlock E

Write lock E

Read lock E

Read unlock E

CPU Idle

Check
Interrupt

Figure 4. Modified emulation flow for PQEMU using SCC design. Due to
sharing components duplication, only lock E exclusive_rwlock is required, in
comparison to UCC design.

TABLE III. PARALLEL SYSTEM EMULATOR DESIGNS (UPPER),
EXPERIMENTAL ENVIRONMENT (MIDDLE) AND SPLASH-2
BENCHMARK SETTINGS.

Parallel System Emulator Designs
QEMU Baseline QEMU 0.12.1
P-UCC PQEMU using unified code cache design

P-UCC+IO P-UCC with experimental parallel I/O model
P-UCC+IO+FS P-UCC+IO with find slow optimization

P-SCC PQEMU using separate code cache design
P-SCC+IO P-SCC with experimental parallel I/O model

Coremu Another parallel emulator design[16]
Experimental Environment

Benchmark SPLASH-2 suite using ARM v6 ISA
Guest OS Linux 2.6.27

Guest machine ARM11MPCore (x4 ARMv6 processors)
Guest platform RealView EB board, 256 MB RAM

System emulator QEMU and various PQEMU designs
Host OS x86_64 Fedora 12 (Linux 2.6.31.12)

Host machine Intel i7 920 (4 cores, 8 SMT) @ 2.66 GHz, 12
GB RAM

SPLASH-2 Benchmark Settings
BARNES Default

RADIOSITY -batch -test
CHOLESKY -B32 –C16384, with input cholesky.tk29.O

WATER-N / -S Default
FMM Default
FFT -m20 –n65536 –l4

OCEAN -n258 –e1e-07 –r20000 –t28800
LU/LU-NON –n512 –b16

281

� SCC needs more memory space and translation time,
but it eliminates most synchronization except SMC
Invalidate and emulation of guest atomic
instructions in Execute.

� Invalidate in SCC incurs more overhead, because
update has to apply to all duplicated sharing
components. It is currently observed only at guest
Linux boot-up, possibly because the memory
pressure of SPLASH -2 is too small.

� Latency of guest interrupt in UCC is slightly worse
than SCC, because of the contention for TB chaining
and unchaining.

� UCC and SCC have the same Restore counts, since
it depends on memory exception counts of guest
program, not PQEMU implementation. But SCC
experiences 1.15 to 3.00 times more Build than UCC,
the downside of duplicating code cache– more code
translations will be called for.

� Both will significantly re-shape the traffic of host
cache. UCC is expected to have more cache
coherence traffic, while SCC tends to experience
higher cold-misses (due to duplicated yet identical
TBs).

� SCC may be too costly in terms of the memory
overhead when emulating a many-core guest
machine. Ideally, SCC design is best for running
different applications (throughput benchmarks),
while UCC is for parallel applications with massive
code sharing. A hybrid implementation which can be
adaptive to the guest applications may be worth
pursuing in the future.

Coremu [16] is another parallel emulator design, based
on QEMU also. The parallelization comes from invoking
many sing-core emulators at a time, one for each guest core.

It resembles SCC in host process level, yet the inter-guest-
core update (SMC for example) would be costly since it
relies on the inter-process communication, not direct
manipulation as in our designs. Coremu currently uses big
lock to implement sequential I/O model, without all
emulation threads fall back to emulation manager as in P-
SCC and P-UCC. Such design exploits 80% more
parallelism between I/O emulation and guest code execution
(P-SCC to Coremu), while duplicated code cache only
introduces 12% overhead (P-SCC to P-UCC). For UCC
design, such disadvantage could be compensated using Find
Slow optimization, where 90% more speedup is feasible
(difference in P-UCC+IO and P-UCC+IO+FS). In short, I/O
would be the greatest obstacle in parallel emulator designs.
Merely parallelizing the core computation part would not be
sufficient to efficiently exploit multi-core capabilities.

V. RELATED WORK

Architectural simulations include micro-architectural and
functional simulations. Well-known examples of micro-
architectural simulation include SimpleScalar [5] for cycle
simulations and Wattch [4] for power consumption
simulations. To further observe the interactions between
application threads and the OS, some full system simulators
incorporate micro-architectural simulation capabilities, for
example, RSIM [14], SimOS [11], Simics [12], Mambo [2]
and M5 [1] support system simulations and selective micro-
architectural simulations.

For some applications, such as validating an application
in a different ISA, functional simulations alone would be
sufficient. Both QEMU [6] and Bochs [8] are examples of
full system emulators, and SimOS [11], Simics [12] have
mode for fast functional simulation. Functional simulations
also allow the interactions among processors, memory and
peripherals to be observed. Recent functional emulators

Figure 5. Performance by computation time of SPLASH-2 benchmarks using one (upper) and four (lower) working threads. We treat baseline QEMU as
100% basis.

282

usually equip with dynamic binary translation [3] for
increased simulation efficiency. In today’s multi-core
environment, parallelism exploitation becomes a major issue
in emulator designs. For example, IBM Mambo [9] and
Parallel Embra [10] are parallel version of Mambo [2] and
Embra [15] respectively. Mambo [2] regards the emulation
as a series of hardware operations, and their execution are
scheduled by tsim inside the simulator. Embra [15] then
focuses on the parallelization of such user-space schedulers.
Parallel Embra [10] leaves such scheduling work to the host
OS, and uses the round-robin scheduling if there are more
guest cores than the number of physical cores in the host
machine. The authors also give a brief discussion of
challenges in designing a parallel emulator for the MIPS
machine.

Coremu [16] is the latest research that shoots for the
same target of this paper – supporting parallel emulation
with QEMU. However, its parallelization approach comes
from a quite different direction by lunching multiple
emulators at the same time. This “multi-emulator” design is
similar to the SCC design at process level in PQEMU.
However, the synchronization overhead between processes
in Coremu is greater, even with their optimized message
passing interface. Portability to new architectures is the main
concern of Coremu while PQEMU is targeting at greater
simulation efficiency.

VI. CONCLUSION AND FUTURE WORK

Full system emulators have been widely employed in
software development cycle, especially before hardware is
available. To fully utilize the processor-level parallelism of
recent multi-core systems, emulators must also go parallel. In
this paper, we have identified the challenges in designing and
implementing such parallel emulators, and prototyped a
parallel QEMU called PQEMU. The concept to parallelize a
dynamic binary translator centric simulator is generalized as
an emulator-neutral mathematical model, and can be applied
to other system emulators than QEMU. The implementation
of PQEMU takes care of architectural dependent features (in
this study, the guest architecture is ARM11 MPCore) such as
the handling of atomic instructions and I/O requests. We
have experimented with two design alternatives, notably the
Unified Code Cache (UCC) design and the Separate Code
Cache (SCC) design, to explore the tradeoffs between
memory space and emulation speed. Intuitively, SCC
requires less synchronization overhead. However, our
experiments show that the difference is not significant since
the emulation of typical guest programs do not spend
majority of time in dynamic code translation – once the code
is translated and stored in the code cache, the emulation will
remain in the native execution in the code cache. In addition,
since typical multi-threaded programs share a large portion
of code among threads, the increased memory space
requirements of SCC may become a major issue as the
emulation scales up to many cores. Most existing parallel
system emulator implementations are based on the SCC

design; hence, our UCC design offers an attractive
alternative.

ACKNOWLEDGMENT

The authors wish to thank their anonymous referees for
all of their invaluable suggestions. The authors would also
like to thank MediaTek Co. Ltd for their help in financial
support. The work presented in this paper was supported by
“MediaTek embedded systems technology research and
personnel training program”, Project No. 100F2211EA.

REFERENCES

[1] N.L. Binkert, R.G. Derslinki, L.R. Hsu, K.T. Lim, A.G Saidi, S.K.
Reinhardt, “The M5 Simulator: Modeling Networked Systems,” IEEE
Micro. 26, 4 (July-Aug. 2006), pp. 52-60.

[2] Bohrer, P., Peterson, J., Elnozahy, M., et al, “Mambo: A Full System
Simulator for the PowerPC Architecture,” SIGMETRICS Perf. Eval.
Rev. 31, 4 (Mar. 2004), 8-12.

[3] Cmelik, R.F., and Keppel, D, “Shade: a fast instruction set simulator
for execution profiling,” Technical Report UWCSE-93-06-06, Dept.
Computer Science and Engineering, University of Washington.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” In Proc. of the
27th Annual International Symposium on Computer Architecture,
pages 83–94, June 2000.

[5] D. C. Burger and T. M. Austin, “The SimpleScalar tool set, version
2.0,” Computer Architecture News, 25(3): 13–25, June 1997.

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” In In
Proc. of the USENIX Annual Technical Conference, pages 41–46,
April 2005.

[7] K. Hirata and J. Goodacre, “ARM MPCore; the streamlined and
scalable ARM11 processor core,” ASP-DAC ’07, pages 747–748, Jan.
2007.

[8] K. P. Lawton, “Bochs: A portable PC emulator for Unix,” Linux
Journal, vol. 1996, no. 29, p. 7, 1996.

[9] Kun Wang, Yu Zhang, Huayong Wang, Xiaowei Shen,
“Parallelization of IBM mambo system simulator in functional
modes,” ACM SIGOPS Operating Systems Review, v.42 n.1, January
2008

[10] Lantz R.,. “Fast functional simulation with parallel Embra,” In Proc.
of the 4th Annual Workshop on Modeling, Benchmarking and
Simulation, 2008.

[11] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “The SimOS
approach,” IEEE Parallel and Distributed Technology, vol. 4, no. 3,
1995.

[12] Peter S. Magnusson et al. Simics: “A Full System Simulation
Platform,” IEEE Computer, 35(2):50–58, February 2002.

[13] S. C. Woo, M. Ohara, E.Torrie, J.P. Singh and A. Gupta, “The
SPLASH-2 Characterization and Methodological Considerations,”
22nd Annual Int. International Symposium on Computer Architecture,
June 1995.

[14] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve., “RSIM:
An Execution-Driven Simulator for ILP-Based Shared-Memory
Multiprocessors and Uniprocessors,” In Proc. of the Third Workshop
on Computer Architecture Education, February 1997.

[15] Witchel, E. and Rosenblum R., “Embra: fast and flexible machine
simulation,” In Proc. of the SIGMETRICS ’96 Conference on
Measurement and Modeling of Computer Systems. 68-78Yourst, MT.
2007.

[16] Zhaoguo Wang, Ran Liu,et,al., “COREMU: A Scalable and Portable
Parallel Full-system Emulator,” PPoPP 2011

283

