
A Parallel Rectangle Intersection Algorithm on GPU+CPU

Shih-Hsiang Lo, Che-Rung Lee, Yeh-Ching Chung
Computer Science Department
National Tsing Hua University

Hsinchu, Taiwan
awatch@gmail.com, cherung@cs.nthu.edu.tw and

ychung@cs.nthu.edu.tw

I-Hsin Chung
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
ihchung@us.ibm.com

Abstract—In this paper, we investigate efficient algorithms and
implementations using GPU plus CPU to solve the rectangle
intersection problem on a plane. The problem is to report all
intersecting pairs of iso-oriented rectangles, whose
parallelization on GPUs poses two major computational
challenges: data partition and the massive output. The
algorithm we presented is called PRI-GC, Parallel Rectangle
Intersection algorithm on GPU+CPU, which consists of two
phases: mapping and intersection-checking. In the mapping
phase, rectangles are hashed into different subspaces (called
cells) to reduce the unnecessary intersection checking for far-
apart rectangles. In the intersection-checking phase, pairs of
rectangles within the same cell are examined in parallel, and
the intersecting pairs of rectangles are reported. Several
optimization techniques, including rectangles re-ordering,
output data compressing/encoding, and the execution
overlapping of GPU and CPU, are applied to enhance the
performance. We had evaluated the performance of PRI-GC
and the result shows over 30x speedup against two well-
implemented sequential algorithms on single CPU. The
effectiveness of each optimization technique for this problem
was evaluated as well. Several parameters, including different
degrees of rectangle coverage, different block sizes, and
different cell sizes, were also experimented to explore their
influences on the performance of PRI-GC.

Keywords - Rectangle Intersection, CUDA, Parallel
Algorithms

I. INTRODUCTION
Rectangle intersection is an important step in a variety of

applications, such as motion simulations, computer graphics,
and VLSI physical design. In this paper, we consider the iso-
oriented rectangle intersection problem on a plane, which is
defined as follows: Given a set of N rectangles with axis-
parallel sides (iso-oriented rectangles) on a plane, report all
intersecting pairs of rectangles. A rectangle in this definition
is a set of closed line intervals and an intersecting pair of
rectangles means the two rectangles share at least one
common point.

The most naïve method to solve this problem is to search
all pairs of N rectangles. Although it takes O(N2) time, it is
the worst case lower bound to report all intersecting pairs of
rectangles. In practical cases, the number of intersected
rectangles is much fewer than N2/2. Speedup methods had
been widely studied for decades. Sequential algorithms, for

example, can be found in [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12] and [13]. Common techniques used in
those methods include plane sweep, spatial partition, and
sorting. Parallel solutions to this problem for different
architectures were also well investigated. Algorithms for
PRAM models were presented in [14]; algorithms for
multiprocessor systems could be found in [15] and [16].

This paper is concerned with the algorithms for solving
the rectangle intersection problems on Graphics Process-ing
Units (GPUs). Two important reasons motivate this
direction. The first is the maturity of programmable graphic
hardware, which possesses massively parallel processing
units and allows user to program it for the purposes other
than graphics related computation. Second, the computation
of most algorithms is data parallelizable that fits naturally to
the massive parallel computing environments like GPUs.

There are two major computational challenges to
implement the rectangle intersection algorithms on GPUs.
The first one is the data partition, which reduces the large
problem into small ones. For the naïve method, one can
simply divide the data to rectangle level. However, many
unnecessary comparisons and data movements may
significantly slow down the performance. Using the locality
of rectangles to partition data is the most common and
efficient method. Static space partition methods that divide
data according to the evenly partitioned space face the load
balance problem. Adaptive space partition methods that
dynamically refine partition space to achieve better load
balance need complicated data structures, which may not be
really beneficial on GPUs.

The second challenge is to report intersecting pairs of
rectangles, because the output data size can be large and
unpredictable. The output data size can be as large as the
number of rectangles or even more, which makes it the major
performance bottleneck. In addition, the number of
intersecting pairs of rectangles in each set of partition data
cannot be known in advance. How to allocate the memory
dynamically for the output also affects the performance
significantly.

After surveying major methods, sequential or parallel, the
algorithm we designed on GPU+CPU is based on static
space partition method. Our algorithm consists of two
phases: mapping and intersection-checking. In the mapping

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4395-6/11 $26.00 © 2011 IEEE
DOI 10.1109/CCGrid.2011.13

43

phase, rectangles are hashed into different subspaces (called
cells) to reduce the unnecessary intersection checking for far-
apart pairs of rectangles. In the intersection-checking phase,
pairs of rectangles within the same cell are examined in
parallel, and the intersecting pairs of rectangles are reported.

Several optimization techniques are applied to enable this
algorithm to resolve the challenges mentioned above. First,
although the mapping is done in parallel, rectangles in a cell
are recorded in a continuous space to speed up the data
access by memory coalescing and shared memory. In
addition, all cells with nonzero rectangles resided are packed
into one big continuous memory, based on their order, to
avoid the access of empty cells. Second, to reduce the
number of memory transmissions, intersection results,
computed in GPU, are encoded/compressed in the
hierarchical manner, and are decoded/decompressed by CPU.
Third, to overlap the execution of GPU and CPU, the
encoded data are stored in double buffers, and the decoding
and encoding processes are done on each buffer alternatively.

The performance of the proposed algorithm was
evaluated in contrast with one sequential cell-based
algorithm (Cell-CPU) and one sequential tree-based
algorithm (Tree-CPU) on single CPU. We implemented
Cell-CPU, which uses the optimized cell size to reduce
unnecessary intersections checking. We enable Cell-CPU to
adjust the area of cells to be the average area of all rectangles.
Tree-CPU is obtained from Computational Geometry
Algorithms Library (CGAL) [17], which is the readily
available implementation for researchers and industry
customers. We will briefly explain Tree-CPU in Section II.
For the problem with ten millions of rectangles, the proposed
algorithm delivers up to around 30 times performance
improvement comparing to the two sequential
implementations. The optimization techniques enhance 3-5x
performance improvement, compared with the proposed
algorithm without any optimization. The comparisons were
made for different problem settings, mainly for different
degrees of rectangle coverage (DRC), which represents the
crowdedness of rectangles. Last, the effectiveness of
different parameter settings, such as the block size (i.e., the
number of threads per GPU thread block) and the cell size
(i.e., the number of cells in partitioned space), are examined
empirically and theoretically.

The organization of this paper is as follows. In Section II,
we briefly discuss the background, including the survey on
rectangle intersection algorithms and the used GPU
architecture, namely nVidia’s CUDA. Section III introduces
our algorithm in detail. The relation of cell size and
performance will be discussed in Section IV. In Section V,
the experiments and the results for performance evaluation
are presented. We conclude this paper and describe future
work in Section VI.

II. BACKGROUND
In this section, we give a briefly survey on the rectangle

intersection problem and an illustration on the nVidia CUDA
architecture.

A. Sequential Algorithms for the rectangle intersection
problem

The algorithms proposed in [1], [2] and [3] for finding
intersecting pairs of rectangles are based on the sweep-line
algorithm proposed by Shamos and Hey [18]. An efficient
sweep-based algorithm was presented by Six and Wood [3].
The authors used the sweep line technique to determine
intersections of rectangles at 1st dimension. During sweeping,
it uses the interval tree or the range tree data structure (see
[19] for details) to further determine intersections of
rectangles at 2nd dimension.

Vaishnavi and Wood [4] and Edelsbrunner [5] used
layered segment tree and d-fold rectangle tree to directly
obtain the intersection results in 2-D environments,
respectively. An alternative tree-based algorithm was shown
in [7]. It can be easily generalized to 3- or higher-D
environments. For d-D environments, the algorithm builds
one interval tree for each dimension. For a d-D rectangle
query with d line interval queries, it merges the d intersection
results of d queries to obtain a d-D rectangle intersection
result. Regarding the space requirement in practice,
Zomorodian and Edelsbrunner proposed a hybrid algorithm
in [8]. The algorithm scans the end points of boxes and
traverses segment and range trees in a hybrid fashion
according to a cut-off value. The implementation of the
algorithm (called Tree-CPU in this paper) can be found in
Computational Geometry Algorithms Library (CGAL) [17].

Some rectangle intersection algorithms preferred to
divide the space of an environment into subspaces (cells) by
fixed or dynamic size. The authors in [6], [9] and [20]
adopted fixed-size partition strategy. An environment is
decomposed into cells and rectangles are mapped to cells.
Rectangles are only compared with the other rectangles in
the particular cell(s). This can reduce unnecessary
comparisons for those rectangles at different cells. The major
issue of algorithms using uniform cells is that the cell size is
crucial to the performance of rectangle intersection [10].
However, cell-based algorithms using uniform cells are
suitable for parallelization [21]. Van Hook et al. [6] and
Eroglu et al. [13] used 2d tree data structure to support
dynamic cell size change. The idea is to split a cell (partition)
into four equal areas of the partitioned cell until a stop
condition is satisfied. Then, each rectangle in a cell is
compared with other rectangles in the particular cell(s).

Some rectangle intersection algorithms in [10], [11] and
[12] are based on sorting techniques. Essentially, the sort-
based algorithms are similar to the sweep-based algorithms.
An efficient sort-based algorithm proposed by Raczy et al.
[12]. The algorithm first sorts end points of all rectangles for
each dimension. It then scans all end points for obtaining the
intersection result in each dimension. The overall

44

intersection result can be obtained by merging the
intersection results of all dimensions. Pan et al. [11]
proposed a dynamic sort-based algorithm to support
scanning the end points within a dynamic range rather than
scanning all end points. Gupta and Guha [12] proposed the
P-Pruning algorithm with an another sorting technique (i.e.,
bucket sort). The algorithm performs rectangle intersection
computations efficiently particularly for small-scale
environments.

B. Parallel Algorithms for the rectangle intersection
problem

In the early work, Chow [14] proposed three parallel
algorithms for the rectangle intersection problem. The first
algorithm is based on a concurrent read exclusive write
(CREW) parallel random access machine (PRAM) model
and the second and the third algorithms are based on a cube-
connected cycles (CCC) model. In both models, low-level
parallel architectures are ignored, such as synchronization
and communication. The three algorithms are of theoretical
interest. However, the first algorithm might run on share
memory systems with many processors (e.g., GPUs) because
PRAM is a share memory abstract machine. The time
complexity of the first algorithm is O(log2N+Imax) time with
O(N) processors, where N is the number of rectangles and
Imax is the maximum number of intersections per rectangle.

A parallel interest matching algorithm for distributed
virtual environments (DVEs) was presented by Liu and
Theodoropoulos [15]. The algorithm performs interest
matching on shared memory multiprocessor systems. The
authors used flat subdivision technique [22] to divide the
space of an environment into subspaces initially. Rectangles
are then hashed into these subspaces according to the end
points of rectangles. Each subspace is treated as a work unit.
Work units are dispatched to processors and processed by a
sort-based algorithm with insertion sort. The sort-based
algorithm performs well based on the assumption that
temporal and geometric coherence exists in DVEs.

Recently, Batista et al. [16] presented a parallel algorithm
for d-D box (rectangle) intersection. The parallel algorithm is
based on the sequential algorithm by Zomorodian and
Edelsbrunner [8]. The central idea of the parallel algorithm is
divide the sequence of intervals as subtasks and conquer
subtasks by threads on OpenMP [23] framework.

C. Compute Unified Device Architecture (CUDA)
CUDA is a parallel computing architecture with an array

of multiprocessors and various memory spaces for execution.
In the CUDA architecture, threads are assigned to groups
(called warps) and executed by multiprocessors of the device
(i.e., the CUDA-enabled product). Since the CDUA
architecture employs Single-Instruction Multiple-Threads
(SIMT) paradigm, all threads in a warp execute one common
instruction at a time. Each multiprocessor is capable of
executing one or more warps concurrently. In the device,
data for access by threads could be placed in different levels

of device memory hierarchy, including registers, shared
memory, cache, constant memory, texture memory and
global memory.

To carry out tasks using CUDA, the host (i.e., the
computer system consists of one or more CPUs and one or
more CUDA-enabled products) copies data from the host
memory to the device memory. Then, the host invokes a
kernel function with the specified execution configuration.
The execution configuration defines the organization of
threads (i.e., the number of thread blocks in a kernel grid and
the number of threads in a thread block). While running a
kernel function, all thread blocks within a kernel grid will be
distributed to multiprocessors. Each multiprocessor will
arrange thread blocks into warps and schedule them for
execution. When the kernel function is completed, the host
copies data from the device memory to the host memory.

Two key aspects of performing tasks using CUDA with
high performance need to be concerned. One is the degree of
thread parallelism. In SIMT paradigm, if threads in a warp
have different execution paths due to a data-dependent
condition, threads need to take turns in performing
instructions (i.e., if- and else-part). The behavior is called
warp divergence. When encountering more branches, threads
in a warp are serialized more. Warp divergence should be
avoided. Another one is the memory access pattern by
threads. Threads should access data in the low latency
memory (e.g., shared memory or cache) rather than in the
high latency memory (e.g., global memory). Even if threads
needs to access data from the global memory, coalesced
memory access can reduce the number of memory
transactions.

D. The Potential of Rectangle Intersection Algorithms
Using CUDA

To perform rectangle intersection computations on GPUs,
we consider the intrinsic nature of the rectangle intersection
algorithms reported in literature.

For the naïve algorithm, each rectangle is compared with
all the other rectangles. The entire comparison operations
can be executed in parallel. However, it is algorithm
inefficient. For the cell-based algorithms, the operation of
mapping rectangles can be executed in parallel as long as
rectangles can be recorded in cells concurrently. Atomic
instructions provided in the CUDA programming model are
used to guarantee it. After the operation of mapping
rectangles, the operation of matching rectangles is similar to
that of the naïve algorithm.

The cell-based algorithms are variants of the brute-force
algorithm. For the sweep-based and the sort-based
algorithms, the end points of rectangles need to be sorted. It
is possible to parallelize this sorting operation. However, the
scanning range of a rectangle is usually different with those
of other rectangles. While a thread scans the range of a
rectangle, the other threads in the warp might be disabled.
This leads to thread serialization in a warp. For tree-based
algorithms, the tree traverse operation enables the nearby

45

rectangles of a rectangle be found efficiently. As stated
above, due to varying ranges of rectangles, to find
intersections of rectangles needs to traverse different paths.
This results in different execution paths within the same
warp. Another problem for the tree-based algorithm is the
difficulties of dynamically tree construction in GPUs. As
nodes change at run-time, data in nodes need to be altered
appropriately and atomically.

In divide and conquer paradigm, the rectangle
intersection algorithms can be parallelized in some way. The
cell-based algorithms are efficiently feasible to fulfill
performing rectangle intersection computations on GPUs,
while the sweep-based, sort-based, and tree-based algorithms
that depend on control flow, are suitable to be performed and
parallelized on CPUs, like [15] and [16].

III. THE PARALLEL INTERSECTION ALGORITHM (PRI-GC)
Our algorithm can be divided into two phases: the

mapping phase and the intersection-checking phase.

A. The Mapping Phase
This phase is to partition the entire space into small cells

and to find the cells occupied by rectangles. We use static
cell size to partition the space and order them in the row
major. (The relation of cell size and performance will be
discussed in Section IV.) With this data partition, the cells
that each rectangle resides in can be calculated in parallel.
However, the information we need in the intersection-
checking phase is a list of rectangles resided in a cell for
each cell. Since the number of rectangles in a cell varies,
allocating a fixed-length array for each cell is infeasible. On
the other hand, dynamic space allocation introduces
synchronization overhead. To obtain the optimal
performance, we need the lists of rectangles are placed in
order in a continuous array.

To achieve this, we use three arrays as shown in Fig. 1.
The first array, of the same length as the total number of cells,
stores a counter for each cell that indicates the number of
rectangles occupies the cell. The second array, also sized for
the total number of cells, stores the offset of a cell, which
indicates the beginning position of the rectangle list in the
third array. The third array is a compact storage for the list
of rectangles of all cells. For example, cell c1 contains three
rectangles and the offset of cell c1 is 2. Rectangle r3, r9 and
r10 are in the 3rd, 4th and 5th element in the rectangle list,
respectively.

The algorithm of mapping is sketched as follows.
1. The information of rectangles, including coordinates and

identifications, are blocked, and each block of data are read
into the shared memory in parallel.

2. Each thread handles a constant number of rectangles. It
first read the coordinate information of each rectangle and
checks those cells it occupies.

3. Each thread increases the rectangle counter for the occupied
cells. To avoid concurrent write, the atomic instruction is
used.

4. Run the parallel prefix sum algorithm to obtain the offset
array.

5. Based on the offset, each thread fills in the rectangles. The
corresponding positions of a rectangle in the rectangle list
can be calculated according to the offset of the cell and
the order of executing the atomic instruction.

B. The Intersection-checking Phase
In this phase, the CPU and GPU co-operate in

performing intersection checking and reporting intersection
results. The CPU is to do block scheduling and to decode the
encoded intersecting pairs of rectangles. Since both jobs
need to do condition checking on two lists, counters of cells
and the intersecting list (where the GPU stores the encoded
intersecting pairs of rectangles), the CPU is suitable to
perform both jobs. The GPU is responsible for performing
comparisons and reporting the encoded intersecting pairs of
rectangles. Fig. 2 illustrates the co-operation between the
CPU and GPU. After performing block scheduling, the CPU
invokes an intersecting kernel function and then decodes the
encoded intersecting pairs of rectangles. By double buffering,
the CPU and GPU can execute at the same time so that the
time to perform the decoding process can be hid by the time
to execute the kernel function. Before explaining the
intersection-checking phase, we first define several notations
used. Let T be the block size (i.e., the number of threads per

Figure 1. Example of data structures for cells

Figure 2. The co-operation between the GPU and CPU

Counters of
Cells

Offsets of
Cells

2 12 173 03 0

0 8 205 82 5

r12r4 r6r3 r11 r1r9 r10r5 r3Rectangle List

c0 c1 c3 c5 ...

CPU GPU

decode

decode

decode

compare and encode

compare and encode

compare and encode

compare and encode

decode

Double
Intersecting

Lists

46

thread block). Let CS be the cell size and be defined as the
number of cells in partitioned space. Let cnti be the value of
the counter of cell ci. Let v(ra,i,low) be the coordinate of the
lower end point of rectangle r along ith dimension. Let
v(ra,i,up) be the coordinate of the upper end point of
rectangle r along ith dimension.

In the beginning of the intersection-checking phase, the
CPU carries out block scheduling such that each thread block
is scheduled to check intersections for at most T rectangles.
That is, if cell ci contains more than T rectangles, cnti/T
thread blocks are used for cell ci. More rectangles a cell
contains, more threads are used to check intersections for all
rectangles in the cell. If cell ci contains less than or equal to T
rectangles, cell ci is processed by a thread block or several
cells (including cell ci) are grouped and handled by a thread
block. In the following, we explain the detailed steps of the
kernel function executed by the GPU.

In the kernel function, each thread compares one
rectangle with all rectangles in the same cell. Fig. 3 shows
the execution diagram when the GPU checks intersections
for rectangles. The kernel function of the intersecting-
checking phase consists of four steps as follows:

Step 1: Each thread obtains one rectangle from the
rectangle list that its thread block needs to deal with.
According to the identification of the rectangle, it reads its
rectangle from the global memory.

Step 2: Each thread within a thread block loads a
rectangle from the global memory into the shared memory.

For example, in Fig. 3, thread t1 in Block 1 gets the
identification of a rectangle from the rectangle list first and
then loads that rectangle from the global memory into the
shared memory. Since each thread participates in loading T
rectangles into the shared memory, the number of times a
rectangle is accessed from the global memory is decreased
from T2/2 to T and each rectangle in the shared memory is
reused for T/2 times averagely. Because each pair of
rectangles has symmetric property, only half pairs of
rectangles are compared. Only T rectangles are loaded into
the shared memory at a time due to the limited amount of the
shared memory available for a multiprocessor. Until T
rectangles within the thread block have been loaded into the
shared memory, all threads within the thread block proceed
to Step 3.

Step 3: Each thread within the thread block sequentially
compare its rectangle with the rectangles that have been
loaded into the shared memory. Because of the symmetric
property of pairs of rectangles, some pairs of rectangles are
skipped. The principle of comparing two rectangles is that
the lower and the upper end points of a rectangle are
compared with those of the other rectangle along each
dimension. Formally, rectangle ra and rb intersects such that
for each dimension i

v(ra,i,low) ≤ v(rb,i,up) v(rb,i,low) ≤ v(ra,i,up). (1)

Since rectangles could be mapped to one or more cells,

two rectangles could be compared and decided as intersected
in more than one cell. This results in redundant intersecting
pairs of rectangles in the intersecting list. Fig. 4 illustrates
such a case in a 2-D environment. In Fig. 4, rectangle r1 and
r2 intersects in two cells. The pair of rectangle r1 and r2 will
be recorded in the intersecting list twice. To avoid
redundancy, we have a scheme to let threads insert
intersecting pairs of rectangles into the intersecting list
without doing synchronization. In this scheme, once a thread
decides two rectangles as intersected, the thread needs to
determine the right to write the intersecting pair to
intersecting list. First, it finds the first cell of the intersecting
area of two rectangles. If the first cell is the same as the cell
where the thread is comparing rectangles, then the thread has
the right to insert the rectangle to the intersecting list.
Otherwise, the pair of rectangles should not be inserted into
the intersecting list.

In order to find the first cell that the intersecting area of
two rectangles, we calculate one particular intersecting point
of two rectangles and calculate the cell the intersecting point
intersects. The particular intersecting point of two rectangles
is the first-considered point when performing mapping. The
coordinate of the particular intersecting point of two
rectangles ra and rb at ith dimension is

max(v(ra,i,low), v(rb,i,low)). (2)

Figure 3. The execution diagram of the kernel function in the intersecting-
checking phase

t1

...

Rectangle Segment belong to cell ci in the Rectangle List
B

lo
ck

 1
...r1 r2 rT

...r1 r2 rTr1

r2

...

rT

t2

...

tT

...r2 rT

... rT

rT

...rT+1 rT+2 r2T

... r2T

... r2T

r2T

...rT+1 rT+2 r2T

t1

...

Rectangle Segment belong to cell ci in the Rectangle List

B
lo

ck
 2

...r1 r2 rT

...r1 r2 rTrT+1

rT+2

...

r2T

t2

...

tT

...r2 rT

... rT

rT

...rT+1 rT+2 r2T

...rT+2 r2T

... r2T

r2T

...rT+1 rT+2 r2T

...

K
er

ne
l G

ri
d Pa

ra
lle

l Sequentially

Sequentially

rT+2

47

In Fig. 4, for example, p1 and p2 are the particular
intersecting points of the pair (r1 , r2) and the pair (r2 , r3),
respectively. With the intersecting points and the cell size, it
is easy to calculate the cell a point intersects. Both
calculations, to calculate the particular intersecting point of
two rectangles and to calculate the cell the point intersects,
can be done independently and efficiently.

Once two rectangles intersect, the pair of the two
rectangles is encoded and then stored in thread local-cached
memory. Since each thread compares one rectangle with
other rectangles, each thread can encode the intersecting
pairs by using the local indexes of rectangles in the cell.
Specifically, the local memory of a thread records the
elements as follows: the current cell, the number of
intersecting pairs, the local index of its rectangle and the
local indexes of other intersecting rectangles.

Step 4: When all threads within the thread block
complete the comparison operations for T (or less than T)
rectangles, all threads within the thread block write its
encoded intersecting pairs of rectangles in the intersecting
list (in the global memory). Concurrently, several thread
blocks could write the intersecting pairs of rectangles to the
global memory. To reduce the number of atomic instructions
used, we use prefix sum mechanism to calculate the offsets
by which threads can know where it can place the
intersecting pairs of rectangles in the intersecting list safely.
In this way, each thread block only performs one atomic
instruction in order to get the global offset in the intersecting
list. After this step, threads proceed to Step 2 for finding
intersections for the next T rectangles if needed. Steps 2, 3
and 4 repeat until a thread block completes the comparison
operations for all those rectangles in the same cell.

IV. RELATION OF CELL SIZE AND PERFORMANCE
In this section we discuss the cell size impact on the

performance of PRI-GC. The cell size decides the
performance of three tasks: calculate the rectangle offset
array by prefix sum algorithm, block scheduling by CPU and
intersecting kernel function by GPU. The first two tasks

operate on the rectangle counter array. Since the cell size
decides the length of the rectangle counter array, the time to
perform the two tasks is affected by the cell size. The third
task is most affected by the cell size because the cell size
decides the fact of the number of rectangles in a cell, i.e., the
number of comparisons performed. In the following, we
focus on the discussion of the cell size related to the third
task.

For PRI-GC, the comparisons carried out in the
intersection-checking phase can be classified into three
types: effective comparison, unnecessary comparison and
redundant comparison. A comparison of two rectangles is an
effective comparison (EC) if two rectangles are in a given
cell and both rectangles are overlapped. A comparison of two
rectangles is an unnecessary comparison (UC) if two
rectangles are in a cell and they are not overlapped. A
comparison is a redundant comparison (RC) if the match of
two rectangles has been performed at other cells. In PRI-GC,
the total number of ECs carried out is a constant. However,
the numbers of UCs and RCs carried out are related to the
chosen cell size. When the area of cells is larger than the
average area of rectangles, the number of UCs will increase.
Conversely, when the area of cells is smaller than the
average area of rectangles, the number of RCs will increase.
From a rectangle point of view, a rectangle is compared with
those rectangles that are close to the rectangle in terms of the
area of cells. If the area of cells is approximately equal to the
area of the rectangle, the rectangle is compared with a very
small set of rectangles only. Also, the comparisons carried
out are likely effective comparisons. (That is why our
sequential algorithm (Cell-CPU) sets the area of cells to be
the average area of all rectangles.) If PRI-GC uses the
average area of all rectangles as the area of cells, it can
minimize the number of comparisons performed.

However, in the GPU computing environment, the
performance of PRI-GC is not only related to algorithm
efficiency but also to GPU hardware efficiency. Since the
CDUA architecture employs SIMT computing model, a warp
(i.e., 32 threads in the current CUDA architecture) executes
one instruction concurrently. If a cell contains only few
rectangles (<32) that mapped to this cell, to check
intersections for the rectangles in this cell causes low
utilization of hardware resources (including computing units
and registers and shared memory).

As a result, areas of rectangles, the total number of
rectangles, and the GPU characteristics should be considered.
The choice of the cell size should make a cell to averagely
contain more or less 32 rectangles, i.e.,

 (3)

where RA is the sum of areas of all rectangles, N is the
number of rectangles, WS is the warp size, EA is the area of
an environment, CS is the cell size, i.e., the number of cells
in partitioned environment. In (3), the area of cells is roughly

Figure 4. Example of redundant pairs: (r1,r2) in cell c9 and (r1,r2) in cell
c10.

r1

r2 r3

Min Max
Min

Max

D1

D2
c9 c10

c1

c5

c13

c11

p1
p2

48

equal to 32 times of the average area of all rectangles. This
minimizes the number of comparisons performed and also
enables threads within a warp to do comparisons effectively.

V. PERFORMANCE EVALUATION
In this section, the performance of the proposed

algorithm is evaluated by the comparisons to two efficient
sequential implementations. The first one is a cell-based
algorithm, which alters the area of cells as the current
average rectangle area (Cell-CPU). The second one is a tree-
based algorithm in CGAL (Tree-CPU), which is the widely
available implementation for research. We take the 2-D box
self-intersection implementation for reference.

The experimental platform is equipped with one Intel i7
processor 2.67 GHz, 6 GB DRAM, and a Geforce GTX 480
video card. The OS used is Linux of kernel version 2.6.27.
Geforce GTX 480 contains 15 multiprocessors (480 CUDA
cores in total) and 1.5 GB DRAM. We set L1 cache size to
16 KBytes and shared memory 48 Kbytes. For the host
programs, we use GCC 4.3 and enable optimizations, –O3
and –DNDEBUG. For the device programs, we use CUDA
compiler driver 3.2. The parallel algorithms run on the host
and the device, while the sequential algorithm runs on the
host. For the parallel algorithms, we measure the time to
perform rectangle intersection computations for N rectangles,
including the time to copy rectangles to the device, to invoke
the kernel function(s), to copy the intersecting result to the
host, and to decode the intersecting result. For the sequential
algorithm, we measure the CPU time to perform rectangle
intersection computations for N rectangles. The running time
is averaged over 10 times for each test case.

In this paper, we use the Degree of Rectangle Coverage
(DRC) to adjust the density of rectangles. DRC is defined as

 (4)

where RA is the sum of areas of all rectangles in an
environment and EA is the area of the environment. The
DRC value means the average number of rectangles per unit
area. We generate the low DRC (10-7 ~ 10-3), the medium
DRC (10-5 ~ 10-1) and the high DRC (10-3 ~ 101)
environments for experiments. As the number of rectangles
simulated increases (i.e., RS increases), the DRC value
increases as well. In general, the DRC values for most
applications are within the range 10-7 to 101. For number of
rectangles equals to 107, the average numbers of intersections
for the low DRC, medium DRC, and high DRC are about
0.002N, 0.2N and 20N, respectively.

A. Performance in Varying DRC Environments
We evaluate the performance of three algorithms in the

low, the medium and the high DRC environments. The
numbers of rectangles (N) are 103, 104, 105, 106, and 107.
The block size for the parallel algorithms is 256. The

number of cells in an environment for the proposed
algorithm, PRI-GC, is 400×400.

Fig. 5 shows the execution time of the three algorithms
for different DRC environments and the speedup of PRI-GC
compared with both sequential algorithms. Fig. 6 shows the
execution time (s) taken by each task of PRI-GC in the
high DRC environment and the percentage of the execution
time for each task.

When N is small (N=103), PRI-GC is slower than both
sequential algorithms owing to the overhead of
parallelization. The major overheads are induced by block
scheduling and prefix sum operations (see task Scan and
Sched in figure 6), as are for N=104. The time by two tasks
closely relate to the length of rectangle counter array (i.e.,
equal to 400×400).

As N increases, PRI-GC outperforms both sequential
algorithms over 30x speedup for N equal to 107. In the high
DRC environment, PRI-GC outperforms Cell-CPU over
100x speedup due to the significant performance degradation
of Cell-CPU. The rectangle intersection time by PRI-GC

Figure 5. The execution time of Cell-CPU, Tree-CPU and PRI-GC and the
speedup of PRI-GC compared with both sequential algorithms: (a) Low
DRC (b) Medium DRC (c) High DRC.

49

exhibits linear growth with respect to N, while the rectangle
intersection time by Cell-CPU exhibits near-quadratic
growth with respect to N. Since PRI-GC and Cell-CPU are
of cell-based algorithms, it proves that the design of PRI-GC
is suitable (for such considerable number of rectangles) to
perform rectangle intersection computations on GPUs.

Next, we present the performance of PRI-GC with
varying cell sizes and varying block sizes in figure 7. The
combinations of experiment configuration are listed below
1. The numbers of cells used are 25×25, 50×50, 100×100,

200×200 and 400×400.
2. The numbers of rectangles are 103, 105 and 107.
3. The block sizes used are 64, 128, 256, 512, and 1024.
4. Since we are interested in large output size, the high

DRC environment is tested.

B. Performance with Varying Cell Sizes
In this section we present the performance change for

different cell sizes in Fig 7. With different numbers of
rectangles, the cell size effect on the performance is totally
different.

When N=103, PRI-GC using 25×25 cells has better
performance. As described in Section A, both tasks, the
prefix sum operations and block scheduling, dominate the
execution time. As a result, a smaller cell sizes implies less
time in scanning the rectangle counter list.

When N=105, PRI-GC using 25×25 cells performs better
than that using other numbers of cells. From our
experimental data, with the setting T=256, PRI-GC using
25×25, 50×50, 100×100, 200×200 and 400×400 cells made a
cell averagely contain 61, 37, 9, 2 and 1 rectangles,
respectively. The performance results of PRI-GC using
different cell sizes illustrated in Fig 7(b) match our analysis
in Section IV. For better performance, a cell should contain
at least 32 rectangles.

In contrast to the cases in Fig. 7(a)-(b), N is very large
(>107) such that each cell contains at least 32 rectangles even
though 400×400 cells are used. The experimental data
showed that if T=256, PRI-GC using 25×25, 50×50,
100×100, 200×200 and 400×400 cells made a cell averagely
contain 7498, 3794, 880, 158 and 82 rectangles, respectively.
As the number of rectangles a cell contains increases, many
unnecessary comparisons are performed in cells. The
performance results match our analysis of cell size. PRI-GC
using the 400×400 cells performs best, compared with other
numbers of cells used.

C. Performance with Varying Block Sizes
Now, we investigate the block size impact on the

performance of PRI-GC. The performance results are shown
in Fig. 7.

The performance change shown in Fig 7(a) is not mainly
determined by the block size. Most execution time is taken
by prefix sum and block scheduling operations, which is
related to the cell size used.

As shown in Section B, with N=105 and T=256, PRI-GC
using 25×25, 50×50, 100×100, 200×200 and 400×400 cells
made a cell averagely contain 61, 37, 9, 2 and 1 rectangles,
respectively. Fig 7(b) shows that the performance of PRI-
GC using T=64 outperforms that using other settings of T.
Since the average number of rectangles a cell contains is less
than the block size, only few threads within a thread block
are active. If T=1024 is used, this results in poor
performance due to low utilization of threads.

In Fig. 7(c), with 25×25 cells, PRI-GC using a larger
block size (e.g., 1024) has better performance than that using
a smaller block size (e.g., 64). In this case, N is large enough
such that each cell, on average, contains 7498 rectangles
(>1024 rectangles). Larger block size, more threads co-
operate in loading rectangle information from the global
memory to the shared memory. However, if 400×400 cells
are used, the average numbers of rectangles (82) in a cell

Figure 6. The execution time (µs) of PRI-GC in and the percentage of the
execution time in the high DRC environment taken by the following tasks:
DataIn: copy rectangle information, DataOut: copy encoded intersecting
results, Count: read rectangle information and increase the cell counter,
Scan: perform prefix scan, Fill: fill the rectangles into the rectangle list,
Sched: do block scheduling, SR: load rectangle information into the
shared memory, Comp: compare rectangles, LW: write encoded pairs of
rectangles to local memory, GW: write the encoded results to the global
memory.

50

decreases (<256). PRI-GC using T=64 results in lower
cooperativeness among threads, while PRI-GC setting
T=1024 results in low utilization of threads. There is a
performance tradeoff point in choosing block size. For
example, if PRI-GC using 400×400 cells and T=128 or
T=256, the performance is better than other parameter
settings.

Consider the block size used in PRI-GC. The block size
should be close to the average number of rectangles a cell
contains. The block size 256 is suggested. According to our
experimental results, it has in average performance in most
cases and best performance in some cases.

D. Performance with optimization techniques
In this subsection, we show the performance of PRI-GC

using different optimization techniques in Table I. From
Table I, we can see that PRI-GC using shared memory in our
algorithm deliveries up to 3-5x speedup, compared with the
version without any optimization. The encoding and the
overlap execution techniques can enhance about 20-40%
performance gain. In the low and medium DRC

environments, since few intersections are reported, little
performance gain by the encoding and the overlap execution
optimization is achieved. However, in the high DRC
environment, the number of intersections reported is large
(20 times of N). PRI-GC benefits from the encoding and the
overlap execution techniques.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the parallelization of

rectangle intersection computations on the hybrid system:
GPUs+CPU. Two major challenges for parallelizing this
problem are data partition and the massive output. We
presented an algorithm, called PRI-GC, which utilizes many
optimization techniques for performance enhancement. First,
to speed up the data access by memory coalescing and shared
memory, rectangles in a cell are recorded in a continuous
space. Second, to reduce the number of memory
transmissions, the intersection results, computed by GPU, are
encoded and compressed before writing into the global
memory. Third, to overlap the execution of GPU and CPU,
which is responsible for decoding and decompression, the
encoded data are stored in double buffers, and the decoding
and encoding processes are done on each buffer alternatively.

The performance of PRI-GC was evaluated with two
well-implemented sequential algorithms, and an over 30
times speedup had been observed for ten millions rectangles.
Experiments were also made to evaluate the influence of
different parameters, such as the degrees of rectangle
coverage (DRC), the block size, and the cell size. Finally, the
effectiveness of the optimization techniques used in this
algorithm was examined as well.

Owing to the importance of this problem in various
applications, further investigations on scalability and the
generalization of used techniques are required for developing
practical packages. Other implementations of different styles
of algorithms to have better load balance or processor
utilization are also of our interests. Parallelizing the more

TABLE I. The execution time of PRI-GC using different
optimization schemes in the low, medium and high DRC
environments: Without any optimization, +SM: use of shared
memory, +Encode: use of encoded scheme, +Overlap: use of
overlap execution scheme.

PRI-GC Low
DRC

Medium
DRC

High
DRC

Without any
optimization

452391
(1.0x)

532573
(1.0x)

2176840
(1.0x)

+SM 135876
(3.33x)

170908
(3.12x)

649523
(3.35x)

+Encode 379776
(1.19x)

438903
(1.21x)

1541160
(1.41x)

+Encode
+Overlap

376801
(1.20x)

429387
(1.24x)

1470930
(1.48x)

+SM
+Encode
+Overlap

137435
(3.29x)

157654
(3.38x)

380694
(5.72x)

Figure 7. The execution time of PRI-GC with varying numbers of cells and
varying block sizes: (a) N=103 (b) N=105 (c) N=107.

51

general problems, such as arbitrary-oriented rectangle
intersection problem or the triangulation intersection
problem in 3-D environments, are worth for further studies.
Moreover, we feel that the techniques developed for this
problem, such as data partition and data compression, can be
used to parallelize other related problems using GPU,
especially the problem with massive input and output data.

ACKNOWLEDGEMENT
The work of this paper is sponsored by National Science

Council under contract NSC 100-2623-E-007-016-D. The
authors would like to thank anonymous referees for their
comments.

REFERENCES
[1] J. L. Bentley and T. A. Ottmann, "Algorithms for Reporting and

Counting Geometric Intersections," Computers, IEEE Transactions
on, vol. C-28, pp. 643-647, 1979.

[2] J. L. Bentley and D. Wood, "An Optimal Worst Case Algorithm for
Reporting Intersections of Rectangles," Computers, IEEE
Transactions on, vol. C-29, pp. 571-577, 1980.

[3] H. W. Six and D. Wood, "The rectangle intersection problem
revisited," BIT Numerical Mathematics, vol. 20, pp. 426-433, 1980.

[4] V. K. Vaishnavi and D. Wood, "Rectilinear line segment intersection,
layered segment trees, and dynamization," Journal of Algorithms, vol.
3, pp. 160-176, 1982.

[5] H. Edelsbrunner, "A new approach to rectangle intersections part I,"
International Journal of Computer Mathematics, vol. 13, pp. 209 -
219, 1983.

[6] D. J. V. Hook, et al., "Approaches to RTI Implementation of HLA
Data Distribution Management Services," in the 15th Distributed
Iinteractive Simulation Workshop, 1996, pp. 96--14--084.

[7] M. D. Petty and A. Mukherjee, "Experimental Comparison of d-
Rectangle Interection Algorithms Applied to HLA Data Distribution
", 1997.

[8] A. Zomorodian and H. Edelsbrunner, "Fast software for box
intersections," presented at the Proceedings of the sixteenth annual
symposium on Computational geometry, Clear Water Bay, Kowloon,
Hong Kong, 2000.

[9] G. Tan, et al., "A hybrid approach to data distribution management,"
in the Fourth IEEE International Workshop on Distributed Simulation
and Real-Time Applications, 2000, pp. 55-61.

[10] C. Raczy, et al., "A sort-based DDM matching algorithm for HLA,"
ACM Transactions on Modeling and Computer Simulation, vol.
Volume 15 Issue 1, pp. 14-38, 2005.

[11] K. Pan, et al., "An Efficient Sort-Based DDM Matching Algorithm
for HLA Applications with a Large Spatial Environment," in the 21st
International Workshop on Principles of Advanced and Distributed
Simulation, 2007, pp. 70-82.

[12] P. Gupta and R. K. Guha, "A Comparative Study of Data Distribution
Management Algorithms," The Journal of Defense Modeling and
Simulation on Applications, Methodology, Technology, vol. Volume
4 Issue 2, pp. 127-146, 2007.

[13] O. Eroglu, et al., "Quadtree-based approach to data distribution
management for distributed simulations," presented at the the 2008
Spring simulation multiconference, Ottawa, Canada, 2008.

[14] A. L. Chow, "Parallel algorithms for geometric problems," University
of Illinois at Urbana-Champaign, 1980.

[15] E. S. Liu and G. K. Theodoropoulos, "An Approach for Parallel
Interest Matching in Distributed Virtual Environments," in
Proceedings of the 2009 13th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, 2009, pp. 57-
65.

[16] V. H. F. Batista, et al., "Parallel geometric algorithms for multi-core
computers," Computational Geometry, vol. 43, pp. 663-677, 2010.

[17] L. Kettner, et al. Intersecting Sequences of dD Iso-oriented Boxes.
Available:
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Box_inters
ection_d/Chapter_main.html

[18] M. I. Shamos and D. Hoey, "Geometric intersection problems," in
Foundations of Computer Science, 1976., 17th Annual Symposium
on, 1976, pp. 208-215.

[19] M. d. Berg, et al., Computational geometry : algorithms and
applications, 3rd ed. Berlin: Springer-Verlag, 2008.

[20] A. Boukerche, et al., "Grid-Filtered Region-Based Data Distribution
Management in Large-Scale Distributed Simulation Systems," in the
38th Annual Simulation Symposium, 2005, pp. 259-266.

[21] C. L. Ming and G. Stefan, "Collision Detection Between Geometric
Models: A Survey," in IMA Conference on Mathematics of Surfaces,
San Diego, CA, 1998.

[22] M. H. Overmars, "Point location in fat subdivisions," Inf. Process.
Lett., vol. 44, pp. 261-265, 1992.

[23] The OpenMP API Specification for Parallel Programming. Available:
http://openmp.org/wp/

52

