
A Method-Based Ahead-of-Time Compiler
for Android Applications

Chih-Sheng Wang

National Tsing Hua University
Location City: Hsinchu

Location Country: Taiwan

alextrax@sslab.cs.nthu.ed
u.tw

Wei-Chung Hsu
National Chiao Tung University

Location City: Hsinchu
Location Country: Taiwan

hsu@cs.nctu.edu.tw

Guillermo A. Perez
National Tsing Hua University

Location City: Hsinchu
Location Country: Taiwan

gaperez64@sslab.cs.nthu.
edu.tw

Wei-Kuan Shih
National Tsing Hua University

Location City: Hsinchu
Location Country: Taiwan

wshih@cs.nthu.edu.tw

Yeh-Ching Chung*
National Tsing Hua University

Location City: Hsinchu
Location Country: Taiwan

ychung@cs.nthu.edu.tw

Hong-Rong Hsu
MediaTek Inc.

Location City: Hsinchu
Location Country: Taiwan

hong-
rong.hsu@mediatek.com

ABSTRACT
The execution environment of Android system is based on a

virtual machine called Dalvik virtual machine (DVM) in which
the execution of an application program is in interpret-mode. To
reduce the interpretation overhead of DVM, Google has included
a trace-based just-in-time compiler (JITC) in the latest version of
Android. Due to limited resources and the requirement for
reasonable response time, the JITC is unable to apply deep
optimizations to generate high quality code. In this paper, we
propose a method-based ahead-of-time compiler (AOTC), called
Icing, to speed up the execution of Android applications without
the modification of any components of Android framework. The
main idea of Icing is to convert the hot methods of an application
program from DEX code to C code and uses the GCC compiler to
translate the C code to the corresponding native code. With the
Java Native Interface (JNI) library, the translated native code can
be called by DVM. Both AOTC and JITC have their strength and
weakness. In order to combine the strength and avoid the
weakness of AOTC and JITC, in Icing, we have proposed a cost
model to determine whether a method should be handled by
AOTC or JITC during profiling. To evaluate the performance of
Icing, four benchmarks used by Google JITC are used as test
cases. The performance results show that, with Icing, the
execution time of an application is two to three times faster than
that without JITC, and 25% to 110% faster than that with JITC.

 Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors - Compilers,
Optimization, Parsing

General Terms

Performance, Design, Experimentation, Languages

* The corresponding author

Keywords

Ahead-of-time compiler, just-in-time compiler, reverse
engineering, Android, Dalvik bytecode, static profiling

1. INTRODUCTION
Android [1] is an open source and customizable mobile

platform introduced by the Open Handset Alliance (OHA),
established by Google and other companies in 2007. It is based
on the Linux Kernel 2.6 and is accompanied with the Dalvik
virtual machine (DVM) to support interoperability among
different mobile devices. The instruction set of DVM is register-
based and the virtual machine code is called DEX bytecode. To
execute an Android program on DVM, the Android program is
first compiled into Java bytecode by the javac compiler [12]. The
Java bytecode is then converted to DEX bytecode by a Java-to-
DEX translation tool called DX [13]. Overall, the execution
mechanism of DVM is similar to the Java virtual machine (JVM).

Although the register-based DEX bytecode is easier to
interpret than stack-based Java bytecode, the interpretation
overhead is still significant. To minimize the interpretation
overhead, JITC and AOTC are two commonly used optimization
methods. For the JITC method, it can take advantage of runtime
profiling (usually more representative than static profiling), but
may suffer from compile time, power consumption and memory
usage. On the other hand, the AOTC method is less constrained
by memory usage, power consumption and time to
compile/optimize. It can apply deep analyses and optimizations to
generate high quality code.

In Android 2.2, a trace-based JITC has been provided in DVM.
Overall, the JITC compiled code is 2 to 5 times faster than the
original DEX bytecode according to Google’s experiments on the
mobile device Nexus One. However, there still is room for
performance improvement because the Dalvik JITC, so far only,
exploits some simple optimizations such as load/store elimination,
redundant null-check elimination, and so on.

AOTCs, in general, can be divided into two categories:
standalone-mode and mixed-mode. A standalone-mode AOTC
compiles the whole application, including Java libraries, into
native codes. A mixed-mode AOTC compiles only hot methods
(methods that consume a significant fraction of execution time)
into native codes, and relies on the virtual machine to handle non-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10...$10.00.

15

translated code. On resource constrained platforms, such as the
mobile devices, the standalone-mode AOTC approach may not be
suitable since the native code generated often exceeds many MBs.
Using the mixed-mode AOTC approach, only a small portion of
time consuming codes are translated into native codes. The rest of
the codes and libraries can be leveraged from the VM
environment. This imposes a much smaller memory requirement
than the standalone-mode AOTC approach. In the mixed-mode
AOTC approach, AOTC and JITC can also collaborate with each
other to get better performance.

In this paper, we have implemented a mixed-mode AOTC,
called Icing, for Android applications. The goal of Icing is to
reduce interpretation overhead of DVM and to exploit more
aggressive optimizations than JITC to improve the performance of
Android applications. The main idea of Icing is to identify and
compile time consuming methods of an Android application into
native codes, and allow such native codes to be called by the
DVM via JNI at run time. How to select hot methods for native
code translation and how to translate a DEX bytecode to an
efficient native code are the two main challenges of Icing.

The selection of hot methods for native code translation
consists of two steps. In the first step, a static proofing technique
is used to calculate the execution frequency of each method of an
Android application. Those with high execution frequency are
selected as candidate hot methods. The downside of using JNI as
the interface is its high overhead. For example, for the native
code to access information from the DVM side, such as field
references, the access time can be 2 to 10 times slower than
directly accessing from the DVM side. Therefore, it is imperative
that Icing must carefully select methods to compile in order to
minimize the communications between DVM and the native code.
In the second step, we propose a cost model to determine whether
it is worth to translate a candidate method to native code in terms
of the execution time gained by native execution and the number
of JNI calls. If the translation of a candidate hot method to native
code can speed up the execution of an Android application, the
candidate hot method will be translated to native code.

For the translation of a DEX bytecode to an efficient native
code, a DEX bytecode is first translated to C code. The C code is
then translated to native code using GCC compiler. A set of
techniques have been proposed to handle some translation
challenges such as information loss during code conversion and
variable type recovery from mapping a low level typeless register
to a high level C variable with a data type. To minimize the
impact of information loss, Icing provides annotations to the
immediate forms during the DEX-to-C conversion process. For
variable type recovery, Icing supports two approaches, one with
variable renaming and the other using the C union to allow
different types housed in one memory location. In order to further
reduce the overhead of JNI operations, we have also integrated
three optimizations: ahead-of-time constant pool resolution,
caching the information of method/field ID’s obtained from DVM
for quick references in the native code, and cloning methods in
native side to avoid context changing overhead.

To evaluate the performance of Icing, four benchmarks used
by Google JITC are used as test cases. They are CaffeineMark
3.0 [17], Checkers game [24], Linpack [23], and the BenchmarkPi
[22]. The performance results show that, with Icing, the
execution time of an application is two to three times faster than
that without JITC, and 25% to 110% faster than that with JITC.

The rest of this paper is organized as follows. In Section 2, the
overview of the Icing framework is given. The static profiling

model is presented in section 3. In Section 4, the detail of DEX-
to-C translation and what optimizations are employed in the Icing
framework are described. Experimental results are shown in
section 5. In Section 6, the related work is given.

2. OVERVIEW

2.1 Icing Components
The Icing framework is composed of three components, a

static profiling model, an Icing AOTC, and a bridge library. The
static profiling model is used to find out which methods are
suitable for AOTC and which are better to be handled by the
interpreter or JITC. The entire profiling process is conducted at
static time. The Icing AOTC is used to translate selected hot
methods into C code, translate the C code to native code, and link
the native code with the bridge library. The bridge library is
implemented with JNI, and contains APIs to handle operations of
accessing DVM’s resources from the native side.

2.2 The Execution Flow of Icing
Figure 1 illustrates the execution flow of Icing. At the

beginning, the static profiling model is used to help identifying
hot methods of a DEX bytecode. Methods of an Android
application will be divided into two sets, AOTC and JITC lists.
For methods in the AOTC list, their DEX bytecodes are fed into
the Icing AOTC as input. After compilation, Icing modifies the
original DEX bytecode by replacing the original hot method’s
bytecode with a native header, so that each method that invokes
the hot method will call the native code generated by Icing. At
this stage, the package with the modified DEX code and the native
code generated by AOTC is built into a new application (.apk).
Finally, the newly optimized application can be executed on the
DVM and can switch between the native side and the DVM with
the help of the bridge library.

3. The Static Profiling Model
Unlike GCJ [2] and Toba [4], Icing does not implement the

entire Java/Android core libraries as native code for the code size
issue. Icing instead exploits the JNI to support the invocation of
core libraries and the accessing of fields from the DVM side.
Therefore, the goal of the static profiling model is to classify
methods of an Android application into AOTC and JITC lists.

Figure 1. The Icing framework

DEX bytecode

Static Profiling
Model

JIT

Dalvik VM
AOT

Compilation

Native code

New .apk

Bridge library

Method for
AOTC

Method for
JIT

16

3.1 The Profiling Method
In Icing, we use Traceview [28], a profiling tool provided by

Google, to collect the run-time information of methods of an
Android application. The information collected includes the call
graph, the execution time of each method, the frequency of
invocations, and the execution time percentage of each child
method. Since the Android application is only executed once by
the Traceview, Icing uses a static profiling approach to collect
run-time information of methods of an Android application. The
drawback of the static profiling approach is that the input data of
an application may change from one run to the other. It is hard to
guarantee that the statically collected profile information can
cover all the running circumstances at runtime. To minimize the
impact from inaccuracy introduced by the static profiling
approach, we use the Monkey [25] program to generate potential
user behaviors as much as possible at static time. The Monkey
[25] is a program provided by Google. It generates random
streams of user events such as clicks, touches, or gestures. Some
experimental results on smart phones show that the Monkey can
almost cover all paths for some embedded applications and
enhance the quality of the static profiling approach.

3.2 Detecting Hot Methods
Since we prefer not to compile the core libraries, the

opportunity for improvement resides in user defined methods that
are hot. The main idea of the hot method detecting mechanism is
to collect and count the occupancy of the user-defined methods in
the entire execution-flow, and add the methods whose occupancy
exceed a predefined threshold to the candidate AOTC list. The
counting flow is organized into the following steps:

 Step 1: Select one of the most time-consuming methods
according to profiled data and check the self-code
execution rate of this method. If the self-code execution
rate of the selected method is over a pre-defined threshold,
e.g. over 80%, push the selected method into the candidate
AOTC list. If it is not large enough, the occupancy of the
selected method is equal to its self-code execution rate and
go to step 2.

 Step 2: Check all user-defined child methods of the
selected method and add their execution rates on user-
defined codes to the occupancy of the select method
recursively.

 Step 3: If the occupancy of the selected method is over a
pre-defined threshold, push the selected method in to the
candidate AOTC list.

Through this hot method detecting mechanism, a method
which spends a lot of time on the core library will have a low
occupancy, and is not considered a candidate for Icing.

An example is given in Figure 2 to show the occupancy
calculation of a method. In Figure 2, we assume that method A is
one of the most time-consuming methods according to profiled
data. Since the self-code execution rate of method A is 50% and
is not over 80%, the occupancy of method A is 50% and we
proceed to Step 2 to check the user-defined child methods of
method A. In this example, it is method A_1. We need to add the
execution rate on user-defined code of method A_1 to the
occupancy of method A. Since method A_1 has a user-defined
child method A_1_1, the execution rate on user-defined code of
method A_1 is equal to the execution rate of method A_1 times
the sum of the self-code execution rate of method A_1 and the
execution rate on user-defined child method of method A_1,
which is 30% * (50% + the execution rate on user-defined code

of method A_1_1). Since method A_1_1 has no user-defined
child method, the execution rate on user-defined code of method
A_1_1 is 35% * 70%. The final occupancy of method A is 50% +
30% * (50% +35% * (70%)) = 72.35%, which indicates that the
execution-flow started from method A spent 72.35% of its
execution time on the user-defined code.

3.3 Avoid Invocation Overhead
Besides the hot method detecting mechanism, we need to

avoid compiling methods which contains frequent JNI invocations
by the native code generated from Icing. A simple mechanism is
proposed based on the ratio of the number of JNI invocations of a
method to the execution time of that method. If the ratio exceeds
a threshold, we exclude the method from the candidate AOTC list.
This mechanism helps us to minimize the impact of frequent JNI
invocation overhead. However, if the threshold is not set
appropriately, the performance will go down. The threshold is
currently set based on the feedback from a set of experiments.
For example, if the number of JNI invocations exceeds 700 times
per second, it is unwise to convert this method to native code. In
the future, we will set the value adaptively based on the prediction
of the performance gap between code generated by Icing and JITC.

3.4 The Cost model
Based on the concept described above, we define a cost

model to identify which methods are suitable for AOTC and
which are good for JITC. Figure 3 shows how the cost model
works. First, we calculate each method’s occupancy with the
approach provided in section 3.2. Those methods whose
occupancy does not exceed the threshold are put to JITC list and
other methods are in the candidate AOTC list. For each method
in the candidate AOTC list, we then check if the ratio of the
number of JNI invocations of a method to the execution time of
that method exceeds the predefined threshold. If so, then it is in
the JITC list. Otherwise, it is in the AOTC list.

4. COMPILATION AND OPTIMIZATION
In this section, we discuss how to translate the DEX

bytecode to native code and what additional optimizations are
implemented in the Icing framework.

4.1 DEX-to-C Convertion
The main work of the Icing AOTC is to translate DEX

bytecode to C code. The work is based on the COINS compiler
infrastructure [27]. The translation steps are shown in Figure 4.

Figure 2. An example of the profiled data used in Icing

17

4.1.1 DEX code Preprocessing
In this preprocessing, the DEX binary is disassembled into a

human-readable file by using backsmali and dexdump.
Smali/backsmali [14] is an open source tool which serves as the
assembler and disassembler for DEX bytecode. Dexdump is a
DEX disassembler provided by Google. We employed both tools
in order to obtain all the necessary information needed for
converting DEX bytecode to C code. The JNI headers, which
play the role of bridging DVM and native code, are generated as a
side product. The main purpose of this phase is to generate a
better prepared DEX code and parse it into the COINS’s IR. Two
additional works have been included in this step. The first is to
chain the hot methods together to form cycles of native calls.
This can reduce the associated overhead of procedure calls. The
second one is to insert annotations to provide information for the
upcoming compilation steps.

Chaining the hot methods can be done by modifying the
indirect-jump bytecode instructions. We first analyzed the
bytecode statically and collected child method information of the
hot methods. If the child method is a user-defined method, we
patch the branch instruction in the parent with a direct jump to the
compiled native child method. This is to avoid unnecessarily
switching back and forth between native mode and DVM mode.
More details will be provided in the optimization section.

Annotation to the DEX code is a way to keep important
information around for building the COINS’s IR and later
translating IR to C code. Table 1 lists the annotations we have
used. In Table 1, the “.descriptor” gives hints about a method’s

parameter type and return type to help constructing a method’s
parameters and return variable from virtual registers to C
variables. For example, “.descriptor %(I)I non-static %” indicates
that the non-static function which is going to be compiled has one
integer parameter and returns an integer value. The “.arrayType”
informs if an array is a class field or local variable. The “.line”
records a bytecode’s line number. The “offset/index” records the
offset resolved by the dexopt tool for optimizing the call-back
operations. For example, “+iget-quick v3, v6, [obj+0014] I”
represents that we want to get an integer field from object v6,
store it to v3, and the offset of this field is “0014”.

Annotation
kind

Example

.descriptor .descriptor %(I)I non-static %

.arrayType .arrayType %[[D% 1

.line .line 43

offset/index +iget-quick v3, v6, [obj+0014] I

4.1.2 DEX-to-C type recovery issues
An ideal AOTC should translate DEX code directly to native

code. However, building such a compiler, especially with
comprehensive optimizations, is a time consuming and daunting
task. One compromise is to leverage some existing compiler
infrastructures, such as the GCC and the LLVM compilers.
Therefore, we have determined to take the path of translating
DEX code to C code, and take advantage of GCC’s mature
optimizations. There are some issues in the DEX-to-C translation
process.

The first one is that Java is an object-oriented language and
provides various features to support object types, such as instance
creation, static/virtual method invocation, field accessing, etc.
Since those features are usually done through JNI, we have
implemented them as part of our bridge library to cover these
features in the translated C code.

The second one is to handle function overloading in Java. We use
the method renaming approach to rename each method to a unique
name in C. For example, the method “int execute(void*)” in class
“com.android.cm3.StringAtom” is renamed to “int
com_android_cm3_StringAtom_execute_VSTAR (void * v6)” by
the Icing AOTC in the translated C code.

Figure 4. The DEX-to-C compilation flow of Icing +iget-object-quick v4, v6, [obj+0010] Ljava/lang/String;

...

mul-int/lit8 v4, v1, #int 65 // #41

...

Figure 5. Virtual registers of DEX bytecode

int v4;

…

void * Ljava_lang_stringBuffer_v4;

…

Figure 6. Example code of variable renaming

Table 1. An example of annotations

Figure 3. The Cost model to classify methods

18

The third one is that the bytecode instructions of Dalvik
virtual machine are register-based, which means all computations
are handled at the register level by using almost unlimited
numbers of virtual registers. So there is a type recovery issue
similar to what happens during traditional assembly-to-C
translations. When mapping a virtual register to the C code, we
usually map a register to a unique variable name. However, a
virtual register is basically typeless. Like a general purpose
register, it can store any data. The DEX bytecode, as shown in
Figure 5, illustrates the issue involved. From Figure 5, we can see
that register v4 was used to store the java.lang.String object by the
instruction “+iget-object-quick”, but was loaded with an integer
value later by the instruction “mul-int/lit8”. What type should be
set when virtual register v4 is converted to a C variable?

One commonly used solution for type recovery is renaming,
which applies live-range analysis to split one virtual register into
multiple sub-live-ranges, and each sub-live-range can be mapped
to a different variable with its own type. However, this will
drastically increase the number of variables used, and requires
complex analyses. With the help of type information annotations
from the preprocessing of DEX code, we can map each virtual
register to a union variable that includes eight primitive types, and
one pointer for object types. By doing so, we reduce the
complexity of type recovery and the number of variables required
in C code. Figures 6 and 7 give the example codes of the two
mechanisms.

4.1.3 Code generation
After the preprocessing shown in Figure 4, the DEX code is

parsed into the High-level Intermediate Representation (HIR) of
the COINS compiler infrastructure, and the corresponding C code
is generated with the support of the COINS’s HIR-to-C translator.
Eventually, the C code is compiled into a shared library with the
arm-gcc-4.4.0 by the Android NDK. Furthermore, we developed
some APIs to handle the accesses to the VM’s resources from the
native side, and packaged them with the bridge library. The
package is compiled with the native code later. These APIs
perform operations such as method invocation, field accessing,
instance creation and so on.

4.2 Optimizations
With JNI, Java code is able to call functions implemented

with other languages. However, JNI suffers from time and space
overhead just like other mechanisms of supporting interoperability.
The causes of JNI overhead can be divided into two categories,
call-out and call-back operations. The call-out operations are used
by the VM to invoke a native function through JNI. The
overheads of the call-out operations include argument passing,
native initialization, returning from native code, etc. Such
overheads can sometimes be reduced via dynamic inlining
optimizations.

The call-back operations are used by the native code to access
VM’s resources. Compared with the call-out operations, the call-
back operations involve more significant overhead since they need
to access the VM’s resources from the native code. The call-back
operations may suffer from the indirect-jump overhead caused by
referencing the JNI environment variable. In addition, when a
call-back operation is executed, it takes significant amount of time
to resolve the offset or index in the constant pool and then
performs a context-switch. Table 2 shows the comparison of the
execution time of a call-back operation to the time of an
equivalent operation in the VM side. In Table 2, each operation
performs a thousand times. As we can see, the performance gap is
so wide that some optimizations are called for. A native call
inlining mechanism was presented by Levon Stepanian et al. [20]
to eliminate the JNI call-out and call-back overheads. Here,
without the necessity of modifying Android’s DVM, we focus on
optimizing the call-back overhead to improve the quality of
generated native code. We introduce three optimizations that are
applied in Icing. They are ahead of time resolution, caching, and
method cloning.

4.2.1 Ahead of time resolution
To avoid slow field accessing from the native side, some

types of instructions such as field accessing and method
invocation are organized with a reference in symbolic forms. The
reference is converted to offset/index later. This process is called
constant pool resolution. In order to eliminate the overhead of
constant pool resolution during run-time, we get the variables’
offset in the constant pool ahead of time. The dexopt [15], a tool
provided by Android, makes this job easier. The DEX bytecode
after optimization by this tool is called ODEX. Some constant
pool referencing instructions in ODEX are replaced by a quicker
version, which reference the constant pool by means of offsets.
With the information provided by ODEX, we can significantly
speed up call-back operations in the translated native code.
However, this does not include static references because the
offsets of static references are related to the address from where
the class is loaded.

 Native Java

Non-static field 127.2 ms 11.8 ms

Static field 108.6 ms 6.2 ms

Non-static
method

42.8 ms 2.0 ms

Static method 124.5 ms 31.1 ms

typedef union _JValue {

 jboolean z;

 jbyte b;

 jchar c;

 jshort s;

 jint i;

 jlong j;

 jfloat f;

 jdouble d;

 void* l;

} _JValue;…

…

v4.l = (hir___ADDR(_dvmGetFieldObject))
(v6,(hir_t_int)16);

 …

v4.i = hir___MULT(v1.i,(hir_t_int)65);

Figure 7. Example code of union variables

Table 2. The time of 1000 call-back operations

19

4.2.2 Caching
For the static field accessing and static method invocation,

there are no short cut solutions provided by ODEX, such as the
ahead of time resolution. Therefore, we implement a caching
mechanism for improving the performance of static call-backs.
To access the VM’s resource in a standard way through JNI the
class of the object is obtained first, then the method/field ID is
found by name comparison, finally, the call-back operation is
performed with this ID.

To reduce this referencing overhead, the ID is cached at the
native side. A hash table is used to record the method/field ID
based on the method name or field name. Whenever a static call-
back occurs, the hash table is looked up for the cached ID. If
there’s a match, the ID found is applied during static referencing.
Otherwise referencing is carried out as normal and the newly
found ID is put into the hash table for later use. Although this
mechanism comes with some time and space overhead, the
locality of ID reference allows a high hit rate in cache and yields
six times performance improvement over the original solution.

4.2.3 Method cloning
In order to minimize context switch overhead between the

native side and the DVM side, we compile all the child methods
of those candidate methods. Furthermore, we patch the invoke
instruction to direct branches so as to keep the execution context
in native side as long as possible. Basically, this optimization
greatly improves the performance of method invocation in native
side. However, there is a downside to this approach: the total
code size is increased due to code duplication for each child
method in native side. As shown in Figure 8, method B invokes
method C and native method D by using JNI originally, and this
mechanism brings about significant overhead if the invocations
happen frequently. To reduce the number of JNI invocations, we
compile method C into a native version and replace the invoke
instruction of method B with a direct jump to the compiled
method C and native method D, as shown in the right hand side of
Figure 8. Furthermore, we do not remove the Java version of
method C. By doing that, the number of context switches
between DVM and native side will be greatly reduced at both
sides.

5. EXPERIMENTAL RESULTS
To evaluate the performance of Icing, four Android

applications, CaffeineMark 3.0 [17], Checkers game [24],
Linpack [23], and the BenchmarkPi [22], are used as benchmarks.
These four programs can be downloaded from Android Market
and have been used to test the performance of Dalvik JITC by
Google. Our experimental environment is based on the HTC G1

mobile device running on Android 2.2. The measurements are
based on four configurations, original, JIT, Icing, and Icing+JIT.
For the original configuration, benchmarks are executed without
the help of JITC and Icing. For the JITC configuration,
benchmarks are executed with JITC. For the Icing configuration,
benchmarks are executed with Icing. For the Icing+JIT
configuration, benchmarks are executed with Icing and JITC.

5.1 Performance of CaffeineMark 3.0
CaffeineMark 3.0 is one of the well adopted benchmarks for

measuring the performance of Java. It contains a series of tests,
and the scores generally represent the number of Java instructions
executed per second. Table 3 gives a description of the tests used
in CaffeineMark 3.0. Figure 9 shows the performance results of
CaffeineMark 3.0. Note that in this run, the profiling model in
Icing has not been applied yet. As shown in Figure 9, the scores
of Icing and Icing-plus-JIT, even without the profiling model, are
much better than the original runs and JITC runs, in most test
cases except for the String test. Overall, the Icing+JIT run has the
best performance. The performance anomaly of the String test is
due to the frequent JNI invocations.

Item Description

Sieve The classic sieve of Eratosthenes finds prime
numbers.

Loop The loop test uses sorting and sequence generation as
to measure compiler optimization of loops.

Logic Tests the speed with which the virtual machine
executes decision-making instructions.

Method The Method test executes recursive function calls to
see how well the VM handles method calls.

Float Simulates a 3D rotation of objects around a point

String Operation of basic string

Table 4 shows the profiling information of the top 8 hot
methods. The “Method” column represents the name of each
method. The “Weight” column means the occupancy calculated.
The “Calls” column shows the number of JNI call-back operations.
The “Time” column gives the execution time of each method.
According to the profile information in Table 4, the method
SieveAtom.execute performs no JNI call-back invocations in

1
10
100

1000
10000

100000

CaffeineMark 3.0 score on Icing without
method partitioning

original

JIT

Icing

JIT + Icing

Figure 8. Method cloning Figure 9. CaffeineMark 3.0 scores without the cost model

Table 3. Description of each CaffeineMark 3.0 item

20

7.469956 seconds. However, the method StringAtom.execute
performs 5061 JNI call-back operations in 4.56556 seconds.
Overall, the method String.execute has the largest ratio of the
number of JNI invocations to the execution time of String.execute.
The JNI call-back operation overhead degrades the performance
of this test. Besides, the JNI operations here has to pass complex
object arguments such as strings or arrays which results in
expensive copy operations from native side to the DVM side. By
applying the cost model mentioned in Section 3, we can
successfully avoid to translate the method StringAtom.execute to
native code. Figure 10 shows the scores after applying the
profiling model for CaffeineMark 3.0. From Figure 10, we can
see that the perofrmance of Icing is now as good as JITC for the
String test. We also observe that the score of CaffeineMark 3.0 is
7.3 times higher than that without JITC, and 2.83 times higher
than that with JITC.

Method Weight Calls Time (s)

SieveAtom.execute 23.9 0 7.469956

LoopAtom.execute 8.5 0 2.659588

LogicAtom.execute 12.0 0 3.764250

StringAtom.execute 1.5 5061 4.56556

FloatAtom.execute 11.4 2665 3.576081

MethodAtom.execute 21.7 0 7.2172

MethodAtom.notInlinea
bleSeries

11.0 0 3.461429

MethodAtom.arithmetic
Series

10.5 0 3.264694

5.2 Performance of Linpack
The Linpack benchmark has been used for many years to

test floating point computation. It measures a computer’s
performance by solving a linear equation Ax = b. A great
improvement introduced by Icing can be revealed in Figure 11.
From Figure 11, we can see that the Icing+JIT run has the best
performance. We also observe that the execution of Linpack is 2
times faster than that without JITC, and 1.25 times faster than that
with JITC. The results are a little bit discouraging. The reason is

that the JNI issue comes out again, which can be observed from
the last column. The matgen is a method of the Linpack
application, which performs the JNI call-back invocations 80004
times in 5.336383 seconds. Therefore, we got essentially no
benefit from compiling the matgen method ahead of time. Note
that the current experimental platform HTC G1’s ARM-based
Qualcomm MSM7201 CPU does not have VFP (Vector Floating
Point), so all the floating point operations of Linpack are based on
software emulation. This significantly limits the potential
performance contribution of applying aggressive compiler
optimizations such as instruction scheduling and loop
transformations. The speedup of Linpack from Icing can be far
better if the underlying hardware has a floating point unit.

5.3 Performance of BenchmarkPi
The BenchmarkPi is another popular application on the

Android Market. It can test a device by calculating the valued of
Pi, and is a very useful tool to test the performance of a CPU. In
this benchmark, Icing compiled the method that is responsible for
the main workload of BenchmarkPi. The performance results are
shown in Figure 12. From Figure 12, we can see that the
Icing+JIT run has the best performance. We also observe that the
execution of BenchmarkPi is 2.9 times faster than that without
JITC, and 2.1 times faster than that with JITC.

1

10

100

1000

10000

100000

CaffeineMark 3.0 score on Icing

original

JIT

Icing

JIT + Icing

Figure 10. CaffeineMark 3.0 scores with the cost model

Figure 11. Performance comparison of Linpack

Table 4. Profiling information of CaffeineMark 3.0

Figure 12. Performance comparison of BenchmarkPi

21

5.4 Performance of Checkers
Checkers is a famous game. It is CPU intensive and is one of

Google’s favorite benchmarks to test the performance of Dalvik
JITC. As the name implies, Checkers is a game playing on an 8x8
board of checkers against the computer. Whenever the computer
finishes thinking of the next step to go, it shows a number of
potential future moves on the bottom right corner. In other words,
the faster your computer is, the more challenging the game will be
for a human. The performance results are shown in Figure 13.
From Figure 13, we can see that the Icing+JIT run has the best
performance. We also observe that the execution of Checker is
2.61 times faster than that without JITC, and 1.67 times faster
than that with JITC.

5.5 Comparisons of Icing and GCJ
It is worth comparing Icing (a mixed-mode AOTC) and

GCJ (a standalone-mode AOTC) in terms of code size and
performance of codes they generated. Since Icing is running
on DVM and GCJ is running on JVM, we use CaffeineMark
3.0 that has both Android and Java versions as the benchmark
for the comparison. Table 5 shows the the code size of
CaffeineMark 3.0 with and without the optimization of Icing
and GCJ. From Table 5, we can see that the code sizes of
CaffeineMark 3.0 before and after the optimization of Icing
are 17 KB and 69 KB, respectively. However, the code sizes
of CaffeineMark 3.0 before and after the optimization of GCJ
are 13 KB and 44.1 MB, respectively. Even after we
dynamically link the generated code with the GCJ’s shared
library, it still requires 125 KB for the object code and 31.3
MB for the GCJ’s library.

Figure 14 shows the perofrmance of CaffeineMark 3.0
with and without GCJ. The experimental environment is Java
HotSpot(TM) Client VM [26] running on PC, and the
performance comparison is given when GCJ is applied with
and without static linking. The last bar “GCJ_static_opt”
indicates that all optimizations of GCJ are applied on the
generated code. From Figure 14, we can observe that the
performance of the last bar (with all GCJ optimizations) can be
even worse than the “JVM (enable JIT)” bar in some cases.
Also the performance advantage of GCJ over JIT is not clear
in most cases.

 CaffeineMark 3.0

Method Original Optimized

Icing 17 KB 69 KB

GCJ (static) 13 KB 44.1MB

GCJ (dynamic) 13 KB 31.425MB

Overall, the comparion descibed above indicate that a mixed-
mode AOTC like Icing that only compiles hot methods to native
codes is a more desirable approach for mobile devices compared
to a standalone-mode AOTC like GCJ in terms of code size and
performance of codes they generated. Also, keeping native code
running at the native side and reduce the number of JNI
invocations are very important for Icing. With the optimizations
and the profiling mechanism we proposed, Icing has achieved a
great improvement for Android applications.

6. RELATED WORK
Previous AOTCs for Java virtual machine can be divided

into two classes: standalone-mode and mixed-mode. Standalone-
mode AOTCs, like Toba [4] and GCJ [2], translate the whole
application to native code as a standalone executable. On the other
hand, mixed-mode AOTCs only compile the hot spots and interact
with VM, such as Harissa [5], TurboJ [6] and our work. Despite
being able to use the AOTC to translate bytecode into native code
directly, we take the path to generate C code first and then
compile the C code with existing compilers to exploit the
advantages of mature machine independent and machine
dependent optimizations. . This approach has been inspired by A.
Varma et al. [7] and G. B. Muller et al. [5], who built Harissa and
were influential in the early discussions of our AOTC
development. Muller also suggested using class hierarchical
analysis [8], and transforming virtual calls into non-virtual calls
for optimization.

On the aspect of profiling, Chandra Krintz et al. [9] [10]
proposed a mechanism to reduce the JITC’s run-time compilation
overhead by adding annotations at static time. Apart from this,
Krintz et al. combined the on-line and off-line profile information
to apply different level of optimizations. Sunghyun rt al. [11]
implemented a client-AOTC to reduce the translation and memory
overhead of JITC by storing the native code generated by JITC in
the permanent storage. They also proposed an approach to deal
with the constant resolution issue when the native code is reused

0

1

2

3

4

5

original JIT Icing Icing +
JIT

sp
e
e
d
u
p

Checkers

1

10

100

1000

10000

100000

1000000

St
ev
e

Lo
o
p

Lo
gi
c

St
ri
n
g

Fl
o
at

M
et
h
o
d

A
ll

CaffeineMark 3.0 score on GCJ

JVM

JVM(enable JIT)

GCJ_static

GCJ_static_optFigure 13. Performance comparison of Checkers

Figure 14. Performance of CaffeineMark 3.0 using GCJ

Table 5. Code sizes produced by Icing and GCJ

22

in later runs. This early binding idea exists in the Icing too.
However, our AOTC is based on server side in order to employ
the more complex compilation frameworks to generate better
quality of native code.

Levon Stepanian et al. [20] proposed a mechanism to reduce
the JNI overhead, which is to inline the native calls with the help
of JIT compiler’s inlining optimization. Therefore, the native code
will be executed in the JVM’s context. This may effectively
mitigate the negative impact of expensive JNI calls. The dex2jar
[19] and undx [21] are works under developing which translate
DEX bytecode back to Java bytecode, that is, map register-based
instructions back to stack-based. With these tools, further
optimizations and analysis can be done at Java level by the Soot
[18] framework.

7. SUMMARY and CONCLUSIONS
AOTC can effectively avoid the interpretation overhead in a

JVM when a JIT compiler is not available, or avoid the translation
overhead of the JIT Compiler. Furthermore, AOTC can apply
more aggressive optimizations to significantly improve the quality
of generated code. In this paper, we show that a mixed-mode
AOTC is more suitable for embedded devices. The generated
native code can cooperate with the virtual machine via the JNI
interface.

We have built an AOTC for the Dalvik virtual machine on the
Android platform, called Icing. Instead of building a compiler
from scratch, we leverage the comprehensive optimizations in
GCC and its high portability. We convert DEX bytecode to C
code and then compile C code into native code. A few
challenging issues such as handling information loss due to low-
level to high-level conversions and type recovery when converting
DEX’s virtual registers to C variables have been addressed by
Icing. We have successfully built a prototype ahead-of-time
compiler in a short time.

Icing translated native code is not always better than JIT
compiled code. This is due to high overhead associated with JNI
call-out and call-back operations. Icing has carefully minimized
such overhead with several optimizations such as ahead-of-time
resolution, caching method/field IDs, and method cloning.
Furthermore, Icing leverages on the existing profiling mechanism
to further determine which methods should be compiled by Icing
or JITC. With the above optimizations, Icing has achieved a
much better performance than the current JITC in DVM on four
benchmarks from the Android Market.

Since the current JITC in DVM on Android 2.3 will continue
to enhance, we may soon have JITC with adaptive optimizations
to generate more competitive code. We believe an effective
collaboration between JITC and AOTC can deliver the best cost
performance and the best power-performance. Therefore, we will
continue to search ways to improve Icing and enable more
effective collaboration between AOTC and future JITC.

8. ACKNOWLEDGMENTS
This research was supported in part by MediaTek Inc.,

R.O.C., under Grant 099H19EA. We are also grateful to the
anonymous reviewers for many helpful comments.

9. REFERENCES
[1] Google Android - An Open Handset Alliance Project, 2008.

http://code.google.com/android/

[2] GCJ - The GNU Compiler for the Java Programming
Language, from http://gcc.gnu.org/java/

[3] Sun Java Native Interface, 1997,

from http://java.sun.com/j2se/1.3/docs/guide/jni/

[4] Proebsting, T. A., Townsend, G., Bridges, P., Hartman, J. H.,
Newsham, T. and Watterson, S. A. Toba: Java For
Applications: A Way Ahead of Time (WAT) Compiler.
University of Arizona, 1997.

[5] Muller, G., B, Moura, r., Bellard, F. and Consel, C. Harissa:
A flexible and efficient java environment mixing bytecode
and compiled code. In Proceedings of the Proceedings of the
3rd conference on USENIX Conference on Object-Oriented
Technologies (COOTS) - Volume 3 (Portland, Oregon,
1997). USENIX Association.

[6] Weiss, M., Fran, Ferri, o. d., Delsart, B., Fabre, C., Hirsch,
F., Johnson, E. A., Joloboff, V., Roy, F., Siebert, F. and
Spengler, X. TurboJ, a Java Bytecode-to-Native Compiler. In
Proceedings of the Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Embedded Systems (1998). Springer-Verlag.

[7] Varma, A. and Bhattacharyya, S. S. Java-through-C
Compilation: An Enabling Technology for Java in Embedded
Systems. In Proceedings of the Proceedings of the
conference on Design, automation and test in Europe -
Volume 3 (2004). IEEE Computer Society.

[8] Dean, J., Grove, D. and Chambers, C. Optimization of
Object-Oriented Programs Using Static Class Hierarchy
Analysis. In Proceedings of the Proceedings of the 9th
European Conference on Object-Oriented Programming
(1995). Springer-Verlag.

[9] Krintz, C. Coupling on-line and off-line profile information
to improve program performance. In Proceedings of the
Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime
optimization (San Francisco, California, 2003). IEEE
Computer Society.

[10] Krintz, C. and Calder, B. Using annotations to reduce
dynamic optimization time. In Proceedings of the
Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation
(Snowbird, Utah, United States, 2001). ACM.

[11] Hong, S., Kim, J.-C., Shin, J. W., Moon, S.-M., Oh, H.-S.,
Lee, J. and Choi, H.-K. Java client ahead-of-time compiler
for embedded systems. (San Diego, California, USA, 2007).
LCTES’07. ACM.

[12] Sun javac - Java programming language compiler, 2002,
from http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/
javac.html

[13] Google Android Dx tool, 2007, from
http://developer.android.com/intl/zh-
TW/guide/developing/tools/othertools.html#dx

[14] JesusFreke smali/baksmali: An assembler for Android's dex
format 2009), from http://code.google.com/p/smali/

[15] Google Dalvik Optimization and Verification With dexopt,
2008, from http://android.git.kernel.org/?p=platform/
dalvik.git;a=blob_plain;f=docs/dexopt.html;hb=master

[16] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D.,
Haghighat, M. R., Kaplan, B., Hoare, G., Zbarsky, B.,
Orendorff, J., Ruderman, J., Smith, E. W., Reitmaier, R.,
Bebenita, M., Chang, M. and Franz, M. Trace-based just-in-

23

time type specialization for dynamic languages. In
Proceedings of the Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and
implementation (Dublin, Ireland, 2009). ACM.

[17] Pendragon CaffeineMark1997,

From http://www.benchmarkhq.ru/cm30/

[18] Vall, R., e-Rai, Co, P., Gagnon, E., Hendren, L., Lam, P. and
Sundaresan, V. Soot - a Java bytecode optimization
framework. In Proceedings of the Proceedings of the 1999
conference of the Centre for Advanced Studies on
Collaborative research (Mississauga, Ontario, Canada, 1999).
IBM Press.

[19] dex2jar: Translate android DEX bytecode back to Java
bytecode, from http://code.google.com/p/dex2jar

[20] Stepanoan, L., Brown, A. D., Kielstra, A., Koblents, G., and
Stoodley, K. Inlining Java native calls at runtime. In
Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments. (Chicago, IL,
USA, 2005) VEE’05. ACM.

[21] UNDX: Translate android DEX bytecode back to Java
bytecode, from http://illegalaccess.org/undx.html

[22] BenchmarkPi – The Android benchmark tool, from

http://androidbenchmark.com/

[23] Linpack for Android,

from http://www.greenecomputing.com/apps/linpack/

[24] Checkers game, from http://aartbik.blogspot.com/

[25] Monkey, from

http://developer.android.com/intl/zh-TW/
guide/developing/tools/monkey.html

[26] Java HotSpot Client and Server Virtual Machines, from

http://download.oracle.com/javase/1.3/docs/guide/
performance/hotspot.html

[27] Sassa, M., Nakaya, T., Kohama, M., Fukuoka, T. and
Takahashi, M.: Static Single Assignment Form in the COINS
Compiler Infrastructure, SSGRR 2003w - International
Conference on Advances in Infrastructure for e-Business, e-
Education, e-Science, e-Medicine, and Mobile Technologies
on the Internet, L'Aquila, Italy, No. 54 (Jan. 2003).

[28] Google Traceview profiling tool, from

http://developer.android.com/guide/developing/debugging/de
bugging-tracing.html

24

