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Abstract 
In a large-scale simulation Data Distribution Management 
(DDM) plays a prominent role in supporting simulation 
entities as many as possible.  In order to provide a flexible 
solution of region matching to different simulation scenarios, 
we propose a region matching approach for DDM, MGRID.  
MGRID can gather run-time information about regions, then 
evaluate the information by our region matching cost model 
and make adjustments for present situation accordingly.  
MGRID has been implemented in our HLA RTI system 
using C++ language, which follows IEEE Standard 1516.  
In addition, we have implemented region-based approach, 
hybrid-based approach and sort-based approach for 
comparison.  In our experimental evaluations MGRID 
performed well in all test cases.   
 
1. INTRODUCTION 
High Level Architecture (HLA) [9] is a general-purpose 
framework for distributed simulation and modeling.  In 
this paper, we focus on Data Distribution Management 
(DDM), which aims to reduce unnecessary transmission 
between federates.  As simulation objects increases 
significantly, DDM becomes a critical part in supporting the 
execution of a large-scale simulation.  Through DDM 
services defined in the HLA Interface Specification, 
federates can clearly state data requirements, which are 
defined as regions in the HLA.  Specifically, a federate can 
publish data in specified regions (i.e. publishing regions) 
which it has influences over.  Likewise, a federate can 
subscribe data in specified regions (i.e. subscription regions) 
which it has an interest in.  Afterwards, RTI will deliver 
data from the publishing federate to the subscription 
federate only if the publishing regions overlap with the 
subscription regions.  The process of finding overlap 
between publishing and subscription regions is called region 
matching.   
 In general, region matching algorithms can be classified 
as region-based approach [15, 16], grid-based approach [2, 5, 
6], hybrid-based approach [1, 3, 4, 14] and sort-based 
approach [8, 11, 12].   The proposed approaches, however, 
can not be used to deal with more complex simulation 

scenarios.  For example, a large-scale military simulation, 
airplanes, warships, tanks, soldiers, etc. could be involved in 
simulation and interesting regions of these simulation 
entities may be changed or resized at day or at night for 
realistic simulation.  Considering such simulations, we 
adopt a flexible approach that involves gathering profiling 
information about regions, processing profiling information 
and making adjustment for new condition at run-time easily.    
We therefore propose a cost model, along with profiling 
information, to evaluate the cost of region matching.  
Based on the cost model, we present a dynamic 
hybrid-based approach that can adjust the size of grid cells 
dynamically.   
 To evaluate the performance, we implemented our 
approach with comparisons to the region-based approach in 
[15], the hybrid-based approach in [14] and the sort-based 
approach in [11] in the HLA RTI that follows IEEE 
Standard 1516.  The experimental results show that the 
proposed dynamic hybrid-based approach can successfully 
alter the size of grid cells to a proper one without much 
computation overhead and achieve better performances than 
those of the region-based approach, the hybrid-based 
approach and the sorted-based approach in most of test 
cases. 
 The organization of this paper is described as follows.  
In Section 2, we briefly discuss the approaches reported in 
the literature.  The dynamic hybrid-based approach is 
presented in Section 3.  Section 4 gives the experimental 
results.  We conclude our work and present future works in 
Section 5. 
 
2. RELATED WORK 
 
2.1. Region-based Approach 
In this approach, publishing regions need to be compared 
with all subscription regions for finding overlap between 
these regions [15, 16].  Its idea is very straightforward and 
the cost of the computation is quadratic in terms of number 
of regions.  In a large-spatial simulation, this approach 
takes most of time to compare unrelated regions (i.e. the 
regions are not close in terms of distance).  On the other 
hand, it can get better performance when all regions  
highly overlap with other regions [7, 12].  
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2.2. Grid-based Approach 
In [2, 5, 6], A. Boukerche et al. proposed a method to 
reduce high computing operations of the region-based 
approach.  This approach partitions N-dimension data 
space into grid cells and maps all regions on to these grid 
cells.  If a publishing region and a subscription region are 
mapped on to the same grid cell, both regions are presumed 
to overlap with each other without carrying out exact region 
matching.  This mechanism requires much less 
computation than region-based approach and hybrid-based 
approach.  In fact, it will result in unnecessary network 
traffic [13].  Moreover, the additional computation is 
required to filter unnecessary messages.  Gray Tan et al. in 
[14] suggested that if the overhead of computation to do 
region matching is less than the overhead of communication 
and filtering, the better way is to carry out exact region 
matching instead of directly delivering unnecessary 
messages to receivers.  Additionally, with the advance of 
computing capability, to do exact region matching is a better 
policy.   
 
2.3. Hybrid-based Approach 
Hybrid-based approach [3, 4, 14] combines the concepts of 
region-based and grid-based approach, thereby removing the 
irrelevant messages generated and reducing computational 
overhead as well.  For the case of small size of grid cells, a 
subscription region is compared with a publishing region 
several times if these two regions overlap with more than 
one grid cell at the same time.  For the case of large size of 
grid cells, a subscription region and a publishing region are 
likely to locate in the same grid cell whereas it is possible 
that two regions are not overlapped.  As a result, the 
chosen size of grid cells has substantial impact on the 
performance of the hybrid-based approach.   
 Rassul Ayani et al. in [1] proposed a detailed model to 
formulate the cost of grid-based filtering with regard to 
system factors, model factors and platform factors.  By 
approximating the equation of the cost of grid-based 
filtering, the optimized size of grid cells can be solved.  If 
a simulation scenario is unknown in advance or could be 
changed at run-time (i.e. those factors can not be on hand), 
the size of grid cells calculated by this approach is not 
adequate for such a case.   
 
2.4. Sort-based Approach 
C. Raczy et al. in [12] employ a novel approach to deal with 
region matching.  The end points of each dimension of 
each region are recorded in sorted lists.  For each 
dimension, it scans the sorted lists to get N-size arrays of bit 
vectors which record the overlap information between N 
regions.  After that, it merges the overlap information of 
each dimension to attain the overall overlap information.  
It uses bit vector to manipulate insertion, removing and 
locating of data, thereby enhancing the speed of region 

matching.  This approach is quite efficiently in region 
matching because the sorting process and overlap 
information can be accomplished before the execution of 
simulation.  However, this approach is not applied to 
simulations where regions will be altered at run-time.  For 
this reason, a dynamic sort-based algorithm for region 
matching in a large-spatial environment is presented in [11].  
This approach reduces the data storage requirement in 
comparison with the static sort-based approach [12] and 
supports alteration of regions during simulation.  Once the 
size or the location of regions is altered, this approach shifts 
the end points of regions from old positions to new positions 
and then scans the sorted end points within a dynamic range.  
This dynamic range is defined in accordance with the end 
points of current regions and the maximum size of 
publishing and subscription regions.  Larger size of regions 
a simulation has, more time it spends in scanning end points.  
With our experiment results, it is not suitable for some case 
where a simulation comprises a large range of sizes of 
regions.   
 In [8], authors proposed an algorithm for DDM, 
P-Pruning.  This approach builds a Region Projection 
Array to store information about regions.  The information 
of a region will be stored at some certain elements 
according to the values of end points of the region, i.e. 
Bucket Sort.  End points of all regions are being sorted 
until accomplishing inserting information of all regions.  
To find overlap information of a region, this approach will 
scan some elements to find whether any region overlaps 
with this region.  The principle of this approach is similar 
to the works in [11, 12].  The sorting procedure of this 
approach is quite fast, albeit with scalability problems.  
 
3. DYNAMIC HYBRID-BASED APPROACH 
 
3.1. The Matching Cost Model 
In the following, we first give several definitions used in 
this paper. 
Definition 1: An N-dimensional space is defined as 
SPACEN=f, where Di is the ith dimension.  The size of 
SPACEN is defined as DL1 * DL2 * … * DLN, where DLi is 
the length of Di.  
Definition 2: A SPACEN is partitioned by each dimension 
and forms a set of equivalent grid cells, denoted as 
C={c1,c2,…,cN}.  The size of a grid cell is cS=cL1 * cL2 
* …* cLN, where cLi is the length of a grid cell in the ith 
dimension. 
Definition 3: Given a SPACEN and cS, the total number of 
grid cells can be defined as 

 ( , ) = ( )
1

N DLiTC SPANCE cSN i cLi

∏
=

.                 (1)                          

Definition 4: In an N-dimensional space, a set of publishing 
regions is defined as P={p1,p2,…,pm} and the number of 



publishing regions in a set is defined as NumReg(P) = m; a 
set of subscription regions is defined as S={ s1,s2,…,sn} and 
the number of subscription regions is defined as NumReg(S) 
= n.  We define pkLi and skLi as the length of ith dimension 
of pk and sk, respectively.  Thus, the size of pk is pkS=pkL1 
* pkL2 * …* pkLN and the size of sk is skS=skL1 * skL2 * …* 
skLN. 
Definition 5: Given a set of publishing regions P, AvgReg(P) 
gets an average region of P and the length of the ith 
dimension of the region pavg is defined as follows: 

1
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m
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Definition 6: Given a set of subscription regions S, 
AvgReg(S) gets an average region of S and the length of the 
ith dimension of this region savg, is defined as follows: 

1
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In the following, we will give notations used in this paper. 
Definition 7: Given a SPACEN, cS and pk, we can 
approximately estimate the number of the grid cells with 
which pk overlaps by dividing the size of a publishing 
region by the size grid cells as follows:  

( , , ) = ( 1)
1

p LN ikECP SPACE cS pN k i cLi

∏ +
=

             (4) 

Definition 8: Given a SPACEN, cS and sk, we can 
approximately estimate the number of the grid cells with 
which sk overlaps by dividing the size of a subscription 
region by the size grid cells as follows: 

( , , ) = ( 1)
1

s LN ikECS SPACE cS sN k i cLi

∏ +
=

             (5) 

Definition 9: Assume that all publishing regions, denoted as 
Pall, will be evenly distributed in the SPACEN.  Thus the 
average number of the publishing regions on a cell is 
calculated as follows: 

( , , ) = 

( ) * ( , , ( ))
     

( , )

ACP SPACE cS PN all

NumReg P ECP SPACE cS AvgReg PNall all

TC SPACE cSN

  (6) 

Definition 10: Assume that all subscription regions, denoted 
as Sall, will be evenly distributed in the SPACEN.  Thus the 
average number of the subscription regions on a cell is 
calculated as follows: 

( , , ) =

( ) * ( , , ( ))
     

( , )

ACS SPACE cS SN all

NumReg S ECS SPACE cS AvgReg SNall all

TC SPACE cSN

 (7) 

Definition 11: The number of the subscription regions with 
which a publishing region pk overlaps is estimated as 
follows:  

( , , , )

         ( , , ) * ( , , )

unitPMatchS SPACE cS S pN all k

ECP SPACE cS p ACS SPACE cS SN Nk all

=
 (8) 

Definition 12: The number of the publishing regions with 
which a subscription region sk overlaps is estimated as 
follows: 

( , , , )

     ( , , ) * ( , , )

unitSMatchP SPACE cS P sN all k

ECS SPACE cS s ACP SPACE cS PN Nk all=
 (9) 

Definition 13: Let Pupd be a set of updated publishing 
regions, i.e. these regions need to be recalculated 
overlapping.  The number of the subscription regions with 
which Pupd overlap is calculated as follows: 

( , , , )
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         ( , , , ( ))
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NumReg Pupd
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=
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Definition 14: Let Supd be a set of updated publishing 
regions.  The number of the publishing regions with which 
Supd overlap is calculated as follows: 

( , , , )
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         ( , , , ( ))

SMatchP SPACE cS P SN all upd
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Figure 1.  An example of 2-dimensional space with four 
regions 
 We now give an example to explain above definitions.  
Figure 1 depicts SPACE2={D1,D2} with the size 100x100, 
all publishing regions, Pall={p1,p2}, all subscription regions, 
Sall={ s1,s2}, and cS=20x20.  In Figure 1, there exist four 
regions: p1 with size 10x20, p2 with size 20x20, s1 with size 
30x30 and s2 with size 10x30.  With equations from 
definition 3 to 10, we can get 
 TC(SPACE2,cS)=25, 
 AvgReg(Pall)=pavg, pavgS=15x20, 



 AvgReg(Sall)=savg, savgS=20x30, 
 ECP(SPACE2,cS,avgS(P1))=3, 
 ECP(SPACE2,cS,avgS(Pall))=3.5, 
 ECS(SPACE2,cS,avgS(Sall))=5, 
 ACP(SPACE2,cS,Pall)=0.28, 
 ACS(SPACE2,cS,Sall)=0.4. 
 Once a set of updated (i.e. region updates) publishing 
regions, Pupd={p1}, is required to find the overlap 
information of Pupd, this operation averagely costs 
PMatchS(SPACE2,cS,Sall,Pupd)=1.2 comparisons according 
to Definition 13.  Similarly, once a set of updated 
subscription regions Supd={ s1,s2} is required to find the 
overlap information of Supd, that averagely costs 
SMatchP(SPACE2,cS,Pall,Supd)=2.8 comparisons according 
to Definition 14.   
 
3.2. Dynamic Hybrid-based Algorithm 
Figure 2 illustrates the conceptual relationship of the 
dynamic hybrid-based approach.  In the initial stage, 
DDMInit component creates two grids: one grid is as a 
currentGrid; the other grid is as a previousGrid.  The 
GridCell component is responsible for partitioning 
N-dimensional data space into grid cells and dealing with 
region updates (i.e. mapping updated publishing or 
subscription regions on to grid cells).  In the beginning, 
publishing and subscription regions are only mapped on to 
the currentGrid.  The Match component scans the grid 
cells with which a publishing region (or a subscription 
region) overlaps.  For each grid cell the Match component 
invokes matching procedure, i.e. region-based approach, to 
find overlap.  The Matching Cost Model component 
collects information, including sizes of publishing region 
and subscription regions and the size of current grid cells, to 
calculate the cost of region matching.  The Matching Cost 
Model component will execute at a fixed time interval.  
Given the result from the Matching Cost component, 
EvaluateAdjust component determines whether the size of 
current grid cells should be adjusted.   
 The EvaluateAdjust component first gets an average the 
EvaluateAdjust component first gets an average region of 
updated publishing regions and an average region of 
updated subscription regions at run-time.  Next it evaluates 
the cost of region matching of currentGrid in accordance 
with the matching cost model.  The new size of grid cells is 
estimated based on the ratio of matching cost of publishing 
regions and subscription regions in currentGrid.  With the 
new size of grid cells, new matching cost of the new size of 
adjusted grid cells can be calculated .  In the 
EvaluateAdjust component, a threshold, denoted as thre, is 
set as the minimum percentage of the improved cost of 
region matching.  Once the percentage of improved 
matching cost is greater than thre, it performs the following 
steps: 1) swap the currentGrid with the previousGrid, 2) 
partition the currentGrid with new adjusted size and 3) 

re-map all regions in the previousGrid on to the 
currentGrid.   

 
Figure 2.  The flowchart of the MGRID approach 
 
4. PERFORMANCE EVALUATION 
 
4.1. Experimental Assumption and Platform 
This section demonstrates the performance results of our 
proposed dynamic hybrid-based DDM approach (MGRID), 
compared with the region-based approach presented in [15] 
(REGION), the hybrid-based approach presented in [14] 
(HYBRID) and the sort-based approach presented in [11] 
(DSORT).  In this paper we concerns processing cost in 
different region matching algorithms and therefore 
grid-based approaches are not considered.   
 We use 8 HP Blade Servers as our experimental 
platform.  Each node of the HP Blade Server has two 
quardcore Xeon 2.66 GHz CPUs, 8 Gbytes DRAM and runs 
Linux operating system with kernel version 2.6.18.  All 
machines are connected with Gigabit Ethernet network.  
We have implemented a RTI system following the 
specification of IEEE 1516 standard in C++ language.  
This RTI system is of client-server architecture and the 
matching algorithms runs at server nodes. 
 We design simulation scenarios to evaluate the 
performance of region matching algorithms.  For all test 
cases, it simulates at most 20000 simulation objects 
distributed to 20 federates in a 10000-meters*10000-meter 
2-dimensional battlefield.  Each simulation object 
publishes its position attribute within a 2-dimension region 
and also subscribes object’s position attribute within a 
2-dimension region.  In other words, each simulation 
object will obtain others’ position attributes if regions are 
overlapped.  In each test case, the size of both regions is 
set to the same value and the size of a region is denoted as 
RS.  Initially, the simulation objects are placed at random 
locations in the battlefield.  For each time step, the moving 
direction of each simulation object is randomly assigned to 
one in the five possibilities (Hold, North, South, East and 
West).  During the simulation, the moving distance is set to 
half the region size of the simulation object.  For all test 
cases, the time of region matching is averaged over a period 
of 30 time steps.  Note that the hybrid-based approach 



must initiate the size of grid cells and hence we evaluate 
three cases for hybrid-based approach: small cS=50m*50m 
(HYBRID(50)), medium cS=500m*500m (HYBRID(500)) 
and large cS=5000m*5000m (HYBRID(5000)).   
 
4.2. The Performance of Single-Type Region 
Figure 3 and 4 illustrate the comparison results of 
RS=50m*50m and RS=500m*500m, respectively.  The 
x-axis represents number of regions in a simulation and the 
y-axis represents the time (in millisecond unit) which region 
matching algorithms take.   
 The best performances in Figure 3 and 4 are the 
HYBRID(50) and HYBRID(500), respectively.  Since the 
cS of our approach can be adjusted to new one (49m*49m in 
Figure 3 or 493m*493m in Figure 4) at run-time, the results 
of our approach are very close to those best results with a 
slight overhead introduced by running cost model and 
adapting to new cS.   
 As RS becomes large, smaller cS will lead to repeat 
region matching in the hybrid-based approach such as the 
result of HYBRID(50) in Figure 4.  Also, we can see that 
the performance of HYBRID(5000) is not as good as 
HYBRID(50) and HYBRID(500) in Figure 3.  Evidently, 
the chosen size of grid cells is vital to the performance of 
hybrid-based approach.   
 In Figure 3, the performance of DSORT is better than 
those of HYBRID(5000) and REGION.  However, in 
Figure 4 the result of DSORT is similar to those of 
HYBRID(5000) and REGION.  For the case of 
RS=500m*500m, the scanning range is relatively large.  
The falling performance is attributed to the scanning range, 
as stated in Section 2.  In addition, the larger regions are 
likely overlapped with each other.  As a result, it costs 
more time in scanning. 
 
4.3. The Performance of Compound-Type Regions 
In this case, we test the performance of compound-type 
regions and measure the matching time of varied number of 
regions from 2000 to 40000, i.e. 1000 to 20000 objects.  
We set RS to {10m*10m, 20m*20m, 30m*30m, 40m*40m, 
50m*50m} and evenly assign the RS to all regions.  That is, 
in the case of total 40000 regions, 8000 regions are of size 
10m*10m, 8000 regions are of size 20*20 and so on.  
Figure 5 illustrates the comparison results.  The 
comparison results are almost the same as those in Figure 3 
except that in two cases where the number of regions are 
2000 and 4000 the performance of MGRID is not good as 
the performance of HYBRID(500).  Owing to the smaller 
regions in existence, MGIRD will adjust the size of grid 
cells to 29m*29m.  That results in repeat computation 
while doing region matching for larger regions (i.e. 
40m*40m and 50*50m regions).  However, in Figure 5 the 
difference between HYBRID(500) and MGRID is small: 
5ms.   

 
Figure 3.  Single-Type Regions, RS=50*50 

 
Figure 4.  Single-Type Regions, RS=500*500 

 We also evaluate the performance of compound type of 
region for larger regions.  Similarly, RS is set to 
{100m*100m, 200m*200m, 300m*300m, 400m*400m, 
500m*500m} and there are the same number of regions for 
each size.  The results are as shown in Figure 6.  The 
result of HYBRID(500) is better than our approach, but in 
the cases where the number of regions is greater than 20000 
the performance gap is not obvious.  The size of grid cells 
of MGRID is set to 290m*290m.   
 
4.4. The Performance of Flexible-Type Regions 
In this test case, we consider that the size of all regions will 
be altered in federates as time steps passed.  For every two 
time steps, the size of all regions will be resized according 
to the following sequence: {50m*50m, 150m*150m, 
250m*250m, …, 750m*750m, 650m*650m, 
550m*550m, …,150m*150m, 50m*50m}.  We set the 
number of regions to 40000.  The x-axis represents 
simulation time and the y-axis represents time in 
millisecond unit.   
 Figure 7 shows the comparison results.  In Figure 7 
the results of MGRID keep at quite good performance no 
matter how size of regions is altered.  It shows that 
MGRID can adapt with new situations.  As for 
hybrid-based approaches, HYBRID(50) presents good 
performance in the beginning but when the size of regions 
becomes larger, its performance is even worse than 
REGION.  HYBRID(5000) and REGION have similar 
results because HYBRID(5000) partitions 2-dimensional 
space into four grid cells, that is not much difference 
compared with REGION.  As expected, REGION is 
insensitive to size of region.  The result of DSORT shows 



that its performance is connected with size of region as well.  
Larger region it has, more time it takes. 

 
Figure 5.  Compound-Type Regions, RS={10*10, 
20*20, …, 50*50} 

 
Figure 6.  Compound-Type Regions, RS={100*100, 
200*200, …, 500*500} 

 
Figure 7.  Flexible-Type Regions 

 
5. CONCLUSION 
Efficient data distribution is an important issue in large scale 
distributed simulations with hundreds of thousands of 
entities or more.  DDM services in the HLA RTI provide a 
good mechanism to reduce unnecessary transmission and 
irrelevant reception over the network.  To ensure only 
necessary data are transmitted, matching between publishing 
and subscription regions is required.  In this paper we 
propose an approach, MGRID, to address the issue of 
choosing a proper size of grid cells.  The MGRID uses the 
matching cost model with the profiling information about 
regions to evaluate the cost of region matching and 
dynamically adjusts the size of grid cells.  The 
experimental results show that our proposed approach is 

more efficient than the region-based, the hybrid-based and 
the sort-based approach in most of cases. 
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