
Improving Processor Allocation in Heterogeneous Computing Grid through
Considering Both Speed Heterogeneity and Resource Fragmentation

Po-Chi Shih
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan

e-mail:
shedoh@sslab.cs.nthu.edu.tw

Kuo-Chan Huang
Department of Computer and

Information Science
National Taichung University

Taichung, Taiwan
e-mail: kchuang@mail.ntcu.edu.tw

Yeh-Ching Chung
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan

e-mail: ychung@cs.nthu.edu.tw

Abstract—In a heterogeneous grid environment, there are two
major factors which would severely affect overall system
performance: speed heterogeneity and resource fragmentation.
Moreover, the relative effect of these two factors changes with
different workload and resource conditions. Processor
allocation methods have to deal with this issue. However, most
existing allocation methods focus on one of these two factors.
This paper first analyzes the relative strength of different
existing methods. Based on the analysis, we propose an
intelligent processor allocation method which considers both
the speed heterogeneity and resource fragmentation effects.
Extensive simulation studies have been conducted to show that
the proposed method can effectively deliver better
performance under most resource and workload conditions.

Keywords-grid; speed heterogeneity; resource fragmentation;
processor allocation

I. INTRODUCTION
Both job scheduling [12,15] and processor allocation [2,8]

received a lot of research attention on earlier hypercube-
based parallel computers. Job scheduling determines the
sequence of starting execution for the jobs waiting in the
queue. On the other hand, processor allocation chooses an
appropriate portion of the free processors in a system for
allocating the first job in the queue. On a hypercube
computer, allocating a job to different sub-cubes, although
having little or no impact on that single job’s performance,
might lead to diverse overall system performance. This is
because different allocation decisions lead to different
distributions of leftover processors and, in turn, different
probabilities of successful allocation of subsequent jobs. The
different probabilities of successful allocation usually comes
from situations called resource fragmentation where no
single sub-cube can accommodate a job while the total
number of free processors in the system is equal to or larger
than the requirement of the job. Therefore, good processor
allocation methods, which can alleviate resource
fragmentation, were helpful to system performance then.

Later, when switch-based parallel computers and cluster-
based computing systems being widely used, job scheduling
became a more important issue than processor allocation.
This stemmed from the fact that on such systems allocation
can be made with any portion of the system and with any
number of processors, in contrast to the power-of-two
restriction on earlier hypercube computers. Therefore, the

resource fragmentation problem was eliminated and
processor allocation seemed straightforward. Many research
efforts [6,7,10,13,14] have been spent on the job scheduling
issue on such switch-based parallel computers or cluster-
based computing systems.

However, as grid [1,3] becomes a promising computing
platform, the resource fragmentation problem is coming back
again and processor allocation needs to deal with it. A
computing grid usually consists of several parallel or cluster
computers located at different sites. Communications
between processors within the same site are usually achieved
through high-speed networking devices, while messages
passed across different sites have to go through a much
slower wide-area network or Internet. A job allocated to a
pool of processors within the same site can usually run faster
than if it is assigned to processors across different sites.
Therefore, the system tends to allocate a job within a single
site to achieve high performance. This allocation policy
could lead to resource fragmentation when no single site can
accommodate a parallel job while the total number of free
processors in all sites is enough for the job’s execution.
Processor allocation methods can be carefully designed to
reduce the probability of resource fragmentation and thus
increase system performance.

The best-fit processor allocation method has been
demonstrated to be the best choice in a homogeneous grid in
previous works [4,5]. For the best-fit method a particular site
is chosen for a job on which the job will leave the least
number of free processors if it is allocated to that site.
Although the best-fit method can effectively alleviate the
resource fragmentation problem, it cannot achieve good
performance in a heterogeneous grid as shown in [9]. This is
because in a heterogeneous grid resource fragmentation is
not the sole factor that affects the overall system
performance. Speed-heterogeneity is another important issue
to consider. This paper tries to improve processor allocation
methods in heterogeneous grid environments by considering
both speed heterogeneity and resource fragmentation. A new
processor allocation method was developed and extensive
experiments under different workload conditions were
conducted to evaluate the new method, together with other
processor allocation methods for grid environments.

It is believed that no single processor allocation method
can always perform the best under all possible workload
conditions. However, carful and extensive analysis of the

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.14

539

performances of different methods under various workload
conditions could lead to better understanding of the root
causes of the performance difference of the methods. The
understanding could in turn help develop more effective
processor allocation methods.

The remainder of this paper is organized as follows. In
section II, we analyze the potential strength of existing
allocation methods in the first part and present the proposed
intelligent allocation method in the second part. Section III
present and discuss the result of our experiment. Conclusion
of this paper is given in section IV.

II. PROCESSOR ALLOCATION METHODS IN
HETEROGENEOUS GRID

In this section we begin by analyzing the pros and cons
of existing processor allocation methods. The analysis then
guides us to the development of a more effective processor
allocation method.

A. Analysis of Existing Processor Allocation Methods
The best-fit method [4,5] allocates a job to the site which

can yield the smallest resource fragmentation. This scheme
works fine in a homogeneous grid. However, in a
heterogeneous grid with computing speed differences among
participating sites, the best-fit method may not perform well
since it does not consider the speed heterogeneity [9]. In
such an environment another processor allocation method
called fastest-first has been proposed [9]. The fastest-first
method focuses on speed heterogeneity in a heterogeneous
grid and allocates a job to the fastest one among all the sites
which can accommodate the job. Since fastest-first does not
consider the difference between the amount of required
processors and a site’s free capacity, it may result in larger
fragmentation than best-fit.

Besides, the relative performance of these two methods
would largely depend on several factors such as computing
speed heterogeneity, system loading, workload condition,
and so on. Speed heterogeneity is measured by the variance
of computing speeds of all participating sites in a grid.
System loading can be simply observed and represented by
the average length of the job waiting queue. Workload
condition includes many attributes such as job arrival process,
probability distribution of the numbers of required
processors, execution time distribution, etc. Some of these
parameters can be seen as random variables that dynamically
change with time (e.g., system loading and workload
condition). It is hard to have any allocation method that can
surpass all other methods in all workload conditions. To this
end, we focus on identifying the potential strength of each
allocation method under different conditions and trying to
combine all the advantages to form a new allocation method.
We expect this new allocation method can achieve better
performance in all workload conditions.

Table I shows the relative strength analysis of best-fit and
fastest-first under different levels of speed heterogeneity and
system loading. Since best-fit does not consider speed
difference among participating sites, it is more suitable to be
used when speed heterogeneity is low. Additionally, best-fit
were shown to yield less resource fragmentation and lead to

higher resource utilization than first-fit method, which
inspects the participating sites in a fixed order and allocates a
job to the first site found to be able to accommodate the job
[5]. Since fastest-first can be viewed as another form of first-
fit if the sites in a grid are arranged in the descending order
of computing speed, best-fit can be expected to outperform
fastest-first in reducing resource fragmentation and raising
resource utilization. When system loading is high, resource
utilization rate is crucial to the overall system performance.
Therefore, best-fit has higher potential to perform better than
fastest-first when system loading is high. It is then clear that
in the case of low speed heterogeneity and high system
loading, best-fit is a better choice. On the contrary, when
resource heterogeneity is high and system loading is low
(one can image the extreme case when the waiting queue
length is 0), computing speed of each job has higher
influence on the overall system performance than the
resource fragmentation effect. Therefore, fastest-first can
potentially perform better than best-fit in this case.

We use a parentheses pair to represent speed
heterogeneity and system loading. For example, (low, high)
represents a situation that heterogeneity is low and loading is
high. In table I, we only list the potentially best allocation
method in the (low, high) and (high, low) situations. For the
cases (low, low) and (high, high), it is hard to tell which one
is better. Based on the above analysis, we begin to develop a
new approach named intelligent allocation by considering
both speed heterogeneity and resource fragmentation effects
in the following section.

TABLE I. RELATIVE STRENGTH ANALYSIS OF DIFFERENT
ALLOCATION METHODS

 System Loading(High) System Loading(Low)
Speed Heterogeneity

(high) undistinguishable fastest-first

Speed Heterogeneity
(low) best-fit undistinguishable

B. Intelligent Allocation method
This section presents the proposed intelligent allocation

method. The main idea behind the method is to dynamically
switch the allocation decision between best-fit and fastest-
first according to some measurable criteria. To clarify the
following presentation, we first define several terms as
follows.

 Waiting Queue (WQ) – the queue which contains all
jobs waiting for available resources in its arriving
order.

 Size of WQ (SizeWQ) – total number of jobs in the
waiting queue.

 Required number of processors (RNPi) – the
required number of processors of job i.

 Computing Speed (CSj) – the computing speed of
site j.

 Number of free Processors (NPj) – the number of
free processors in site j.

 Site selected by best-fit (Sbf(i)) – the site allocated for
computing job i by the best-fit method

540

 Site selected by fastest-first (Sff(i)) – the site
allocated for computing job i by the fastest-first
method.

 The first job in WQ (FJ) – the first job in WQ.

An allocation event is triggered when a new job is

submitted to the system or when a running job finishes its
execution. For each allocation event the system tries to
continuously allocate as many jobs as possible. It stops
allocation only when there are no sites being able to
accommodate the first job in the waiting queue or when the
waiting queue becomes empty. The proposed intelligent
method is designed to dynamically adjust the allocation
method between best-fit and fastest-first whenever making
allocation decision.

Not every triggered allocation event leads to actual
allocation results since there might be no enough resources
or no jobs to allocate. Table II classifies all possible
allocation events into four types of situations according to
the status of waiting queue and the causes that trigger the
events. The symbol “X” represents that there will be no
actual allocation in that situation. Since we apply FCFS as
the scheduling policy, SizeWQ > 0 implies that there is no site
being able to accommodate the first job in waiting queue and
that the newly submitted job must wait in the rear of waiting
queue. For the case that SizeWQ = 0 and the triggering event
is job finish, there are no jobs to allocate and therefore no
actual allocation happens. Only situations (a) and (b) in
Table II would lead to actual allocation results if there is any
site which can accommodate the submitted job or the first
job in waiting queue.

In situation (a), SizeWQ = 0 implies the system loading is
low so it comprises the (low, low) or (high, low) situation
mentioned in the previous section. For the (high, low) case,
we know that fastest-first is a potentially better choice. Thus
we compare the computing speeds of the selected sites with
different allocation methods to make the allocation decision.
The allocation decision is determined by equation (1).

In situation (b), which comprised the (low, high) or (high,
high) case, we make the allocation decision by calculating
which allocation method can allow subsequent jobs in
waiting queue to consume more computing capacity. The
computing capacity CC(i) consumed by job i is defined as

CCbf(i) and CCff(i) are used to denote that job i is
allocated by best-fit and fastest-first respectively. Thus the
total computing capacity consumed by best-fit and fastest-
first are denoted by TCCbf and TCCff respectively and
defined as

A value Score which represents the relative performance
of best-fit and fastest-first is then calculated by

The allocation decision for situation (b) is then
determined by equation (6).

The proposed intelligent allocation method is inspired by
the adaptive allocation strategy presented in [9] which makes
allocation decision based on a calculation of which policy
can further accommodate more jobs for immediate execution.
The improvement in the intelligent allocation method is to
take the speed difference into account. The pseudo code of
the intelligent allocation algorithm is shown in Fig. 1.

TABLE II. CLASSIFICATION OF ALLOCATION EVENTS

 Submit Finish
SizeWQ = 0 (a) X
SizeWQ > 0 X (b)

Figure 1. Pseudo code of the proposed intelligent allocation algorithm

III. EXPERIMENTS AND DISCUSSIONS

A. Performance Metrics and Experimental Settings
Our simulation studies were based on publicly

downloadable workload traces [11]. We used the SDSC’s

Algorithm IntelligentAllocator()
{

calculate Sbf(FJ) and Sff(FJ)
if Sbf(FJ) = Sff(FJ)

choose the site suggested by both methods
end if
if SizeWQ = 0 and event = Submit

if
choose best-fit

otherwise
choose fastest-first

end if
end if
calculate Score
if Score > 1

choose fastest-first
otherwise

choose best-fit
end if

}

541

SP2 workload logs on [11] as the basic input workload in the
following simulations. Other workloads for simulating
different workload conditions were derived from the basic
workload. We used the average response time
(AverageResponseTime) of all jobs as the performance
metric to compare different allocation methods in all
simulations. The AverageResponseTime is defined by

We compared the proposed Intelligent (IT) method with
the adaptive (AD) [9], best-fit (BF) [5], and fastest-first (FF)
[9] methods. In order to evaluate the performance of the
proposed method on various workload conditions, we
conducted a series of experiments by varying three
adjustable parameters listed in Table III. Speed heterogeneity
(SH), represented by the variance of computing speeds of all
sites, ranges from 0 to 0.2. For better understanding of the
influence of SH, setting SH = 0.05, 0.01, 0.15, and 0.2 will
averagely make the speed of the fastest site 1.8, 2.3, 3, and
4.2 times faster than the speed of the slowest site
respectively. SH=0 reduces to the homogeneous case. We
randomly generate 10 sets of speed setting with respect to
each SH value. All presented experimental results are the
average value of these 10 sets.

System loading (SL), ranging from 1 to 5, is simulated by
multiplying the execution time of each job with the
corresponding value (e.g., SL = 2 doubles the execution time
of all jobs). The following uses the average length of waiting
queue for homogeneous case (SH = 0) and the best-fit
method as an example to show the effect of SL. The length
of waiting queue will be 0.9, 7.8, 98, 2618, and 6717 as SL is
set to 1, 2, 3, 4, and 5 respectively.

Resource configuration (RC) defined by

ranges from 100% to 25% with a step of 25% in the
simulations. In the SDSC’s SP2 system the jobs in the log
were put into five different queues. With RC = 100%, we use
the maximum number of requested processors of all jobs in
each queue as the size of each site, which were 8, 128, 128,
128, 50 corresponding to queue 1 to queue 5 respectively.
This resource setting was used for all simulations. For other
RC settings, we simulated it by cutting a job that exceeds the
specified percentage into several small jobs. For example,
when RC = 25%, a job requesting 100 processors was cut
into four small jobs, where three of them each requested 32
processors (128 25%) and the last one asked for the
remaining 4 processors. Table IV shows the characteristics
of SDSC’s SP2 workload with respect to different RC
settings.

Note that only SL will change the amount of workload
brought into the system while the other two parameters

neither change the total computing capability of all resources
nor change the average workload brought into the system.

TABLE III. PARAMETERS FOR EXPERIMENTS

Resource Heterogeneity (SH) {0, 0.05, 0.1, 0.15, 0.2}
System Loading (SL) {1, 2, 3, 4, 5}
Resource Configuration (RC) {100%, 75%, 50%, 25%}

TABLE IV. CHARACTERISTIC OF SDSC’S SP2 WORKLOAD WITH
RESPECT TO DIFFERENT RC SETTINGS

 Number
of jobs

Maximum number of
processors per job

Average number of
requested processors

per job
RC=100% 54041 128 12.29
RC=75% 54305 96 12.23
RC=50% 54534 64 12.18
RC=25% 58890 32 11.28

B. Experimental Results and discussion
Fig. 2 shows the performance of each allocation methods

in terms of AverageResponseTime. Each sub-figure shows
the simulation result performed by varying the SH form 0 to
0.2 with specific SL and RC setting. For simplicity and
clarity, we only show the results of SL from 2 to 4. The
results of SL = 1 and SL = 5 actually follow the same
performance trend.

From all the sub-figures we can observe that in the (low,
high) case (see sub-figures (c), (f), (i), and (l) with SH = 0
and 0.05) best-fit surpasses fastest-first. This observation is
consistent with our analysis in Table I. The experimental
results in sub-figures (a), (d), (g), and (j) also confirm
another analysis in Table I, which indicates that fastest-first
outperforms best-fit for case (high, low). Moreover, these
results show that no single existing processor allocation
method can always perform the best under all possible
workload conditions.

For the performance of the proposed intelligent method,
we calculated how many times it is the best method or close
to the best method in all 100 parameter settings (5 5 4
= 100), as show in Table V. The performances of two
allocation methods are said to be close to each other if the
difference ratio of AverageResponseTime is less than 1%.
The result shows that in 39 of 100 cases the proposed
intelligent method performed better than all other methods
and in other 37 of 100 cases it is close to the best allocation
method. This result demonstrates that the proposed
intelligent allocation method can dynamically adapt to
various workload conditions and thus deliver better
performance in average.

Comparing the intelligent and the adaptive methods also
finds that the intelligent method surpasses the adaptive
method in 64 of 100 cases.

542

TABLE V. THE NUMBER OF TIMES THE INTELLIGENT METHODS IS
THE BEST OR CLOSE TO THE BEST ALOCATION METHOD

 intelligent is the
best method

intelligent is close
to the best method

Summary

RC=100% 6/25 10/25 16/25
RC=75% 12/25 9/25 21/25
RC=50% 12/25 5/25 17/25
RC=25% 9/25 13/25 22/25

Total 39/100 37/100 76/100

IV. CONCLUSTIONS
For heterogeneous grid environments, no existing

processor allocation methods can consistently deliver the
best performance under different resource and workload
conditions. Moreover, some of these workload conditions
change with user behavior that is hard to predict in advance
when system administrator decides which allocation method
to be used. Thus no performance guarantee could be made.
This paper analyzes the relative strength of existing

allocation methods and presents an intelligent processor
allocation method, which improves system performance
through considering both effects of the speed heterogeneity
and resource fragmentation. Extensive simulation studies
have been conducted to evaluate the proposed method. The
experimental results show that the proposed intelligent
method can dynamically adapt to the better allocation
method between best-fit and fastest-first. Therefore, it can
effectively deliver better performance under most workload
and resource conditions.

It is difficult to develop a processor allocation method
which can always perform the best under all possible
conditions. In addition to the proposed method, the extensive
simulation analysis of different allocation methods under
various conditions in this paper can serve as a good basis for
better understanding of the root causes of the performance
difference between the methods. The understanding could in
turn help develop more effective processor allocation
methods.

(a) SL=2, RC=100%

(b) SL=3, RC=100%

(c) SL=4, RC=100%

(d) SL=2, RC=75%

(e) SL=3, RC=75%

(f) SL=4, RC=75%

(g) SL=2, RC=50%

(h) SL=3, RC=50%

(i) SL=4, RC=50%

(j) SL=2, RC=25%

(k) SL=3, RC=25%

(l) SL=4, RC=25%

Figure 2. AverageResponseTime of the best-fit, fastest-first, adaptive, and Intelligent methods with various SH, SL, and RC settings

543

ACKNOWLEDGMENT
This paper is based upon work supported by National

Science Council (NSC), Taiwan, under grants no. NSC 96-
2221-E-007-130-MY3, NSC 97-3114-E-007-001, and NSC
96-2221-E-432-003-MY3. The authors also thank all of the
people for comments and advices.

REFERENCES
[1] C. Ernemann, V. Hamscher, R. Yahyapour, “Benefits of Global Grid

Computing for Job Scheduling,” Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing(GRID’04), pp. 374-379,
November 2004.

[2] L. M. Ni, S. W. Turner, B. H. C. Cheng, "Contention-Free 2D-Mesh
Cluster Allocation in Hypercubes," IEEE Transactions on Computers,
vol. 44, no. 8, pp. 1051-1055, Aug. 1995.

[3] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, Inc., 1999.

[4] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour,
“Evaluation of Job-Scheduling Strategies for Grid Computing”,
Proceedings of the 7th International Conference on High Performance
Computing, HiPC-2000, pp. 191-202, Bangalore, India, 2000.

[5] K. C. Huang and H. Y. Chang, “An Integrated Processor Allocation
and Job Scheduling Approach to Workload Management on
Computing Grid”, Proceedings of the 2006 International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA'06), pp. 703-709, Las Vegas, USA, June 26-29, 2006.

[6] D. G. Feitelson, and L. Rudolph, “Parallel Job Scheduling: Issues and
Approaches”, Proceedings of IPPS’95 Workshop: Job Scheduling
Strategies for Parallel Processing, pp. 1-18, 1995.

[7] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P.
Wong, “Theory and Practice in Parallel Job Scheduling”, Job
Scheduling Strategies for Parallel Processing, pp. 1-34, Springer-
Verlag, 1997.

[8] D. D. Sharma, D. K. Pradhan, "Processor Allocation in Hypercube
Multicomputers: Fast and Efficient Strategies for Cubic and Noncubic
Allocation," IEEE Transactions on Parallel and Distributed Systems,
vol. 6, no. 10, pp. 1108-1122, Oct. 1995.

[9] K. C. Huang, P. C. Shih, Y. C. Chung, “Towards Feasible and
Effective Load Sharing in a Heterogeneous Computational Grid”,
Proceedings of the Second International Conference on Grid and
Pervasive Computing, France (2007)

[10] A. W. Mu’alem, D. G. Feitelson, “Utilization, Predictability,
Workloads, and User Runtime Estimate in Scheduling the IBM SP2
with Backfilling”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 12, Iss. 6, pp. 529-543, 2001.

[11] Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/

[12] O. H. Kwon, J. Kim, S. J. Hong, S. G. Lee, "Real-Time Job
Scheduling in Hypercube Systems," Proceedings of 1997
International Conference on Parallel Processing (ICPP '97), pp.166,
1997.

[13] D. Lifka, “The ANL/IBM SP Scheduling System,” Proc. Int'l Parallel
and Distributed Processing Symp. Workshop Job Scheduling
Strategies for Parallel Processing vol. 949, pp. 295-303, Apr. 1995.

[14] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY-
LoadLeveler API Project,” Job Scheduling Strategies for Parallel
Processing, D.G. Feitelson and L. Rudolph, eds., pp. 41–47, 1996.

[15] O. H. Kwon, K. Y. Chwa, "An Algorithm for Scheduling Jobs in
Hypercube Systems," IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 9, pp. 856-860, Sept. 1998.

544

