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Abstract. A grid has to provide strong incentive for participating sites to join 
and stay in it. Participating sites are concerned with the performance 
improvement brought by the gird for the jobs of their own local user 
communities. Feasible and effective load sharing is key to fulfilling such a 
concern. This paper explores the load-sharing policies concerning feasibility 
and heterogeneity on computational grids. Several job scheduling and processor 
allocation policies are proposed and evaluated through a series of simulations 
using workloads derived from publicly available trace data. The simulation 
results indicate that the proposed job scheduling and processor allocation 
policies are feasible and effective in achieving performance improvement on a 
heterogeneous computational grid.  
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1. Introduction 

This paper deals with scheduling and allocating independent parallel jobs in a 
heterogeneous computational grid. Without grid computing local users can only run 
jobs on the local site. The owners or administrators of different sites are interested in 
the consequences of participating in a computational grid, whether such participation 
will result in better service for their local users by improving the job response time. 
Therefore, we say a computational grid is feasible if it can bring performance 
improvement and the improvement is achieved in the sense that all participating sites 
benefit from the collaboration. In this paper that means no participating sites’ average 
response time for their jobs get worse after joining the computational grid.  

In addition to feasibility, heterogeneity is another important issue in a 
computational grid. Many previous works have shown significant performance 
improvement for multi-site homogeneous grid environment. However, in the real 
world a grid usually consists of heterogeneous sites which differ at least in the 
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computing speed. Heterogeneity puts a challenge on designing effective load sharing 
methods. Methods developed for homogeneous grids have to be improved or even 
redesigned to make them effective in a heterogeneous environment. This paper 
addresses the potential benefit of sharing jobs between independent sites in a 
heterogeneous computational grid environment. To construct a feasible and effective 
computational grid, appropriate load sharing policies are important. The load sharing 
policies have to take into account several job scheduling and processor allocation 
issues. These issues are discussed in this paper, including job scheduling for feasible 
load sharing benefiting all sites, site selection for processor allocation, multi-site 
parallel execution. Several job scheduling and processor allocation policies are 
proposed and evaluated through a series of simulations using workloads derived from 
publicly available trace data. The simulation results indicate that a significant 
performance improvement in terms of shorter job response time is achievable. 

2. Related Work 

Job scheduling for parallel computers has been subject to research for a long time. As 
for grid computing, previous works discussed several strategies for a grid scheduler. 
One approach is the modification of traditional list scheduling strategies for usage on 
grid [1, 2, 3, 4]. Some economic based methods are also being discussed [5, 6, 7, 8]. 
In this paper we explore non economic scheduling and allocation policies with 
support for a heterogeneous grid environment.  

England and Weissman in [9] analyzed the costs and benefits of load sharing of 
parallel jobs in the computational grid. Experiments were performed for both 
homogeneous and heterogeneous grids. However, in their works simulations of a 
heterogeneous grid only captured the differences in capacities and workload 
characteristics. The computing speeds of nodes on different sites are assumed to be 
identical. In this paper we deal with load sharing issues regarding heterogeneous grids 
in which nodes on different sites may have different computing speeds.  

For load sharing there are several methods possible for selecting which site to 
allocate a job. Earlier simulation studies in our previous work [10] and in the 
literature [1] showed the best results for a selection policy called best-fit. In this 
policy a particular site is chosen on which a job will leave the least number of free 
processors if it is allocated to that site. However, these simulation studies are 
performed based on a computational grid model in which nodes on different sites all 
run at the same speed. In this paper we explore possible site selection policies for a 
heterogeneous computational grid. In such a heterogeneous environment nodes on 
different sites may run at different speeds.  

In [11] the authors addressed the scheduling of parallel jobs in a heterogeneous 
multi-site environment. They also evaluated a scheduling strategy that uses multiple 
simultaneous requests. However, although dealing with a multi-site environment, the 
parallel jobs in their studies were not allowed for multi-site parallel execution. Each 
job was allocated to run within a single site.  

The support of multi-site parallel execution [12, 13, 14, 15, 16] on a computational 
grid has been examined in previous works, concerning the execution of a job in 
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parallel at different sites. Under the condition of a limited communication overhead, 
the results from our previous work [10] and from [1, 3, 4] all showed that multi-site 
parallel execution can improve the overall average response time. The overhead for 
multi-site parallel execution mainly results from the slower communication between 
different sites compared to the intra-site communication. This overhead has been 
modeled by extending the execution time of a job by a certain percentage [2, 3, 10].  

In [2] the authors further examined the multi-site scheduling behavior by applying 
constraints for the job fragmentation during the multi-site scheduling. Two parameters 
were introduced for the scheduling process. The first parameter lower bound 
restricted the jobs that can be fragmented during the multi-site scheduling by a 
minimal number of necessary requested processors. The second parameter was 
implemented as a vector describing the maximal number of job fragments for certain 
intervals of processor numbers.  

However, the simulation studies in the previous works are performed based on a 
homogeneous computational grid model in which nodes on different sites all run at 
the same speed. In this paper we explore possible multi-site selection policies for a 
heterogeneous computational grid. In [17] the authors proposed job scheduling 
algorithms which allow multi-site parallel execution, and are adaptive and scalable in 
a heterogeneous computational grid. However, the introduced algorithms require 
predicted execution time for the submitted jobs. In this paper, we deal with the site 
selection problem for multi-site parallel execution, requiring no knowledge of 
predicted job execution time.   

3. Computational Grid Model and Experimental Setting 

In this section, the computational grid model is introduced on which the evaluations 
of the proposed policies in this paper are based. In the model, there are several 
independent computing sites with their own local workload and management system. 
This paper examines the impact on performance results if the computing sites 
participate in a computational grid with appropriate job scheduling and processor 
allocation policies. The computational grid integrates the sites and shares their 
incoming jobs. Each participating site is a homogeneous parallel computer system. 
The nodes on each site run at the same speed and are linked with a fast 
interconnection network that does not favor any specific communication pattern [18]. 
This means a parallel job can be allocated on any subset of nodes in a site. The 
parallel computer system uses space-sharing and run the jobs in an exclusive fashion.  

The system deals with an on-line scheduling problem without any knowledge of 
future job submissions. The jobs under consideration are restricted to batch jobs 
because this job type is dominant on most parallel computer systems running 
scientific and engineering applications. For the sake of simplicity, in this paper we 
assume a global grid scheduler which handles all job scheduling and resource 
allocation activities. The local schedulers are only responsible for starting the jobs 
after their allocation by the global scheduler. Theoretically a single central scheduler 
could be a critical limitation concerning efficiency and reliability. However, practical 
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distributed implementations are possible, in which site-autonomy is still maintained 
but the resulting schedule would be the same as created by a central scheduler [19].  

For simplification and efficient load sharing all computing nodes in the 
computational grid are assumed to be binary compatible. The grid is heterogeneous in 
the sense that nodes on different sites may differ in computing speed and different 
sites may have different numbers of nodes. When load sharing activities occur a job 
may have to migrate to a remote site for execution. In this case the input data for that 
job have to be transferred to the target site before the job execution while the output 
data of the job is transferred back afterwards. This network communication is 
neglected in our simulation studies as this latency can usually be hidden in pre- and 
post-fetching phases without regards to the actual job execution phase [19].  

In this paper we focus on the area of high throughput computing, improving 
system’s overall throughput with appropriate load sharing policies. Therefore, in our 
studies the requested number of processors for each job is bound by the total number 
of processors on the local site from which the job is submitted. The local site which a 
job is submitted from will be called the home site of the job henceforward in this 
paper. We assume the ability of jobs to run in multi-site mode. That means a job can 
run in parallel on a node set distributed over different sites when no single site can 
provide enough free processors for it due to a portion of resources are occupied by 
some running jobs.  

Our simulation studies were based on publicly downloadable workload traces [20]. 
We used the SDSC’s SP2 workload logs1  on [20] as the input workload in the 
simulations. The workload log on SDSC’s SP2 contains 73496 records collected on a 
128-node IBM SP2 machine at San Diego Supercomputer Center (SDSC) from May 
1998 to April 2000. After excluding some problematic records based on the 
completed field [20] in the log, the simulations in this paper use 56490 job records as 
the input workload. The detailed workload characteristics are shown in Table 1.  

Table 1. Characteristics of the workload log on SDSC’s SP2 

 Number of 
jobs 

Maximum 
execution 
time (sec.)

Average 
execution 
time (sec.)

Maximum 
number of 
processors

per job 

Average 
number of 
processors 

per job 
Queue 1 4053 21922 267.13 8 3 
Queue 2 6795 64411 6746.27 128 16 
Queue 3 26067 118561 5657.81 128 12 
Queue 4 19398 64817 5935.92 128 6 
Queue 5 177 42262 462.46 50 4 

Total 56490     
 

In the SDSC’s SP2 system the jobs in this log are put into five different queues and 
all these queues share the same 128 processors on the system. In the following 
simulations this workload log will be used to model the workload on a computational 

                                                           
1 The JOBLOG data is Copyright 2000 The Regents of the University of California All Rights 

Reserved. 
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grid consisting of five different sites whose workloads correspond to the jobs 
submitted to the five queues respectively. Table 2 shows the configuration of the 
computational grid under study. The number of processors on each site is determined 
according to the maximum number of required processors of the jobs belonged to the 
corresponding queue for that site.  

Table 2. Configuration of the computational grid. 

 total site 1 site 2 site 3 site 4 site 5 
Number of processors 442 8 128 128 128 50 

 
To simulate the speed difference among participating sites we define a speed 

vector, speed=(sp1,sp2,sp3,sp4,sp5), to describe the relative computing speeds of all 
the five sites in the grid, in which the value 1 represents the computing speed 
resulting in the job execution time in the original workload log. We also define a load 
vector, load=(ld1,ld2,ld3,ld4,ld5), which is used to derive different loading levels 
from the original workload data by multiplying the load value ldi to the execution 
times of all jobs at site i.  

4. Site Selection Policies for Load Sharing in a Heterogeneous Grid 

This section explores the potential of a computational grid in improving the 
performance of user jobs. The following describes the scheduling structures of two 
system architectures with/without grid computing respectively.  
• Independent clusters. This architecture corresponds to the situation where no grid 

computing technologies are involved. The computing resources at different sites 
are independent and have their own job queues without any load sharing activities 
among them. Each site’s users can only submit jobs to their local site and those 
jobs would be executed only on that site. This architecture is used as a comparison 
basis to see what performance gain grid computing can bring.  

• Load-sharing computational grid. Different sites connected with an 
interconnection network form a computational grid. In the computational grid, 
there is a global job scheduler as well as a globally shared job queue. Jobs 
submitted by users at different sites are automatically redirected to the global 
queue and the jobs retain the identities of their home sites. In this section, different 
sites in the computational grid are viewed as different processor pools and each job 
must be allocated to exactly one site. No jobs can simultaneously use processors on 
different sites. Support for multi-site parallel execution will be discussed in later 
sections.  
 
Two kinds of policies are important regarding load sharing in a computational grid: 

job scheduling and site selection. Job scheduling determines the sequence of starting 
execution for the jobs waiting in the queue. It is required in both the independent 
clusters and computational grid architectures. On the other hand, site selection 
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policies are necessary in a computational grid, which choose an appropriate site 
among a set of candidate sites for allocating a job according to some specified criteria.  

The best-fit site selection policy has been demonstrated to be the best choice on a 
homogeneous grid in previous works [1, 10]. In the best-fit policy a particular site is 
chosen for a job on which the job will leave the least number of free processors if it is 
allocated to that site. As for job scheduling policy, we compared both the FCFS 
(First-Come-First-Serve) policy and the NJF (Narrowest-Job-First) policy. The NJF 
policy was shown to outperform other non-FCFS policies, including conservative 
backfilling, first-available, widest-first, in our previous work [10]. Here, the word 
“narrowest” means requiring the least number of processors. In this paper we use the 
average response time of all jobs as the comparison criterion in all simulations, which 
is defined as:  

 

rofJobsTotalNumbe

submitTimeendTime
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∈

−
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However, in the real world a computational grid is usually heterogeneous, at least, 

in the aspect of computing speeds at different sites. The best-fit site selection policy 
without considering the speed difference among participating sites may not achieve 
good performance in a heterogeneous grid, sometimes resulting in even worse 
performance than the original independent-site architecture.  

To deal with the site selection issue in a heterogeneous grid, we first propose a 
two-phase procedure. At the first phase the grid scheduler determines a set of 
candidate sites among all the sites with enough free processors for a specific job 
under consideration by filtering out some sites according to a predefined threshold 
ratio of computing speed. In the filtering process, a lower bound for computing speed 
is first determined through multiplying the predefined threshold ratio by the 
computing speed of a single processor on the job’s home site, and then any sites with 
single-processor speed slower than the lower bound are filtered out. Therefore, 
adjusting the threshold ratio is an effective way in controlling the outcomes of site 
selection. When setting the threshold ratio to 1 the grid scheduler will only allocate 
jobs to sites with single-processor speed equal to or faster than their home sites. On 
the other hand, with the threshold ratio set to zero, all sites with enough free 
processors are qualified candidates for a job’s allocation. Raising the threshold ratio 
would prevent allocating a job to a site that is much slower than its home site. This 
could ensure a job’s execution time would not be increased too much due to being 
allocated to a slow site. However, for the same reason a job may consequently need to 
wait in the queue for a longer time period. On the other hand, lowering the threshold 
ratio would make it more probable for a job to get allocation quickly at the cost of 
extended execution time. The combined effects of shortened waiting time and 
extended execution time are complicated for analysis. At the second phase the grid 
scheduler adopts a site selection policy to choose an appropriate site from the 
candidate sites for allocating the job.  

Figure 1 compares the performances of two different values, 0 and 1, for the 
threshold ratio. The results indicate that when the speed difference among sites is 
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large, speed=(0.6, 0.7, 2.4, 9.5, 4.3), setting the threshold ratio to 1 can enable the 
best-fit policy to make performance improvement in a heterogeneous computational 
grid compared to the independent-site architecture.  

 

 
Fig. 1. Performance of best-fit policy with large speed difference among participating sites. 

Another possible policy for the second phase of the site selection process is called 
the fastest one. The fastest-one policy chooses the site with the fastest computing 
speed among all the sites with enough free processors for a job without consideration 
of the difference between the number of required processors and a site’s free capacity. 
To deal with the difficulty in determination of an appropriate site selection policy, in 
this section we propose an adaptive policy, which dynamically changes between the 
best-fit and the fastest-one policies, trying to make a better choice at each site 
selection activity. The decision is made based on a calculation of which policy can 
further accommodate more jobs for immediate execution. Figure 2 shows that the 
adaptive policy has potential for outperforming the best-fit and the fastest-one policies 
in some cases.  

 

 
Fig. 2. Performance of the adaptive policy. 

We also performed a series of 120 simulations representing all kinds of relative 
speed sequences for the 5 sites, permutations of speed=(1, 3, 5, 7, 9), in the 
computational grids. In the 120 simulations, among the three policies the adaptive 
policy is the most stable one. It is never the last one and always quite close to the best 
one in performance for all the 120 cases, while the other two policies would lead to 
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poor performance in some cases, being distant from the best and the second policies. 
Therefore, while it is not clear whether the best-fit or the fastest-one policy could 
achieve better performance under current grid configuration and workload, it may be 
a way for playing safe adopting the proposed adaptive policy.  

5. Feasible Load Sharing in a Computational Grid 

In most current grid systems, participating sites provide their resources for free with 
the expectation that they can benefit from the load sharing. Therefore, it is important 
to ensure that the load sharing is feasible in the sense that all sites benefit from it. 
Feasible load sharing is a good incentive for attracting computing sites to join a 
computational grid. In this paper, we define the feasibility of load sharing to be such a 
property which ensures the average job response time of each participating site is 
improved without exception. In this section we propose a feasible load sharing policy 
which works as follows. When the grid scheduler chooses the next job from the 
waiting queue and finds that there exists no single site with enough free processors for 
this job’s immediate execution, instead of simply keeping the job waiting in the queue 
the grid scheduler inspects the status of the job’s home site to see if it is possible to 
make enough free processors by reclaiming a necessary amount of occupied 
processors from some of the running remote jobs. If so, it stops the necessary amount 
of these running remote jobs to produce enough free processors and put the stopped 
remote jobs back to the front of the waiting queue for being re-scheduled to other sites 
for execution. This feasible load sharing policy tries to benefit all sites by giving local 
jobs a higher priority than remote jobs.  

For performing the feasible load sharing policy, the grid scheduler maintains a 
separate waiting queue for each site. Each time it tries to schedule the jobs in one 
queue as more as it can until no more jobs can be allocated. At this time the grid 
scheduler moves on to the next queue for another site. Multi-queue is an effective 
mechanism to ensure that local jobs have higher priority than remote jobs during the 
processor reclaiming process. 

Table 3 evaluates the effects of the feasible load sharing policy in a heterogeneous 
computational grid with speed=(1, 3, 4, 4, 8) and load=(5, 4, 5, 4, 1). The NJF 
scheduling policy and the fastest-one site selection policy are used in the simulations 
with the computing speed threshold ratio set to one, ensuring jobs won’t be allocated 
to the sites slower than their home sites. Table 3 shows that with the ordinary load 
sharing policy site 5 got degraded performance after joining the grid, which may 
contradict its original expectation. On the other hand, our proposed policy is shown to 
be able to achieve a somewhat more feasible and acceptable load sharing result in the 
sense that no sites’ performances were sacrificed.  

Table 3. Average job response times (sec.) for different load sharing policies. 

 Entire 
grid 

Site 1 Site 2 Site 3 Site 4 Site 5 

Independent 
sites 

9260 14216 10964 10199 6448 57 
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Ordinary load 
sharing policy 

4135 191 4758 4799 3881 559 

Feasible load 
sharing policy 

4152 193 4750 4798 3939 57 

6. Multi-Site Parallel Execution in a Heterogeneous Grid 

In the load sharing policies described in the previous sections, different sites in the 
computational grid are viewed as independent processor pools. Each job can only be 
allocated to exactly one of these sites. However, one drawback of this multi-pool 
processor allocation is the very likely internal fragmentation [4] where no pools 
individually can provide enough resources for a certain job but the job could get 
enough resources to run if it can simultaneously use more than one pool’s resources. 

Multi-site parallel execution is traditionally regarded as a mechanism to enable the 
execution of such jobs requiring large parallelisms that exceed the capacity of any 
single site. This is a major application area in grid computing called distributed 
supercomputing [21]. However, multi-site parallel execution could be also beneficial 
for another application area in grid computing: high throughput computing [21]. In 
our high throughput computing model in this paper, each job’s parallelism is bound 
by the total capacity of its home site. That means multi-site parallel execution is not 
inherently necessary for these jobs. However, for high throughput computing a 
computational grid is used in the space-sharing manner. It is therefore not unusual 
that upon a job’s submission its requested number of processors is not available from 
any single site due to the occupation of a portion of system resources by some 
concurrently running jobs. In such a situation, splitting the job up into multi-site 
parallel execution is promising in shortening the response time of the job through 
reducing its waiting time. However, in multi-site parallel execution the impact of 
bandwidth and latency has to be considered as wide area networks are involved. In 
this paper we summarize the overhead caused by communication and data migration 
as an increase of the job’s runtime [2, 10]. The magnitude of this overhead greatly 
influences the achievable response time reduction for a job which is allowed to 
perform multi-site parallel execution.  

If a job is performing multi-site parallel execution, the runtime of the job is 
extended by the overhead which is specified by a parameter p [2]. Therefore the new 
runtime r* is: 

( ) rp1r ×+=*  
 

where r is the runtime for the job running on a single site. As for the site selection 
issue in multi-site parallel execution, previous works in [1, 10] suggested the larger-
first policy for a homogeneous grid environment, which repeatedly picks up a site 
with the largest number of free processors until all the selected sites together can 
fulfill the requirement of the job to be allocated. As a heterogeneous grid being 
considered, the speed difference among participating sites should be taken into 
account. An intuitive heuristic is called the faster-first policy, which each time picks 
up the site with the fastest computing speed instead of the site having the most 
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amount of free processors. This section develops an adaptive site selection policy 
which dynamically changes between the larger-first and the faster-first policies based 
on a calculation of which policy can further accommodate more jobs for immediate 
single-site execution.  

Figure 3 shows that supporting multi-site parallel execution can further improve 
the performance of a heterogeneous load sharing computational grid when the multi-
site overhead p=2. Moreover, our proposed adaptive site selection policy outperforms 
the larger-first and the faster-first policies significantly. Actually in all the 120 
simulations we performed for different speed configurations the adaptive policy 
performs better than the other two policies for each case.  

 

 
Fig. 3. Performance evaluation of adaptive site selection in multi-site parallel execution 

7. Conclusion 

Most current grid environments are established through the collaboration among a 
group of participating sites which volunteer to provide free computing resources. 
Each participating site usually has its own local user community and computing jobs 
to take care of. Therefore, feasible load sharing policies that benefit all sites are an 
important incentive for attracting computing sites to join and stay in a grid 
environment. Moreover, a grid environment is usually heterogeneous in nature in the 
real world at least for the different computing speeds at different participating sites. 
The heterogeneity presents a challenge for effectively arranging load sharing 
activities in a computational grid. This paper explores the feasibility and effectiveness 
of load sharing activities in a heterogeneous computational grid. Several issues are 
discussed including site selection policies for single-site and multi-site parallel 
execution as well as feasible load sharing mechanisms. For each issue a promising 
policy is proposed and evaluated in a series of simulations. The quality of scheduling 
and allocation policies largely depends on the actual grid configuration and workload. 
The improvements presented in this paper were achieved using example 
configurations and workloads derived from real traces. The outcome may vary in 
other configurations and workloads. However, the results show that the proposed 
policies are capable of significantly improving the overall system performance in 
terms of average response time for user jobs.  
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