
Towards Feasible and Effective Load Sharing in a
Heterogeneous Computational Grid

Kuo-Chan Huang*, Po-Chi Shih, and Yeh-Ching Chung

Department of Electronic Commercce*
Hsing Kuo College of Management

No. 89, Yuying Street, Tainan, Taiwan
kchuang@mail.hku.edu.tw

Department of Computer Science
National Tsing Hua University

101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan
shedoh@sslab.cs.nthu.edu.tw , ychung@cs.nthu.edu.tw

Abstract. A grid has to provide strong incentive for participating sites to join
and stay in it. Participating sites are concerned with the performance
improvement brought by the gird for the jobs of their own local user
communities. Feasible and effective load sharing is key to fulfilling such a
concern. This paper explores the load-sharing policies concerning feasibility
and heterogeneity on computational grids. Several job scheduling and processor
allocation policies are proposed and evaluated through a series of simulations
using workloads derived from publicly available trace data. The simulation
results indicate that the proposed job scheduling and processor allocation
policies are feasible and effective in achieving performance improvement on a
heterogeneous computational grid.

Keywords: feasibility, load sharing, simulation, heterogeneous grid

1. Introduction

This paper deals with scheduling and allocating independent parallel jobs in a
heterogeneous computational grid. Without grid computing local users can only run
jobs on the local site. The owners or administrators of different sites are interested in
the consequences of participating in a computational grid, whether such participation
will result in better service for their local users by improving the job response time.
Therefore, we say a computational grid is feasible if it can bring performance
improvement and the improvement is achieved in the sense that all participating sites
benefit from the collaboration. In this paper that means no participating sites’ average
response time for their jobs get worse after joining the computational grid.

In addition to feasibility, heterogeneity is another important issue in a
computational grid. Many previous works have shown significant performance
improvement for multi-site homogeneous grid environment. However, in the real
world a grid usually consists of heterogeneous sites which differ at least in the

 Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

computing speed. Heterogeneity puts a challenge on designing effective load sharing
methods. Methods developed for homogeneous grids have to be improved or even
redesigned to make them effective in a heterogeneous environment. This paper
addresses the potential benefit of sharing jobs between independent sites in a
heterogeneous computational grid environment. To construct a feasible and effective
computational grid, appropriate load sharing policies are important. The load sharing
policies have to take into account several job scheduling and processor allocation
issues. These issues are discussed in this paper, including job scheduling for feasible
load sharing benefiting all sites, site selection for processor allocation, multi-site
parallel execution. Several job scheduling and processor allocation policies are
proposed and evaluated through a series of simulations using workloads derived from
publicly available trace data. The simulation results indicate that a significant
performance improvement in terms of shorter job response time is achievable.

2. Related Work

Job scheduling for parallel computers has been subject to research for a long time. As
for grid computing, previous works discussed several strategies for a grid scheduler.
One approach is the modification of traditional list scheduling strategies for usage on
grid [1, 2, 3, 4]. Some economic based methods are also being discussed [5, 6, 7, 8].
In this paper we explore non economic scheduling and allocation policies with
support for a heterogeneous grid environment.

England and Weissman in [9] analyzed the costs and benefits of load sharing of
parallel jobs in the computational grid. Experiments were performed for both
homogeneous and heterogeneous grids. However, in their works simulations of a
heterogeneous grid only captured the differences in capacities and workload
characteristics. The computing speeds of nodes on different sites are assumed to be
identical. In this paper we deal with load sharing issues regarding heterogeneous grids
in which nodes on different sites may have different computing speeds.

For load sharing there are several methods possible for selecting which site to
allocate a job. Earlier simulation studies in our previous work [10] and in the
literature [1] showed the best results for a selection policy called best-fit. In this
policy a particular site is chosen on which a job will leave the least number of free
processors if it is allocated to that site. However, these simulation studies are
performed based on a computational grid model in which nodes on different sites all
run at the same speed. In this paper we explore possible site selection policies for a
heterogeneous computational grid. In such a heterogeneous environment nodes on
different sites may run at different speeds.

In [11] the authors addressed the scheduling of parallel jobs in a heterogeneous
multi-site environment. They also evaluated a scheduling strategy that uses multiple
simultaneous requests. However, although dealing with a multi-site environment, the
parallel jobs in their studies were not allowed for multi-site parallel execution. Each
job was allocated to run within a single site.

The support of multi-site parallel execution [12, 13, 14, 15, 16] on a computational
grid has been examined in previous works, concerning the execution of a job in

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid

parallel at different sites. Under the condition of a limited communication overhead,
the results from our previous work [10] and from [1, 3, 4] all showed that multi-site
parallel execution can improve the overall average response time. The overhead for
multi-site parallel execution mainly results from the slower communication between
different sites compared to the intra-site communication. This overhead has been
modeled by extending the execution time of a job by a certain percentage [2, 3, 10].

In [2] the authors further examined the multi-site scheduling behavior by applying
constraints for the job fragmentation during the multi-site scheduling. Two parameters
were introduced for the scheduling process. The first parameter lower bound
restricted the jobs that can be fragmented during the multi-site scheduling by a
minimal number of necessary requested processors. The second parameter was
implemented as a vector describing the maximal number of job fragments for certain
intervals of processor numbers.

However, the simulation studies in the previous works are performed based on a
homogeneous computational grid model in which nodes on different sites all run at
the same speed. In this paper we explore possible multi-site selection policies for a
heterogeneous computational grid. In [17] the authors proposed job scheduling
algorithms which allow multi-site parallel execution, and are adaptive and scalable in
a heterogeneous computational grid. However, the introduced algorithms require
predicted execution time for the submitted jobs. In this paper, we deal with the site
selection problem for multi-site parallel execution, requiring no knowledge of
predicted job execution time.

3. Computational Grid Model and Experimental Setting

In this section, the computational grid model is introduced on which the evaluations
of the proposed policies in this paper are based. In the model, there are several
independent computing sites with their own local workload and management system.
This paper examines the impact on performance results if the computing sites
participate in a computational grid with appropriate job scheduling and processor
allocation policies. The computational grid integrates the sites and shares their
incoming jobs. Each participating site is a homogeneous parallel computer system.
The nodes on each site run at the same speed and are linked with a fast
interconnection network that does not favor any specific communication pattern [18].
This means a parallel job can be allocated on any subset of nodes in a site. The
parallel computer system uses space-sharing and run the jobs in an exclusive fashion.

The system deals with an on-line scheduling problem without any knowledge of
future job submissions. The jobs under consideration are restricted to batch jobs
because this job type is dominant on most parallel computer systems running
scientific and engineering applications. For the sake of simplicity, in this paper we
assume a global grid scheduler which handles all job scheduling and resource
allocation activities. The local schedulers are only responsible for starting the jobs
after their allocation by the global scheduler. Theoretically a single central scheduler
could be a critical limitation concerning efficiency and reliability. However, practical

 Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

distributed implementations are possible, in which site-autonomy is still maintained
but the resulting schedule would be the same as created by a central scheduler [19].

For simplification and efficient load sharing all computing nodes in the
computational grid are assumed to be binary compatible. The grid is heterogeneous in
the sense that nodes on different sites may differ in computing speed and different
sites may have different numbers of nodes. When load sharing activities occur a job
may have to migrate to a remote site for execution. In this case the input data for that
job have to be transferred to the target site before the job execution while the output
data of the job is transferred back afterwards. This network communication is
neglected in our simulation studies as this latency can usually be hidden in pre- and
post-fetching phases without regards to the actual job execution phase [19].

In this paper we focus on the area of high throughput computing, improving
system’s overall throughput with appropriate load sharing policies. Therefore, in our
studies the requested number of processors for each job is bound by the total number
of processors on the local site from which the job is submitted. The local site which a
job is submitted from will be called the home site of the job henceforward in this
paper. We assume the ability of jobs to run in multi-site mode. That means a job can
run in parallel on a node set distributed over different sites when no single site can
provide enough free processors for it due to a portion of resources are occupied by
some running jobs.

Our simulation studies were based on publicly downloadable workload traces [20].
We used the SDSC’s SP2 workload logs1 on [20] as the input workload in the
simulations. The workload log on SDSC’s SP2 contains 73496 records collected on a
128-node IBM SP2 machine at San Diego Supercomputer Center (SDSC) from May
1998 to April 2000. After excluding some problematic records based on the
completed field [20] in the log, the simulations in this paper use 56490 job records as
the input workload. The detailed workload characteristics are shown in Table 1.

Table 1. Characteristics of the workload log on SDSC’s SP2

 Number of
jobs

Maximum
execution
time (sec.)

Average
execution
time (sec.)

Maximum
number of
processors

per job

Average
number of
processors

per job
Queue 1 4053 21922 267.13 8 3
Queue 2 6795 64411 6746.27 128 16
Queue 3 26067 118561 5657.81 128 12
Queue 4 19398 64817 5935.92 128 6
Queue 5 177 42262 462.46 50 4

Total 56490

In the SDSC’s SP2 system the jobs in this log are put into five different queues and
all these queues share the same 128 processors on the system. In the following
simulations this workload log will be used to model the workload on a computational

1 The JOBLOG data is Copyright 2000 The Regents of the University of California All Rights

Reserved.

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid

grid consisting of five different sites whose workloads correspond to the jobs
submitted to the five queues respectively. Table 2 shows the configuration of the
computational grid under study. The number of processors on each site is determined
according to the maximum number of required processors of the jobs belonged to the
corresponding queue for that site.

Table 2. Configuration of the computational grid.

 total site 1 site 2 site 3 site 4 site 5
Number of processors 442 8 128 128 128 50

To simulate the speed difference among participating sites we define a speed

vector, speed=(sp1,sp2,sp3,sp4,sp5), to describe the relative computing speeds of all
the five sites in the grid, in which the value 1 represents the computing speed
resulting in the job execution time in the original workload log. We also define a load
vector, load=(ld1,ld2,ld3,ld4,ld5), which is used to derive different loading levels
from the original workload data by multiplying the load value ldi to the execution
times of all jobs at site i.

4. Site Selection Policies for Load Sharing in a Heterogeneous Grid

This section explores the potential of a computational grid in improving the
performance of user jobs. The following describes the scheduling structures of two
system architectures with/without grid computing respectively.
• Independent clusters. This architecture corresponds to the situation where no grid

computing technologies are involved. The computing resources at different sites
are independent and have their own job queues without any load sharing activities
among them. Each site’s users can only submit jobs to their local site and those
jobs would be executed only on that site. This architecture is used as a comparison
basis to see what performance gain grid computing can bring.

• Load-sharing computational grid. Different sites connected with an
interconnection network form a computational grid. In the computational grid,
there is a global job scheduler as well as a globally shared job queue. Jobs
submitted by users at different sites are automatically redirected to the global
queue and the jobs retain the identities of their home sites. In this section, different
sites in the computational grid are viewed as different processor pools and each job
must be allocated to exactly one site. No jobs can simultaneously use processors on
different sites. Support for multi-site parallel execution will be discussed in later
sections.

Two kinds of policies are important regarding load sharing in a computational grid:

job scheduling and site selection. Job scheduling determines the sequence of starting
execution for the jobs waiting in the queue. It is required in both the independent
clusters and computational grid architectures. On the other hand, site selection

 Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

policies are necessary in a computational grid, which choose an appropriate site
among a set of candidate sites for allocating a job according to some specified criteria.

The best-fit site selection policy has been demonstrated to be the best choice on a
homogeneous grid in previous works [1, 10]. In the best-fit policy a particular site is
chosen for a job on which the job will leave the least number of free processors if it is
allocated to that site. As for job scheduling policy, we compared both the FCFS
(First-Come-First-Serve) policy and the NJF (Narrowest-Job-First) policy. The NJF
policy was shown to outperform other non-FCFS policies, including conservative
backfilling, first-available, widest-first, in our previous work [10]. Here, the word
“narrowest” means requiring the least number of processors. In this paper we use the
average response time of all jobs as the comparison criterion in all simulations, which
is defined as:

rofJobsTotalNumbe

submitTimeendTime
TimesponseAverage JobsAllj

jj∑
∈

−
=

)(
Re

However, in the real world a computational grid is usually heterogeneous, at least,

in the aspect of computing speeds at different sites. The best-fit site selection policy
without considering the speed difference among participating sites may not achieve
good performance in a heterogeneous grid, sometimes resulting in even worse
performance than the original independent-site architecture.

To deal with the site selection issue in a heterogeneous grid, we first propose a
two-phase procedure. At the first phase the grid scheduler determines a set of
candidate sites among all the sites with enough free processors for a specific job
under consideration by filtering out some sites according to a predefined threshold
ratio of computing speed. In the filtering process, a lower bound for computing speed
is first determined through multiplying the predefined threshold ratio by the
computing speed of a single processor on the job’s home site, and then any sites with
single-processor speed slower than the lower bound are filtered out. Therefore,
adjusting the threshold ratio is an effective way in controlling the outcomes of site
selection. When setting the threshold ratio to 1 the grid scheduler will only allocate
jobs to sites with single-processor speed equal to or faster than their home sites. On
the other hand, with the threshold ratio set to zero, all sites with enough free
processors are qualified candidates for a job’s allocation. Raising the threshold ratio
would prevent allocating a job to a site that is much slower than its home site. This
could ensure a job’s execution time would not be increased too much due to being
allocated to a slow site. However, for the same reason a job may consequently need to
wait in the queue for a longer time period. On the other hand, lowering the threshold
ratio would make it more probable for a job to get allocation quickly at the cost of
extended execution time. The combined effects of shortened waiting time and
extended execution time are complicated for analysis. At the second phase the grid
scheduler adopts a site selection policy to choose an appropriate site from the
candidate sites for allocating the job.

Figure 1 compares the performances of two different values, 0 and 1, for the
threshold ratio. The results indicate that when the speed difference among sites is

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid

large, speed=(0.6, 0.7, 2.4, 9.5, 4.3), setting the threshold ratio to 1 can enable the
best-fit policy to make performance improvement in a heterogeneous computational
grid compared to the independent-site architecture.

Fig. 1. Performance of best-fit policy with large speed difference among participating sites.

Another possible policy for the second phase of the site selection process is called
the fastest one. The fastest-one policy chooses the site with the fastest computing
speed among all the sites with enough free processors for a job without consideration
of the difference between the number of required processors and a site’s free capacity.
To deal with the difficulty in determination of an appropriate site selection policy, in
this section we propose an adaptive policy, which dynamically changes between the
best-fit and the fastest-one policies, trying to make a better choice at each site
selection activity. The decision is made based on a calculation of which policy can
further accommodate more jobs for immediate execution. Figure 2 shows that the
adaptive policy has potential for outperforming the best-fit and the fastest-one policies
in some cases.

Fig. 2. Performance of the adaptive policy.

We also performed a series of 120 simulations representing all kinds of relative
speed sequences for the 5 sites, permutations of speed=(1, 3, 5, 7, 9), in the
computational grids. In the 120 simulations, among the three policies the adaptive
policy is the most stable one. It is never the last one and always quite close to the best
one in performance for all the 120 cases, while the other two policies would lead to

 Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

poor performance in some cases, being distant from the best and the second policies.
Therefore, while it is not clear whether the best-fit or the fastest-one policy could
achieve better performance under current grid configuration and workload, it may be
a way for playing safe adopting the proposed adaptive policy.

5. Feasible Load Sharing in a Computational Grid

In most current grid systems, participating sites provide their resources for free with
the expectation that they can benefit from the load sharing. Therefore, it is important
to ensure that the load sharing is feasible in the sense that all sites benefit from it.
Feasible load sharing is a good incentive for attracting computing sites to join a
computational grid. In this paper, we define the feasibility of load sharing to be such a
property which ensures the average job response time of each participating site is
improved without exception. In this section we propose a feasible load sharing policy
which works as follows. When the grid scheduler chooses the next job from the
waiting queue and finds that there exists no single site with enough free processors for
this job’s immediate execution, instead of simply keeping the job waiting in the queue
the grid scheduler inspects the status of the job’s home site to see if it is possible to
make enough free processors by reclaiming a necessary amount of occupied
processors from some of the running remote jobs. If so, it stops the necessary amount
of these running remote jobs to produce enough free processors and put the stopped
remote jobs back to the front of the waiting queue for being re-scheduled to other sites
for execution. This feasible load sharing policy tries to benefit all sites by giving local
jobs a higher priority than remote jobs.

For performing the feasible load sharing policy, the grid scheduler maintains a
separate waiting queue for each site. Each time it tries to schedule the jobs in one
queue as more as it can until no more jobs can be allocated. At this time the grid
scheduler moves on to the next queue for another site. Multi-queue is an effective
mechanism to ensure that local jobs have higher priority than remote jobs during the
processor reclaiming process.

Table 3 evaluates the effects of the feasible load sharing policy in a heterogeneous
computational grid with speed=(1, 3, 4, 4, 8) and load=(5, 4, 5, 4, 1). The NJF
scheduling policy and the fastest-one site selection policy are used in the simulations
with the computing speed threshold ratio set to one, ensuring jobs won’t be allocated
to the sites slower than their home sites. Table 3 shows that with the ordinary load
sharing policy site 5 got degraded performance after joining the grid, which may
contradict its original expectation. On the other hand, our proposed policy is shown to
be able to achieve a somewhat more feasible and acceptable load sharing result in the
sense that no sites’ performances were sacrificed.

Table 3. Average job response times (sec.) for different load sharing policies.

 Entire
grid

Site 1 Site 2 Site 3 Site 4 Site 5

Independent
sites

9260 14216 10964 10199 6448 57

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid

Ordinary load
sharing policy

4135 191 4758 4799 3881 559

Feasible load
sharing policy

4152 193 4750 4798 3939 57

6. Multi-Site Parallel Execution in a Heterogeneous Grid

In the load sharing policies described in the previous sections, different sites in the
computational grid are viewed as independent processor pools. Each job can only be
allocated to exactly one of these sites. However, one drawback of this multi-pool
processor allocation is the very likely internal fragmentation [4] where no pools
individually can provide enough resources for a certain job but the job could get
enough resources to run if it can simultaneously use more than one pool’s resources.

Multi-site parallel execution is traditionally regarded as a mechanism to enable the
execution of such jobs requiring large parallelisms that exceed the capacity of any
single site. This is a major application area in grid computing called distributed
supercomputing [21]. However, multi-site parallel execution could be also beneficial
for another application area in grid computing: high throughput computing [21]. In
our high throughput computing model in this paper, each job’s parallelism is bound
by the total capacity of its home site. That means multi-site parallel execution is not
inherently necessary for these jobs. However, for high throughput computing a
computational grid is used in the space-sharing manner. It is therefore not unusual
that upon a job’s submission its requested number of processors is not available from
any single site due to the occupation of a portion of system resources by some
concurrently running jobs. In such a situation, splitting the job up into multi-site
parallel execution is promising in shortening the response time of the job through
reducing its waiting time. However, in multi-site parallel execution the impact of
bandwidth and latency has to be considered as wide area networks are involved. In
this paper we summarize the overhead caused by communication and data migration
as an increase of the job’s runtime [2, 10]. The magnitude of this overhead greatly
influences the achievable response time reduction for a job which is allowed to
perform multi-site parallel execution.

If a job is performing multi-site parallel execution, the runtime of the job is
extended by the overhead which is specified by a parameter p [2]. Therefore the new
runtime r* is:

() rp1r ×+=*

where r is the runtime for the job running on a single site. As for the site selection
issue in multi-site parallel execution, previous works in [1, 10] suggested the larger-
first policy for a homogeneous grid environment, which repeatedly picks up a site
with the largest number of free processors until all the selected sites together can
fulfill the requirement of the job to be allocated. As a heterogeneous grid being
considered, the speed difference among participating sites should be taken into
account. An intuitive heuristic is called the faster-first policy, which each time picks
up the site with the fastest computing speed instead of the site having the most

 Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

amount of free processors. This section develops an adaptive site selection policy
which dynamically changes between the larger-first and the faster-first policies based
on a calculation of which policy can further accommodate more jobs for immediate
single-site execution.

Figure 3 shows that supporting multi-site parallel execution can further improve
the performance of a heterogeneous load sharing computational grid when the multi-
site overhead p=2. Moreover, our proposed adaptive site selection policy outperforms
the larger-first and the faster-first policies significantly. Actually in all the 120
simulations we performed for different speed configurations the adaptive policy
performs better than the other two policies for each case.

Fig. 3. Performance evaluation of adaptive site selection in multi-site parallel execution

7. Conclusion

Most current grid environments are established through the collaboration among a
group of participating sites which volunteer to provide free computing resources.
Each participating site usually has its own local user community and computing jobs
to take care of. Therefore, feasible load sharing policies that benefit all sites are an
important incentive for attracting computing sites to join and stay in a grid
environment. Moreover, a grid environment is usually heterogeneous in nature in the
real world at least for the different computing speeds at different participating sites.
The heterogeneity presents a challenge for effectively arranging load sharing
activities in a computational grid. This paper explores the feasibility and effectiveness
of load sharing activities in a heterogeneous computational grid. Several issues are
discussed including site selection policies for single-site and multi-site parallel
execution as well as feasible load sharing mechanisms. For each issue a promising
policy is proposed and evaluated in a series of simulations. The quality of scheduling
and allocation policies largely depends on the actual grid configuration and workload.
The improvements presented in this paper were achieved using example
configurations and workloads derived from real traces. The outcome may vary in
other configurations and workloads. However, the results show that the proposed
policies are capable of significantly improving the overall system performance in
terms of average response time for user jobs.

Towards Feasible and Effective Load Sharing in a Heterogeneous Computational Grid

Acknowledgement

The work of this paper is partially supported by National Science Council and
National Center for High-Performance Computing under NSC 94-2218-E-007-057,
NSC 94-2213-E-432-001 and NCHC-KING_010200 respectively.

References

[1] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour, “Evaluation of Job-
Scheduling Strategies for Grid Computing”, Proceedings of the 7th International
Conference on High Performance Computing, HiPC-2000, pp. 191-202, Bangalore,
India, 2000.

[2] C. Ernemann, V. Hamscher, R. Yahyapour, and A. Streit, “Enhanced Algorithms for
Multi-Site Scheduling”, Proceedings of 3rd International Workshop Grid 2002, in
conjunction with Supercomputing 2002, pp. 219-231, Baltimore, MD, USA, November
2002.

[3] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, R. Yahyapour, “On
Advantages of Grid Computing for Parallel Job Scheduling”, Proceedings of 2nd IEEE
International Symposium on Cluster Computing and the Grid (CC-GRID 2002), pp. 39-
46, Berlin, Germany, 2002.

[4] C. Ernemann, V. Hamscher, A. Streit, R. Yahyapour, “"On Effects of Machine
Configurations on Parallel Job Scheduling in Computational Grids", Proceedings of
International Conference on Architecture of Computing Systems, ARCS 2002, pp. 169-
179, 2002.

[5] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Economic Models for Resource
Management and Scheduling in Grid Computing”, Special Issue on Grid Computing
Environments, The Journal of Concurrency and Computation: Practice and
Experience(CCPE), May 2002.

[6] R. Buyya, J. Giddy, D. Abramson, “An Evaluation of Economy-Based Resource Trading
and Scheduling on Computational Power Grids for Parameter Sweep Applications”,
Proceedings of the Second Workshop on Active Middleware Services (AMS2000), In
conjunction with the Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC 2000), Pittsburgh, USA, August 2000.

[7] Y. Zhu, J. Han, Y. Liu, L. M. Ni, C. Hu, J. Huai, “TruGrid: A Self-sustaining
Trustworthy Grid”, Proceedings of the First International Workshop on Mobility in
Peer-to-Peer Systems (MPPS) (ICDCSW'05), pp. 815-821, June 2005.

[8] C. Ernemann, V. Hamscher, R. Yahyapour, “Economic Scheduling in Grid Computing”,
the 8th International Workshop on Job Scheduling Strategies for Parallel Processing,
Lecture Notes In Computer Science; Vol. 2537, pp. 128-152, 2002.

[9] D. England and J. B. Weissman, “Costs and Benefits of Load Sharing in Computational
Grid”, 10th Workshop on Job Scheduling Strategies for Parallel Processing, Lecture
Notes In Computer Science, Vol. 3277, June 2004.

[10] K. C. Huang and H. Y. Chang, “An Integrated Processor Allocation and Job Scheduling
Approach to Workload Management on Computing Grid”, Proceedings of the 2006
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'06), pp. 703-709, Las Vegas, USA, June 26-29, 2006.

[11] G. Sabin, R. Kettimuthu, A. Rajan and P. Sadayappan, “Scheduling of Parallel Jobs in a
Heterogeneous Multi-Site Environment”, Proceedings of 9th Workshop on Job
Scheduling Strategies for Parallel Processing, June 2003.

 Kuo-Chan Huang, Po-Chi Shih, and Yeh-Ching Chung

[12] M. Brune, J. Gehring, A. Keller, A. Reinefeld, “Managing Clusters of Geographically
Distributed High-Performance Computers”, Concurrency – Practice and Experience,
11(15): 887-911, 1999.

[13] A. I. D. Bucur and D. H. J. Epema, “The Performance of Processor Co-Allocation in
Multicluster Systems”, Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid'03), pp. 302-, May 2003.

[14] A. I. D. Bucur and D. H. J. Epema, “The Influence of Communication on the
Performance of Co-Allocation”, the 7th International Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science; Vol. 2221, pp.
66-86, 2001.

[15] A. I. D. Bucur and D. H. J. Epema, “Local versus Global Schedulers with Processor Co-
Allocation in Multicluster Systems”, the 8th International Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes In Computer Science, pp. 184-204,
2002.

[16] S. Banen, A. I. D. Bucur and D. H. J. Epema, “A Measurement-Based Simulation Study
of Processor Co-Allocation in Multicluster Systems”, the 9th Workshop on Job
Scheduling Strategies for Parallel Processing, Lecture Notes In Computer Science; Vol.
2862, pp. 105-128, 2003.

[17] W. Zhang, A. M. K. Cheng, M. Hu, “Multisite Co-allocation Algorithms for
Computational Grid”, Proceedings of the 20th International Parallel and Distributed
Processing Symposium, pp. 8-, April 2006.

[18] D. Feitelson and L. Rudolph, “Parallel Job Scheduling: Issues and Approaches”,
Proceedings of IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing,
pp. 1-18, 1995.

[19] C. Ernemann, V. Hamscher, R. Yahyapour, “Benefits of Global Grid Computing for Job
Scheduling,” Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing(GRID’04), pp. 374-379, November 2004.

[20] Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/
[21] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, Inc., 1999.

