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Abstract-The finite element method is widely
applied to many domains, such as engineering,
atmology, oceanography, biology, etc. The major
drawback of the finite element method is that its
execution takes a lot of time and memory spaces.
Due to the computation-intensiveness and
computation-locality properties, we can use the
parallel processing method to improve the
performance of the finite element method on
distributed memory computing environments.
However, it is quite difficult to program the finite

element method on a distributed memory
computing environment. Therefore, the
development of a front-end parallel partial

differential equations solver generation system is
important. In this paper, we want to develop a
front-end parallel partial differential equations
solver generation system based on the World Wide
Web on a distributed-memory computing
environment, such as a PC cluster, a workstation
cluster, etc. With the system, users who want to
use parallel computers to solver partial differential
equations can use web browser to input data and
parameters. The system will automatically
generate the corresponding parallel codes and
execute the codes on the distributed memory
computing environment. The execution result will
be shown on the web browser. The results can also
be download by user.

Index Terms: partitioner, refiner, load balancer,
finite element method, solver.

1. Introduction

The finite element method (FEM) has been
widely used for the structural modeling of physical
systems [2]. To solve problems using FEM on a
distributed memory parallel computer, in general,
we first need to establish the finite element model
of the problem. Usually, the model could be a 2D
or 3D finite element graph (FEG), which is a
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connected and undirected graph that consists of a
number of finite elements. Each finite element is
composed of a number of nodes. The second step,
we need to partition the FEG into N subgraphs
such that each subgraph has the same amount of
computational load and the communication cost
among subgraphs is minimized, where N is the
number of processors that we use to solve the
problem. The third step is to write the parallel
codes for each processor according to the data of
subgraphs assigned to it. Then we can get the
results by running the program on the machine.
Traditionally, for those tasks mentioned above
require a lot of manual effort and experiences for a
user who is familiar to the parallel programming.
However, for those users whose backgrounds are
in Electronic Engineering, Mechanical
Engineering, Physics, etc., those tasks are very
difficult for them to perform since they usually
rely on software tools to help them solving finite
element modeling problems.

To efficiently execute a finite element
application program on a distributed memory
multicomputer, we need to map nodes of the
corresponding mesh to processors of a distributed
memory multicomputer such that each processor
has the same amount of computational load and the
communication among processors is minimized.
Since this mapping problem is known to be
NP-completeness [10], many heuristics were
proposed to find satisfactory sub-optimal solutions
[9,11,13,16-17,19-20,23]. Based on these
heuristics, many graph partitioners were developed
[16-17,20,23]. Among them, Jostle [25], Metis
[16], and Party [20] are considered as the best
graph partitioners available up-to-cate.

If the number of nodes of a mesh will not
be increased during the execution of a finite
element application program, the mapping
algorithm only needs to be performed once. For
an adaptive mesh application program, the number
of nodes will be increased discretely due to the



refinement of some finite elements during the
execution of an adaptive mesh application program.
This will result in load imbalance of processors.
A load-balancing algorithm has to be performed
many times in order to balance the computational
load of processors while keeping the
communication cost among processors as low as
possible.  To deal with the load imbalance
problem of an adaptive mesh computation, many
load-balancing methods have been proposed in the
literature [4-8,12,14-15,19,23,25].

Due to this complicated process and huge
amount of efforts involved in parallel
programming, currently, programmers often reuse
existing codes as far as possible. Many research
efforts have already provided solid algorithms
heading to the sections of FEG partitioning, load
balancing, and MPI code packing in various
domains. Unfortunately most of them only offer
fragmental assistance. Users still need a lot of
manual effort in order to complete the whole
process of parallel programming. As a result, the
cost of parallel programming is still very high and
not cost effective. In this paper, we present a
parallel partial differential equations solver
generator on World Wide Web. This system is an
integrated tool that consists of eight components, a
partitioner, a load balancer, a simulator, a
visualization tool, a refiner, a generator, a executor
and a Web interface. Through the Web interface,

other seven components can be operated
independently or can be cooperated with others.
Besides, the system  provides  several

demonstration examples and their corresponding
models that allow beginners to download and
experiment. The design of the system is based on
the criteria including easy to use, efficiency, and
transparency.

2. Related Work

An environment consisting of a set of tools,
internal framework, and the encoding of design
knowledge and patterns that can greatly reduce the
complexity of programming and increase
productivity. The distributed irregular mesh
environment (DIME) [26] is an environment for
doing distributed calculations with unstructured
triangular meshes. The mesh covers a 2D manifold,
whose boundaries may be defined by straight lines,
arcs of circles, or Bezier cubic sections. In also
provides functions for creating, manipulating, and
refining  unstructured  triangular  meshes.
Similarly, Archimedes [24] and SUMAA3D [22]
are two environments that support more phases of
FEM parallel programming process.

However, DIME is a close system, which
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can’t take input from other systems, and has a
limitation on the number of nodes (limited to
10000 nodes), which may be very limited to the
analysis of some real world objects.  The
Archimedes system is missing refinement and load
balancing functionality. Although the
SUMMAAZ3D support functionality that cover the
entire process except load balancing, it is currently

restricted to solving some particular FEM
problems and not general enough. It also misses
the load balancing function. The DIME,

Archimedes and our PPGE are systems that
support compiler in their systems.

Most of current tools offer GUI facility but
some still do not. However, most of current tools
do not support the facilities of load balancing and
executor. Only environments like DIME,
Archimedes, SUMMAA3D and our system
provide an executor. For the offering of solvers,
the DIME only support sequential solvers, while
the Archimedes and SUMMAA3D systems
support both sequential and parallel solvers for
either PDEs or linear equation.

Our system is able to collect the history of
execution results and  generate  various
performance analysis statistics reports to support
the performance analysis from different algorithms.
Other tools may only offer very limited analysis
reports, which may need more manual efforts in
the performance comparison.

From the viewpoint of the integration with
existing algorithms, our system is very unique in
its adoption with so many existing algorithms. In
addition, its capability of dynamic change of
different algorithms during the operation has made
our system a very efficient tool to help the analysis
of FEM. Although several search have been
implemented as tools or libraries, none of them has
offered its Web interface and high level support to
users. .
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Figure 1. The working flow of the system.



3. The System Structure

The system structure of the web-based
parallel PDE solver generation system is show in
Figurel. The system consists of eight components,
a partitioner, a load balancer, a simulator, a
visualization tool, a refiner, a executor, a solver
generator and a Web interface. Users can upload
the unstructured mesh data and get the running
results on any Web browsers. Through the Web
interface, other seven components can be operated
independently or can be cooperated with others.
In the following, we will describe them in details.

3.1 The Partitioner

In the partitioner, we provide three
partitioning methods, Jostle/DDM, Metis/DDM,
and Party/DDM. Jostle/DDM, Metis/DDM, and
Party/DDM were implemented based on the best
algorithms provided in Jostle, Metis and Party,
respectively, with the dynamic diffusion
optimization method (DDM) [7]. The partitioner of
the system has the following advantages:

1. In Jostle, Metis, and Party, 3% to 5%
load imbalance among partitioned
modules is allowed. The dynamic
diffusion optimization method can
efficiently balance the 3% to 5% load
imbalance among partitioned modules
allowed by these three methods and

improve the total cut-edges of
partitioned modules.  Therefore, the
partition methods provided in the

partitioner will perform better than their
counterparts.
2. The partition results of Jostle, Metis, and
Party depend on the shapes of
unstructured meshes. It is difficult to
tell that which one performs the best for
a given unstructured mesh. If we want
to get the best result from these three
partitioners for an unstructured mesh, we
need to run these three partitioners
separately. Since the parameters used
in these three partitioners are different, it
may take some time to get the desire
results. By integrating Jostle/DDM,
Metis/DDM, and Party/DDM methods in
a partitioner, one can try each method
once and take the best partitioning result
easily because the parameters for these
three methods are uniform in the system.
The outputs of the partitioner are a
partitioned unstructured mesh file and partitioned
results. In a partitioned unstructured mesh file, a
number j in line / indicates that node i belongs to
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processor j. Users can download the partitioned
unstructured mesh file for further use and see the
partitioned results on a Web browser. The
partitioned results include the load balancing
degree and the total cut-edges of a partitioned
unstructured mesh.

3.2 The Load Balancer

In the load balancer, we provide two
load-balancing methods, the prefix code matching
parallel load-balancing (PCMPLB) method [5] and
the binomial tree based parallel load-balancing
(BINOTPLB) method [5]. The inputs of the load
balancer are the number of processors and files of
the connection model, the element model, and the
partitioned model of an unstructured mesh. The
number of processors specifies how many
processors will be involved in the load balancing
process. The data format of the partitioned model
file of an unstructured mesh is the same as that of
the output file of the partitioner. In the load
balancer, users can also use the partitioned
unstructured demo mesh model provided by the
system. In this case, the inputs are the load
imbalance degree and the number of processors.
The outputs of the load balancer are a
load-balanced unstructured mesh file and the load
balancing results. Users can download the
load-balanced unstructured mesh file for further
use and see the load balancing results on a Web
browser. The load balancing results include the
load balancing degree and the total cut-edges.

3.3 The Simulator

The simulator provides a simulated
distributed memory multicomputer for the
performance evaluation of a  partitioned

unstructured mesh. The execution time of an
unstructured mesh on a P-processor distributed
memory multicomputer under a particular
mapping/load-balancing method L; can be defined
as follows:

Tpar(Li):max{Tcomp(Lf s 1)j)+Tcomm(L s Pj)}) (1)
where T,q(L;) is the execution time of an
unstructured mesh on a distributed memory
multicomputer under L;, Timp(l;, P;) is the
computation cost of processor P; under L, and
Teomm(Li, P;) is the communication cost of
processor P; under L;, where j =0, ..., P-1.

The cost model used in Equation 1 is
assuming a synchronous communication mode in
which each processor goes through a computation
phase followed by a communication phase.
Therefore, the computation cost of processor P;
under a mapping/load-balancing method L; can be



defined as follows:

Tcamp( Li; Pj) =8x load,( ID/) X Ttask, (2)

where S is the number of iterations performed by a
finite element method, load(P)) is the number of
nodes of an unstructured mesh assigned to
processor P;, and T, is the time for a processor to
execute tasks of a node.

For the communication model, we assume a

synchronous communication mode and every two
processors can communicate with each other in
one step. In general, it is possible to overlap
communication with computation. In this case,
Teomm(Li, Pj) may mnot always reflect the true
communication cost since it would be partially
overlapped with computation. However, Teomm(Li,
P;) should provide a good estimate for the
communication cost. Since we use a synchronous
communication mode, T,.mm(L;, P;) can be defined
as follows:
Teomn( Li, P) = SX(6X Tooup+ 9 X I.. ), 3
where § is the number of iterations performed by a
finite element method, & is the number of
processors that processor P; has to send data to in
each iteration, T, is the setup time of the I/O
channel, ¢ is the total number of data that
processor P; has to send out in each iteration, and
T, is the data transmission time of the I/O channel
per byte.

To use the simulator, users need to input the
partitioned or load-balanced unstructured mesh file
and the values of S, Ti.up, To, Tiast, and the number
of bytes sent by a finite element node to its
neighbor nodes. The partitioned or load-balanced
unstructured mesh file can be uploaded from a
user’s browser or can be a demo file provided by
the system. The outputs of the simulator are the
execution time of the unstructured mesh on a
simulated distributed memory multicomputer and
the total cut-edges of a partitioned unstructured
mesh.

3.4 The Visualization Tool

The system also provides a visualization tool
for users to visual the partitioned unstructured
mesh. The inputs of the visualization tool are files
of the coordinate model, the element model, and
the partitioned unstructured mesh models of an
unstructured mesh, and the size of an image.
After rendering, a Web browser displays the
unstructured mesh with different colors, and each
color represents one processor. Currently, the
visualization tool can only display partitioned 2D
meshes. The visualization of partitioned 3D
meshes is still under development.

3.5 The PDE Solver Generator
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The PDE solver generator contains a set of
partial differential equations solvers that distinct
our system from other tools by enabling the
dynamic selection of different solvers.  This
flexibility makes the selection of appropriate
solver algorithms much easier and cost-effective.
The PDE solvers generator is responsible to
generate the corresponding C+MPI codes of the
selected solver. Current the PDE solver generator
provides a solver - Laplacs. The methods that
help solve PDEs have also been incorporated in
PDESG, including Conjugate Gradient,
Preconditional Conjugae Gradient, Gauss-Seidel,
Direct Gaussian Elemination, Jocobi Iterative, and
Successive Over Relaxation.

3.6The Executor

The task of the executor is to compile the
generated solver program and automatically load it
to distributed parallel machines for execution.
Since our solver program is written in C+MPI, the
executor uses either MPICH [3] or WinMPI [18] to
compile the solver program. The major platform
of the system has focused on workstation clusters,
PC clusters, or IBM SP2. The execution is based
on SPMD (Single Process Multiple Data) model.

3.7 The Refiner

In order to utilize finite element to solve
PDE efficiently, we usually refine finite element
mesh to mince every element’s area to fast make
solution converge an approximate answer. So
mesh refiner improves rate of finding partial
differential equation answer. Since the results by
solving the input FEG may not be always
acceptable, the refiner is used to further refine the
input FEG. The system has adopted and
implemented the regular refinement algorithm
proposed by Bank ef al. [1] and the bisection
refinement algorithm [21].

3.8 The Implementation of the system

In order to support standard WWW browsers,
the front end is coded in HTML with CGI. The
CGI interface is implemented in Perl language.
The CGI interface receives the data and parameters

from the forms of the HTML interface. It then
calls external tools to handle requests. The tools
of the system, partitioner, balancer, refiner,

executor, solver generator, and simulator are coded
in C language and MPI+C codes. They receive
the parameters from the CGI interface and use the
specified methods (functions) to process requests



of users.

To support an interactive visualization tool,
the client/server software architecture is used in
this system. In the client side, a Java Applet is
implemented to display images rendered by server.
In the server side, a Java serverlet is implemented
as a Java Application. The Java serverlet renders
image with specific image size and unstructured
mesh models. As the server finishes its rendering
work, it sends the final image to client side and
users can see the final image from users' Web
browsers.

4.Experimental Results

In this section, we will present some
experimental results for unstructured meshes by
using the solver. To evaluate the performance of
solver and five unstructured meshes are used as
tested samples. These five unstructured meshes are
part of demo meshes provided in the system. The
number of nodes, the number of elements, and the
number of edges of these five unstructured meshes
are given in Table 1. Figure 2 shows the result of
test samples run on IBM SP2 parallel machine
with 4,8,16 processors. In this experimental test,
the execution of a parallel Laplace solver is
evaluated. The number of iterations performed by
a Laplace solver is set to 100 by using the Jacobi
method. Table 2 shows the result of test samples
at 4, 8, 16 processors. According to Figure 2, we
found that the solver execution time of 4
processors for all test samples. From Table 2, we
can say that the parallel codes generated by the
system are scaled well for the number of
processors used for the experimental test, that is,
the system does generate good parallel codes for
the corresponding meshes.

Samples [#node [#element |#edges
Hook 180494 [158979 [239471
Letter S [106215 [126569 (316221
Truss 57081 |91968 169518
Font 116043 (230444 (346486
Leaf 138292 (274816 |413107

Table 1. The number of nodes, elements, and
edges of the test samples.

Figure 2. The result of execution of the
unstructured meshes in IBM SP2.
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5.Conclusions

In this paper, we have presented a Wed-based
PDE solver generation system for distributed
memory computing environment. The system
consists of eight components, a partitioner, a load
balancer, a simulator, a visualization tool, a refiner,
a executor, a solver generator, and & Web interface.
The design of the system is based on the criteria
including easy to use, efficiency, ard transparency.
By using our system through WWW, the boundary
of using tools has been released. Users can use this
tool without going through the tedious steps of
installation on their machines provided that they
are permitted to own a copy. The further
maintenance and upgrade of this tool become
much cost effective and the inconsistency of the
usage of this tool can be minimized because only
one version of this tool needs to be maintained.
The integration of different methods into our
system has made the experiments and simulations
of parallel programs very simple and cost effective.
The system offers a very high level and user
friendly interface. Besides, the demonstration
examples can educate beginners on how to apply
FEM to solve parallel problems.
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