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Abstract- In this paper, we present message 
encoding techniques to improve the performance of 
BLOCK-CYCLlC(kr) to BLOCK-CYCLIC(r) {and vice 
versa) array ’ redistribution algorithms. The 
message encoding techniques are machine 
independent and could be used with different 
algorithms. By incorporating the techniques in 
array redistribution algorithms, one can reduce the 
computation overheads and improve the overall 
performance of array redistribution algorithms. To 
evaluate the performance of the techniques, we have 
implemented the message encoding techniques into 
some array redistribution algorithms on an IBM SP2 
parallel machine. The experimental results show 
that the execution time of array redistribution 
algorithms with the message encoding techniques is 
3% to 22% faster than those without the message 
encoding techniques. 

Keywords: array redistribution, distributed memory 
multicomputers, message encoding. 

1. Introduction 

Array redistribution, in general, can be performed 
in two phases, the send phase and the receive phase. 
In the send phase, a processor Pi has to determine all 
the data sets that will be sent to destination 
processors, pack those data sets, and send those 
packed data sets to their destination processors. In 
the receive phase, a processor Pi has to determine all 
the data sets that will be received from source 
processors, receive those data sets, and unpack data 
elements in those data sets to their corresponding 
local array positions. This means that each 
processor P, should compute the following four sets. 

D Destination Processor Set (DPS[P,]) : the set of 
processors to which Pi has to send data. 

l Send Data Sets ( U SDS[P;, P,]) : the sets 
PcDPS[A] 

of array elements that processor Pi has t? send to 

its destination processors, where SDS[Pi, P,] 
denotes the set of array elements that processor 
Pi has to send to its destination processor Pj. 

l Source Processor Set (SPS[Pj]) : the set of 
processors from which Pi has to receive data. 

l Receive Data Sets ( U RDS[Pj, Pi]) : the 
AESPS[fi] 

sets of array elements that Pj has to receive from 
its source processors, where RDS[Pj, Pi] denotes 
the set of array elements that processor Pj has to 
receive from its source processor P;. 

Since array redistribution is performed at run-time, 
there is a performance trade-off between the 
efficiency of a new data decomposition for a 
subsequent phase of an algorithm and the cost of 
redistributing data among processors. Thus 
efficient methods for performing array redistribution 
are of great importance for the development of 
distributed memory compilers. In this paper, we 
present the message encoding techniques to improve 
the performance of array redistribution algorithms. 
For the message encoding techniques, in the send 
phase, a source processor encodes the unpacking 
information into messages that will be sent to its 
destination processors. In the receive phase, for a 
destination processor, according to the encoded 
unpacking information, one can perform unpacking 
process without calculating the RDS. 

The paper is organized as follows. In Section 2, 
a brief survey of related work will be presented. In 
Section 3, the message encoding techniques for array 
redistribution will be described in details. The 
encoding and unpacking algorithms used by the 
message encoding techniques for array redistribution 
will be given in Section 4. The performance 
evaluation will be presented in Section 5 

2. Related Work 

Gupta et al. [2] derived closed form expressions 

’ The work of this paper was partially supported by NSC of R.O.C. under contract NSC-86-2213-E035-023. 
’ The correspondence addressee. 

150 
0190-3918/97 $10.00 0 1997 IEEE 

Proceedings of the 1997 International Conference on Parallel Processing (ICPP’97) 
0-8186-8108-X 97 $10.00 � 1997 IEEE 



to efficiently determine the send/receive 
processor/data sets. Similar approaches was also 
presented in [1,6,9,12]. Thakur et al. [lo, 1 l] 
presented algorithms for run-time array redistribution 
in HPF programs. In [S], Ramaswamy et al. used a 
mathematical representation, PITFALLS, for regular 
data redistribution. Similar approach in finding the 
intersections between LHS and RHS of array 
statements was also presented in [3]. 

Kaushik et al. [5] proposed a multi-phase 
redistribution approach for array redistribution. In 
[14], portion of array elements were redistributed in 
sequence in order to overlap the communication and 
computation. In [15], a spiral mapping technique 
was proposed to reduce communication conflicts 
when performing a redistribution. Kalns and Ni [4] 
proposed a processor mapping technique to 
minimizes the amount of data exchange for 
redistribution. In [7], a generalized circulant matrix 
formalism was proposed to reduce the 
communication overheads redistribution. Walker et 
al. [13] used the standardized message passing 
interface, MPI, to express the redistribution 
operations. 

3. Message Encoding Techniques 

In general, the BLOCK-CYCLIC(s) to BLOCK- 
CYCLIC(t) redistribution can be classified into three 
types, 

l s is divisible by t, i.e. BLOCK-CYCLIC(s=kr) 
to BLOCK-CYCLIC(t=r) redistribution, 

l t is divisible by s, i.e. BLOCK-CYCLIC(s=r) 
to BLOCK-CYCLIC(t=kr) redistribution, 

. s is not divisible by t and t is not divisible by s. 

To simplify the presentation, we use kr-+r, r+kr, and 
s+t to represent the first, the second, and the third 
types of redistribution, respectively, for the rest of 
the paper. 

Definition 1: Given a BLOCK-CYCLIC(s) to 
BLOCK-CYCLIC(t) redistribution, BLOCK- 
CYCLIC(s), BLOCK-CYCLIC(t), s, and t are called 
the source distribution, the destination distribution, 
the source distribution factor, and the destination 
distribution factor of the redistribution , respectively. 

Definition 2: Given an s+t redistribution on 
A[l:N] over M processors, the source (destination) 
local array of processor Pi (P,), denoted by 
SLA,[O:N/M-I] (D~j[O:N/M-I]), is defined as the 
set of array elements that are distributed to processor 
Pi (P,) in the source (destination) distribution, where 
O<i,j<M-1. 

Definition 3: Given an s+t redistribution on 
A[l:N] over M processors, the source (destination) 
processor of an array element in A[l:N] or 
DLAj[O:N/M-I] (SLAJO:N/M-I]) is defined as the 
processor that owns the array element in the source 
(destination) distribution, where 0 5 i, j 5 M-l. 

Definition 4: Given an s-+t redistribution on 
A[ l:N] over M processors, we define SG : SLAi[m] + 
A[k] is a function that converts a source local array 
element SLAi[m] of P; to its corresponding global 
array element A[k] and DC : DLAj[n] -+ A[l] is a 
function that converts a destination local array 
element DLAJn] of Pi to its corresponding global 
array element A[l], where 1 I k, 1 < N and 0 < m, n 
I NIM-1. 

Definition 5: Given an s+t redistribution on 
A[ 1 :N] over M processors, a global complete cycle 
(CCC) of A[l:N] is defined as M times the least 
common multiple of s and t, i.e., GCC=Mxlcm(s,t). 
We define A[l:GCC] as the first global complete 
cycle of A[l:N], A[GCC+1:2xGCC] as the second 
global complete cycle of A[ 1 :NJ, and so on. 

Definition 6: Given an s-+t redistribution, a local 
complete cycle (XC) of a local array SLAj[O:N/M-I] 
(or DLAj[O:NIM-11) is defined as the least common 
multiple of s and t, i.e., LCC = lcm(s, t). We define 
SLA;[O:LCC-I] (DLAj[O:LCC-11) as the first local 
complete cycle of SLAJO:N/M-I] (DLAj[O:NIM-I]), 
SLAi[LCC:2XLCC-I] (DLAJLCC~XLCC-I]) as the 
second local complete cycle of of SLA,[O:N/M-I] 
(DLAj[O:N/M-I]), and SO on. 

3.1 The Message Encoding Technique for 
kr+r Redistribution 

Due to the page limitation, we omit the proof of 
lemmas presented in this paper. 

Lemma 1: Given an s+t redistribution on A[l:N] 
over M processors, SLAJml, SLA;[m+LCC], 
SLAi[m+2XLCC], . . . . and SLAi[m+N/MxLCC] have 
the same destination processor, where 0 I i 5 M-l 
andO<m<LCC-1.m 

Lemma 2: Given a kr-+r redistribution on A[ l:N] 
over M processors, for a source processor Pi and 
array elements in SLAj[xxLCC:(x+l)xLCC-I], if the 
destination processor of SGWA;[ad), 
SG(SLA,[a,]), . . . . SG(SLAi[apl]) is Pi, then 
SG(SLAi[ao]), SG(SLAi[al]), . . . . SG(SLA;[a,l]) are in 
the consecutive local array positions of DLAi[O:NIM- 
l],whereO<x<NIGCC-1 andxxLCC<a0<a1<a2 
< . . . < a,, < (x+l)xLCC. n 

Lemma 3: Given a kr+r redistribution on A[ 1 :N] 
over M processors, for a source processor P,, if 
SLAi[a] and SLAi[b] are the first element in 
SLA,[xxLCC: (x+1) x LCC -11 and SLA;[(x+l) x LCC: 
(x+2) x LCC -11, respectively, with the same 
destination processor Pj and SG(SLA,[a]) = 
DG(DLA,[a]), then SG(SLA;[b]) = DG(DLAj[a + kr]), 
whereO<x<NlGCC-2andO<crIN/M-1.m 

Given a kr+r redistribution on A[ l:N] over M 
processors, for a source processor Pi, we assume that 
there are yarray elements in SLA,[O:LCC-I] whose 
destination processor is P,. In the receive phase, if 
the first array element of the message will be 
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unpacked to DLAj[Or], according to Lemmas 1, 2, and 
3, the first y array elements of the message will be 
unpacked to DLAj[cx:~+y--11, the second y array 
elements of the message will be unpacked to 
DLAj[a+kr:or+kr+y-11, the third y array elements of 
the message will be unpacked to 
DLAj[cw+2kr:a+2kr+y-11, and so on. Therefore, if 
we know the values of 01 and yin the send phase and 
encode the values of (X and y as the first and the 
second elements of a message, respectively, then we 
can perform the unpacking process without 
computing the receive data sets in the receive phase. 

Given a krdr redistribution on A[I:N] over M  
processors, for a source processor Pi, the values of 01 
and ycan be computed by the following equations: 

i 

LraidFf, xk/MJ xr if fzzn4tB~mBxkM 

a= ~m&(fTjxk/M]+l )Xr OtbaMise 
(1) 

where rank(Pi) and rank(Pj) are the ranks of 
processors P; and Pj, respectively. 

3.2 The Message Encoding Technique for 
r+kr Redistribution 

Lemma 4: Given a rjkr redistribution on A[ 1 :NJ 
over M  processors, for a source processor Pi and 
array elements in SLAi[x~LCC:(x+l)~LCC-l], if the 
destination processor of WSMad), 
SG(SLAJa,J), . . . . SG(SLA;[a,r]) is Pj, and 
SG(SLAi[ao]) = DG(DLAj[a]), then SG(SLAi[a,]) = 
DG(DLAj[a + Mr]), SG(SLAJa2,]) = DG(DLAj[a + 
2Mr]), . . . . and SG(SLAi[a,,]) = DG(DLAj[a + (yfr-1) 
x Mr]), where 0 5 a I N I M-l, 0 < x < NIGCC-1 and 
xXLCC 5 aO< aI < a2 < . . . < ay-, < (x+l)xLCC. q 

Given an r+kr redistribution on A[ l:N] over M  
processors, for a source processor Pi, we assume that 
there are y array elements in SLAi[O:LCC-I] whose 
destination processor is Pj. In the receive phase, if 
the first array element of the message will be 
unpacked to DLAj[pJ, according to Lemmas 1, and 4, 
the first y array elements of the message will be 
unpacked to DLA,[p:p+r-I], DLAj[P + Mr : p + Mr + 
r - 11, DLAj[p + 2Mr : fl + 2Mr + r - 11, . . . . and 
DLAj[fi+(ylr-l)xMr:B+(ylr-l)xMr+r-I]: the second 
yarray elements of the message will be unpacked to 
DLA,[P+kr:P+kr+r-l],DLA@+kr+Mr:fl+ 
kr+Mr+r-l],DLAj[P+kr+2Mr:P+kr+2Mr+ 
r - I], . . . . and DLAj[p + kr + (y/r-l) x 
Mr:P+kr+(ylr-l)xMr+r-11, and so on. Therefore, 
if we know the values of p and y p, then we can 
perform the unpacking process without computing 
the RDS in the receive phase. 

Given an r+kr redistribution on A[l:N] over M  
processors, for a source processor Pi, the value of y 
can be computed by Equation 2. The value of p can 
be computed by the following equation, 

p = mod(rank(Pi) + M  - 
mod(rank(Pj) X k, M). M) X r (3) 

4. Incorporate Message Encoding Techniques 
with Array Redistribution Algorithms 

To incorporate the message encoding techniques 
with the kr+r and r+kr redistribution algorithms, 
we need the following four algorithms. 

Algorithm kr-to-r-encoding(k, r, M) 
1. For each destination processor Pj in DPS[PJ do 
2. ( calculate cx and yusing Equations 

1 and 2, respectively; 
3. send-mesj[O] = lo; 
4. send-mesj[l] = z } 

end-of -kr-to-r-encoding 

Algorithm kr-to-r-unpacking(k, r, M, N) 
1. Pj receives a message recv-mesi from source 

processor Pi 
2. a = rcev-mesi[O]; y= recv-mesi[ I]; 
3. lengthi = 2; cycle = N I (M x krj; 

count = 0; index = Q - kr; 
4. while (count < cycle) 
5. ( index += kr ; 
6. for(x=O;xcy;x++) 
7. DLAj[index+x] 

= recv-mesi[lengthi++]; 
8. count++; } 

end-of-kr-to-r-unpacking 

Algorithm r-to-kr-encoding(k, r, M) 
1. For each destination processor Pj in DPS[P;] do 
2. ( calculate p and yusing Equations 

3 and 2, respectively; 
3. send-mesj[O] = p; 
4. send-mesj[ l] =y } 

end-of-r-to-kr-encoding 

Algorithm r-to-kr-unpackingck, r, M, N) 
1. P, receives a message in recv-mes, from source 

processor P, 

3”: 
p = recv-mes,[O]; y= recv-mesi[l]; 
lengthi = 2; cycle = N I (M x kr); 

Z: 
count = 0; index = p - kr; 
local-index = 0; 

6. while (count i cycle) 
7. { index += kr ; 

;: 
local-index = index - M  x r; 
for (x = 0 ; x < yl r’; x++) 

10. ( local-index += M  x 
11. for(y = 0 J i r. ~-2) ;’ 3 
12. l&al~array(local-indexty) 

= recv-mes,(length,++) ; ) 
13. count ff; } 

end-of-r-to-kr-unpacking 

5. Performance Evaluation and Experimental 
Results 

To evaluate the performance of the proposed 
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message encoding techniques, we have implemented 
the message encoding techniques into algorithms 
presented in [lo, 1 l] for kr+r and r+kr 
redistribution on a 16-nodes SP2. We called 
algorithms with and without the message encoding 
techniques MET-REDIS and REDIS, respectively. 

Table 1 gives the execution time and the 
percentages of the performance improvement of 
MET-REDIS over REDIS. The execution time of 
redistribution in the synchronous communication 
model is about 15% to 22% faster than that of REDIS. 
In the asynchronous model, the execution time of 
redistribution is about 3% to 7% faster than that of 
REDIS. We have noted that the improvement 
percentage of the synchronous model is greater than 
that of the asynchronous model. This is because 
that the computation and communication can be 
overlapped in the asynchronous model, but can not be 
overlapped in the synchronous model. For the cases 
of k = 10, 20, 50, and BLOCK to CYCLIC (and vice- 
versa) redistribution, we have similar results (Due to 
the page limitation, we did not show the results here). 

6. Conclusions 

In this paper, based on kr-w and r+kr 
redistribution, we have developed the message 
encoding techniques. The message encoding 
techniques are machine independent and could be 
used with different array redistribution algorithms. 
BY incorporating the techniques in array 
redistribution algorithms, one can reduce the 
computational overheads. The experimental results 
show that the execution time of array redistribution 
algorithms with the message encoding techniques is 
3% to 22% faster than those without the message 
encoding techniques. 
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