
1

CS5314
Randomized Algorithms

Lecture 16: Balls, Bins, Random Graphs
(Random Graphs, Hamiltonian Cycles)

2

•Introduce Random Graph Model
–used to define a probability space for all

graphs with n vertices

•Introduce a randomized algorithm for
finding Hamiltonian cycle

Objectives

3

• Random Graph Model is used to define a
probability space for generating:
undirected, simple (no loops, no multiple edges)
graphs with n (labeled) vertices

• There are two common models:
1. The Gn,p model
2. The Gn,N model

Random Graph Model

4

• Let M = n(n-1)/2
 M = maximum #edges in an undirected

simple graph with n vertices

• The Gn,p model generates a graph with n
vertices randomly

• In particular, for a graph G with a
particular set of m edges,

Pr(G is generated) = pm(1-p)M-m

The Gn,p model

5

• One way to generate a random graph in
Gn,p is as follows:
1. Start with an empty graph with n

vertices
2. Add each edge independently with

probability p

Question: How many graphs in Gn,p model?

The Gn,p model

6

• The Gn,N model generates a graph with n
vertices, N edges uniformly at random

• One way to generate a random graph in
Gn,N is as follows:
1. Start with an empty graph with n

vertices
2. Add N edges, each time choose an

edge uniformly from remaining edges

Question: How many graphs in Gn,N model?

The Gn,N model

7

• When p = N/M = N/(n(n-1)/2)
 #edges in a graph in Gn,p = Bin(M,p)
 Its expected value = N, and it is also

concentrated around N

• Also, when #edges of a graph in Gn,p is
conditioned to be exactly N, it has the
same (uniform) distribution as Gn,N

 similar to exact case and Poisson case in
balls-and-bins model

Gn,p versus Gn,N

8

In fact, there are further similarities …

E.g., Throwing edges into the graph in Gn,N is
like throwing balls into bins: Each vertex
is a bin, each time we throw two balls

E.g., in the coupon collector’s problem, we
found that when we throw n ln n + cn
balls, the probability of having no empty
bins converges to e-e-c as n 1, and …

Gn,p versus Gn,N (2)

9

…and similarly, we have the following:

Gn,p versus Gn,N (3)

Theorem: Let N = (n ln n + cn) / 2
Then the probability that a random graph
chosen in Gn,N has no isolated vertices
converges to e-e-c as n 1

Proof: Left as an exercise (Ex. 5.19)
[Idea: Relate this with the balls-and-bins model]

10

• Many graph problems are NP-hard, which
are believed to be very difficult

• E.g., Max Clique, Max Independent Set,
Hamilton cycle, Min Vertex Cover, …

Question: Are these problems difficult for
most inputs? Or, only a small fraction of
inputs are causing the difficulty?

Why study random graphs?

11

Definition: A Hamiltonian cycle is a cycle
that traverses each vertex exactly once

• In general, finding a Hamiltonian cycle is
very difficult…

• However, we shall show that when input is
suitably chosen, we have a randomized
algorithm such that :
 for most input, our algorithm can find

a Hamiltonian cycle quickly w.h.p.

Hamiltonian Cycles

12

Precisely, we shall show that :

Hamiltonian Cycles

Theorem:
For sufficiently large n, we can design a
randomized algorithm which can find a
Hamiltonian cycle in a random graph from
Gn,p w.h.p., whenever p ¸ (40 ln n)/n

This immediately implies that when p is at
least (40 ln n)/n, a random graph from
Gn,p will contain a Hamilton cycle w.h.p.

13

• The algorithm is like the game
snake/nibbles (貪吃蛇) and make use of a
simple operation called rotation

• We start by picking a random vertex in
the graph as the head (of the snake)

The Algorithm (version 1)

head

14

Then, repeatedly, we choose an adjacent
edge of the head. The snake “eats”this
edge and updates the position of the head

Eats edge
and updates

15

The Algorithm (version 1)

 What to do when the
snake tries to eat itself?

16

Let P = v1, v2, …, vk be the current snake,
vk = head of snake

Suppose the snake now eats the edge (vk, vj)
That is, the snake eats itself
• If vj = tail = v1 and if all vertices are

explored, we obtain an Hamiltonian cycle
• Otherwise, we change perform rotation

to change the snake into:
P’= v1, v2, …, vj-1, vj , vk , vk-1, vk-2, …, vj+2 , vj+1

The Algorithm (version 1)

17

The Algorithm (version 1)

What to do when the
snake tries to eat itself?

perform rotation

18

The Algorithm (version 1)

19

The Algorithm (version 1)

When the snake eats the tail
and all vertices are visited

We get Hamiltonian cycle

20

• When the snake does not have any edge
to eat next (before a Hamiltonian cycle is
found), we stop and report “FAIL”.

E.g., Let’s start with another vertex:

Failure Case of the Algorithm

21

The Algorithm (version 1)

22

The Algorithm (version 1)

When the snake has nothing

to eat, it dies

Report No Hamiltonian Cycle

23

The previous algorithm turns out to be very
simple, and is likely to be efficient when
there are many edges in the graph

Question: When will the algorithm fail?

…difficult to analyze directly …

Next, we will modify the algorithm to make
it a bit “stupid”, but then we can analyze
its performance more easily …

The Algorithm (version 1)

24

Now, let us define three subroutines:
Suppose P = v1, v2, …, vk is current path,

vk = head

IsHamilton(P, v) {
1. If v = v1 and all vertices are visited,

return TRUE
2. Else, return FALSE

}

The Algorithm (version 1)

25

Rotate(P, j) {
1. Update head to vj+1

2. Update P = v1, v2, …, vj, vk, vk-1, …, vj+2, vj+1

}

Extend(P, v) {
1. Update the head to v
2. Update P = v1, v2, …, vk, v

}

The Algorithm (version 1)

26

Then, the current algorithm becomes:
1. Choose a random node as head
2. Repeat until no unused edge is adjacent

to head
2.1 Let P = v1, v2, …, vk, where vk= head
2.2 Choose an unused edge adjacent to vk,

say (vk, v), uniformly at random.
Mark this edge as used

(i) If IsHamilton(P,v), DONE
(ii) Else, if v is unvisited, Extend(P, v)
(iii) Else, v = vj for some j. Rotate(P, j)

27

• In the modified algorithm, a used edge
can be traversed again (with some prob):

1. Choose a random node as head
2. Repeat until all adjacent nodes of head

were visited from head at least once
2.1 Let P = v1, v2, …, vk, where vk= head
2.2 Let x = #nodes visited from vk before
2.3 Perform randomly one of the following:

(a) prob = 1/n:
Reverse P, make v1 as new head

28

(b) prob = x/n:
Choose a random node v that is visited
from vk previously

(c) prob = 1 - 1/n - x/n:
Choose a random node v adjacent to vk,
which was not visited from vk previously.
Mark v as visited from vk

2.4 For (b) and (c)
(i) If IsHamilton(P,v), DONE
(ii) Else, if v is not on P, Extend(P, v)
(iii) Else, v = vj for some j. Rotate(P, j)

29

Some properties of the modified algorithm:
(a good test of our understanding…)

• If an edge (u,v) is used before, it may be
used again

• A node not visited from the current head
before may have been visited from some
other node already

• If u is visited from v before, v may not
be visited from u (i.e., visit has direction)

The Algorithm (version 2)

30

• The modified algorithm seems to work
for a directed graph

• Let us define a new random graph model
and check the performance of our algo :

For each vertex v,
For each vertex u v,

Set u to be its adjacent vertex with
probability q, independently

Remark: in this model, if u is an adjacent vertex of v,
then v may not be an adjacent vertex to u

The Algorithm (version 2)

31

Performance in New Model
Let G be a random graph from the new model
Suppose we run the modified algorithm on G

and it does not FAIL for first t steps
Let Vt = head after tth steps

Lemma: After the tth step, if there is at
least one adjacent vertex of Vt unvisited
from Vt, then for any vertex u,

Pr(Vt+1 = u | Vt = ut, Vt-1 = ut-1, …, V0 = u0) = 1/n
Remark: The head seems to be chosen uniformly at random

at each step, regardless the history of the process

32

Let P = v1, v2, …, vk be the current path
(note: no special relationship between k and t)

The vertex u is in one of four cases :
Case 1: u = v1

Case 2: u = vj+1, and vk visits vj before
Case 3: u = vj+1, but vk not visit vj before
Case 4: u is not on P

Proof

Cases 1—3: u is on P

33

Case 1 (u = v1) :
• The only way that u becomes next head

is when path is reversed
 probability = 1/n

Case 2 (u = vj+1, and vk visits vj before before) :

u is next head when we choose to
perform 2.3(b) and then vj is picked
 probability = x/n * 1/x = 1/n

Case 1 and Case 2

34

Case 3 (u = vj+1, but vk not visit vj before) :
u is next head when we choose to
perform 2.3(c) and vj is picked
 prob = (1–1/n-x/n)(1/(n-1-x)) = 1/n

Reason:
Each vertex was set to an adjacent vertex of
vk independently with the same probability q ;
By symmetry, each n-1-x unvisited vertex
(excluding head) is picked with same probability

Case 3

35

Case 4 (u is not on P) :
u is next head if we choose to perform
2.3(c) and then u is picked
 prob = (1–1/n-x/n)(1/(n-1-x)) = 1/n

Reason:
Again, by symmetry, each n-1-x unvisited vertex
(excluding head) is picked with same probability

Conclusion: Any vertex becomes next head
with same probability 1/n

Case 4

36

• From previous lemma, we see that finding
Hamiltonian path (not cycle) in new model
is exactly coupon collector’s problem:

Finding a new vertex to add, when the
path has n-k vertex (i.e., k globally unvisited
vertex), is k/n

• Once all vertices are on the path, we get
a Hamiltonian cycle if we run 2.3(b) or
2.3(c), and the vertex chosen is v1

Performance in New Model (2)

37

Hence,
if at least one adjacent vertex of head is
unvisited from head before at each step

we can expect Hamiltonian path to be
found in O(n log n) steps w.h.p.,
and then get a Hamiltonian cycle in
O(n log n) steps w.h.p. (why?)

Next, we show that when q (20 ln n) / n,
the if condition happens w.h.p. as well

Performance in New Model (3)

38

Performance in New Model (4)

Lemma: Suppose the modified algorithm is
run on a random graph from the new
model, with q ¸ (20 ln n) / n

Then for sufficiently large n, the algorithm
will successfully find a Hamiltonian cycle
in 3n ln n iterations of Step 2 w.h.p.

How to prove?
(Note: We do not assume input graph has a Hamilton cycle)

39

For the algorithm to fail, one of the
following events must happen:

E1: It runs for 3n ln n steps, so that at each
step, there is adjacent unvisited vertex
from head; Yet, the algorithm does not
get a Hamiltonian cycle

E2: At least one vertex has got no adjacent
unvisited vertex in the first 3n ln n steps

In other words, Pr(fail) · Pr(E1) + Pr(E2)

Proof

40

• Previously, we have shown that as long as
there is an adjacent unvisited vertex
from head, the next head is chosen
uniformly at random in each step

 Probability that a particular vertex not
on current path P after 2n ln n steps is:

at most (1- 1/n)2n ln n· e-2 ln n = 1/n2

 Pr(some vertex not on P after 2n ln n steps)
· 1/n

Proof: Bounding Pr(E1)

41

• If all vertices are on P, the Hamiltonian
path will become a cycle with probability
1/n in each step

 the probability that after all vertices are
on P, we cannot get a Hamiltonian cycle in
n ln n steps is at most

(1- 1/n)n ln n· e-ln n = 1/n

 Pr(E1) · 1/n + 1/n = 2/n …(why?)

Proof: Bounding Pr(E1)

42

Now, we bound Pr(E2), the probability that
at least one vertex has no adjacent
unvisited vertex in the first 3n ln n steps

Consider the following events:
E2a: There is a vertex v such that v has

been a head at least 10 ln n times
(so that its adjacent vertices are used up)

E2b: There is a vertex which has fewer than
10 ln n adjacent vertices initially

Proof: Bounding Pr(E2)

43

For E2 to happen, E2a or E2b must happen

 In other words, Pr(E2) · Pr(E2a) + Pr(E2b)

For E2a to happen
Let Xj = # times vertex j is head
Recall: for any vertex u,

Pr(u = head in the next step) = 1/n

 Xj = Bin(3n ln n, 1/n)
 = E[Xj] = 3 ln n

Proof: Bounding Pr(E2a)

44

 Pr(E2a) ·j=1 to n Pr(Xj¸ 10 ln n) …(why?)

= n Pr(X1¸ 10 ln n)
· n Pr(X1¸ 9 ln n)
· n Pr(X1¸ (1+2))
· n (e2 / (1+2)(1+2)) …(why?)

= n (e2/27)3 ln n

· n (e-1)3 ln n = n (1/n3)
· 1/n

Proof: Bounding Pr(E2a)

45

• Next, we bound Pr(E2b), the probability
that some vertex initially has fewer than
10 ln n adjacent vertices

• Let Yj = #adjacent vertices of j initially

 Yj = Bin(n-1, q)
= E[Yj] = (n-1)q
¸ (n-1) 20 ln n /n
¸ 19 ln n …for sufficiently large n

Proof: Bounding Pr(E2b)

46

 Pr(E2b) ·j=1 to n Pr(Yj· 10 ln n) …(why?)

= n Pr(Y1· 10 ln n)
· n Pr(Y1· (1 –9/19))
· n e-(9/19)2/2 …(why?)

· n e-81 ln n / 38

· n e-2 ln n = n (1/n2)

= 1/n

Proof: Bounding Pr(E2b)

47

In other words,

Pr(E2) · Pr(E2a) + Pr(E2b)

· 1/n + 1/n = 2/n

Combining with previous results, we have:

Pr(fail) · Pr(E1) + Pr(E2)

· 2/n + 2/n = 4/n

for sufficiently large n

Proof: Bounding Pr(fail)

48

Finally, we relate the new model with Gn,p:

Performance in Gn,p

Theorem: For sufficiently large n, by
initializing the adjacent vertices
appropriately, we can apply the modified
algorithm and find a Hamiltonian cycle in
a randomly chosen graph from Gn,p w.h.p.,
when p ¸ 40 ln n/ n

How to initialize appropriately?

49

• Instead of working with the random
graph G chosen from Gn,p, we show how to
convert G randomly to some directed
graph G’and apply the modified algorithm

• Our conversion is carefully done so that
we obtain the random directed graph G’
as if we choose G’from the new model

Let q in [0,1] be a value such that p = 2q –q2

Proof

50

We use the following process:
For each edge (u,v) in G,
(1) With probability q(1-q)/p, set u to be v’s

adjacent vertex but v is not u’s adjacent
(2) With probability q(1-q)/p, set v to be u’s

adjacent vertex but u is not v’s adjacent
(3) With remaining probability (q2/p), set u

to be v’s adjacent vertex AND v to be u’s
adjacent vertex

Proof

51

Now, for any vertex u, it is initially an
adjacent vertex of v with probability:

p (q(1-q)/p + q2/p) = q

Also, for any two vertices u and v, the
probability that u is v’s adjacent vertex
AND v is u’s adjacent vertex is

p (q2/p) = q2

Proof (2)

52

Thus,

Pr(u is v’s adjacent vertex AND
v is u’s adjacent vertex)

= q2

= Pr(u is v’s adjacent vertex) £
Pr(v is u’s adjacent vertex)

 In other words, exactly the new model !!!
(adjacent vertex are independently assigned with
probability q)

Proof (3)

53

 Obviously, if a Hamiltonian cycle can be
found in the directed graph G’, we can
find a Hamiltonian cycle in the original G

 Since p = 2q –q2· 2q, for p ¸ 40 ln n/ n,
we have

q ¸ p/2 ¸ 20 ln n/ n

 By previous theorem, we can find a
Hamiltonian cycle for G’(thus, G) w.h.p.

Proof (4)

