Burrows-Wheeler Transform

Wisely



Introduction of BWT

e Burrows and Wheeler introduced a new
compression algorithm based on a reversible
transformation now called the Burrows-Wheeler
Transform (BWT)

« BWT Is applied in data compression techniques
such as bzip2 (http://bzip.org/)



Transform Steps

(1) Append at the end of a text T a special character
$ smaller than any other text character

(2) Form a conceptual matrix M whose rows are
the cyclic shifts of the string T$ sorted in
lexicographic order

(3) Construct the transformed text TP by taking the
last column of matrix M-
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output of BWT

BWT sorts the characters bv their context



Notation

(1) Let C[ ] be an array of length | > | such that

C[c] = total # of text characters which are
alphabetically smaller than c

(2) Let Occ(c,q) denote # of occurrences of
character c in the prefix TP"{[1, q].

(3) Let LF(i) = C[ TP"([i] ] + Occ(To™[i] , i )
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Last to Front Mapping

wat

e LF() = Last-to-Front Column Mapping

 The character TP"[i] is located in
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the first column F at position LFi]

 LF(10) = CJ[s] + Occ(s,10)=12.
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e Both TP*"[10] and F[12] correspond
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Backward Search

e The LF( ) mapping allows us to scan the text T
backward.

 |n other words, we could search a pattern in T
backward. (How?)



Backward Search Algorithm

Backward_Search( P[1,p] )

{
1 = p, ¢c = P[p], First = C[c]+1, Last = C[c+1];
whille ( ( First = Last) and 1 = 2 ) {
c = P[1-1];
First = C[c] + Occ(c, FiIrst-1)+1;
Last = C[c] + Occ(c, Last);
1 = 1-1;
}
iIT ( Last < First ) then
return ““no occurrence” ;

else return ( First, Last );

}
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