Burrows-Wheeler Transform

Wisely

Introduction of BWT

e Burrows and Wheeler introduced a new
compression algorithm based on a reversible
transformation now called the Burrows-Wheeler
Transform (BWT)

« BWT Is applied in data compression techniques
such as bzip2 (http://bzip.org/)

Transform Steps

(1) Append at the end of a text T a special character
$ smaller than any other text character

(2) Form a conceptual matrix M whose rows are
the cyclic shifts of the string T$ sorted in
lexicographic order

(3) Construct the transformed text TP by taking the
last column of matrix M-

Example :

i

i

ic shifts of the t=xt

i

e

oo

i

= = |

ARE

-

oo

H-":nl'.l-"""'l:l

[

[

oo

g [~

[

[

T

[

[

o |

gle|~

[

=

e R

g ||~

e

oo

H'l':ll'.l-"""tl"l:l

-

[

|

-

T

-

e

AFF

g [~

-

|

(e

[

[

sorted
lexicographically

F wat

output of BWT

BWT sorts the characters bv their context

Notation

(1) Let C[] be an array of length | > | such that

C[c] = total # of text characters which are
alphabetically smaller than c

(2) Let Occ(c,q) denote # of occurrences of
character c in the prefix TP"{[1, q].

(3) Let LF(i) = C[TP"([i]] + Occ(To™[i] , i)

H0012222
=E_B-B-B
=)

CH © === R

(&)

(@)

O — =+ = =H = - -
EOOOOOll
E8
m6

O
an
t 1
EO
=
o)

T

5

$|mli

sislilplpli|S|mi

5li|5]s5]:|pPlP|2

F
1

Last to Front Mapping

wat

e LF() = Last-to-Front Column Mapping

 The character TP"[i] is located in

Ll Bl Bl Kl K71 B!

the first column F at position LFi]

 LF(10) = CJ[s] + Occ(s,10)=12.

4B

e Both TP*"[10] and F[12] correspond

W lwv e o 9y |

i e Ll ol -] - s [[L = | .1
s (L " .ﬁ [[F (e i i lu E k]

1
ol Bl b 0 Ml N L L G - B

to the first s in the mississippi

o [T m o s (] lld lﬂ H] [T i

Blw g e wwing ooy

Backward Search

e The LF() mapping allows us to scan the text T
backward.

 |n other words, we could search a pattern in T
backward. (How?)

Backward Search Algorithm

Backward_Search(P[1,p])

{
1 = p, ¢c = P[p], First = C[c]+1, Last = C[c+1];
whille ((First = Last) and 1 = 2) {
c = P[1-1];
First = C[c] + Occ(c, FiIrst-1)+1;
Last = C[c] + Occ(c, Last);
1 = 1-1;
}
iIT (Last < First) then
return ““no occurrence” ;

else return (First, Last);

}

References

[1] M. Burrows and D. Wheeler (1994).
A Block Sorting Lossless Data Compression Algorithm.
Technical Report 124, Digital Equipment Corporation.
[2] G. Manzini (2001).
An Analysis of the Burrows-Wheeler Transform.
Journal of the ACM, 48(3): pages 407 — 430.
[3] P. Ferragina and G. Manzini (2000).
Opportunistic Data Structures with Applications.
In Proceedings of FOCS, pages 390 — 398.
[4] P. Ferragina, G. Manzini, V. Makinen, and G. Navarro (2004).
An Alphabet-Friendly FM-Index.
In Proceedings of SPIRE, pages 150 — 160.

