Burrows-Wheeler Transform

Wisely

Introduction of BWT

- Burrows and Wheeler introduced a new compression algorithm based on a reversible transformation now called the *Burrows-Wheeler Transform* (BWT)
- BWT is applied in data compression techniques such as bzip2 (http://bzip.org/)

Transform Steps

(1) Append at the end of a text *T* a special character\$ smaller than any other text character

(2) Form a conceptual matrix M_T whose rows are the cyclic shifts of the string T\$ sorted in lexicographic order

(3)Construct the transformed text T^{bwt} by taking the last column of matrix M_T

Example :

BWT sorts the characters by their context

Notation

(1) Let *C*[] be an array of length $|\Sigma|$ such that $C[c] = \text{total } \# \text{ of text characters which are alphabetically smaller than$ *c* $}$

(2) Let Occ(*c*,*q*) denote # of occurrences of character *c* in the prefix *T^{bwt}*[1, *q*].

(3) Let $LF(i) = C[T^{bwt}[i]] + Occ(T^{bwt}[i], i)$

Example :

F	F T ^{bwi}										t	
s	m	i	s	s	i	s	s	i	p	p	i.	
i	S	m	i	5	s	i	s	s	i	p	p	
i	p	p	i	S	m	i	s	s	i	5	5	
i	5	5	i	p	p	i	S	m	i	5	s	
i	5	5	i	5	s	i	p	p	i	\$	m	
m	i	5	s	i	5	s	i	p	p	i	\$	
p	i	\$	m	i	5	s	i	5	5	i	p	
p	p	i	S	m	i	s	5	i	s	s	i.	
s	i	p	p	i	\$	m	i	5	s	i	5	
5	i	s	s	i	p	p	i	S	m	i	s	
5	s	i	p	p	i	S	m	i	5	5	i	
5	5	i	5	5	i	p	p	i	S	m	i	

 C
 table

 \$\$
 i
 m
 p
 \$\$

 0
 1
 5
 6
 8

Occ(c,q)

\$	i	m	p	S
0	1	0	0	0
0	1	0	1	0
0	1	0	1	1
0	1	0	1	2
0	1	1	1	2
1	1	1	1	2
1	1	1	2	2
1	2	1	2	2
1	2	1	2	3
1	2	1	2	4
1	3	1	2	4
1	4	1	2	4

Last to Front Mapping

F											T ^{bw}
s	m	i	s	s	i	s	s	i	p	p	i
i	S	m	i	5	s	i	s	s	i	p	p
i	p	p	i	S	m	i	s	s	i	5	5
i	5	5	i	p	p	i	S	m	i	5	s
i	5	5	i	5	s	i	p	p	i	\$	m
m	i	s	s	i	5	s	i	p	p	i	\$
p	i	\$	m	i	5	s	i	5	5	i	P
p	p	i	\$	m	i	s	5	i	s	s	i
5	i	p	p	i	\$	m	i	5	5	i	5
5	i	s	s	i	p	p	i	S	m	i	s
5	s	i	p	p	i	S	m	i	s	5	i
5	5	i	5	5	i	p	p	i	S	m	i

- t
- *LF*() = Last-to-Front Column Mapping
 - The character $T^{bwt}[i]$ is located in the first column F at position LF[i]
- LF(10) = C[s] + Occ(s, 10) = 12.
 - Both $T^{bwt}[10]$ and F[12] correspond to the first *s* in the *mississippi*

Backward Search

- The *LF*() mapping allows us to scan the text *T* backward.
- In other words, we could search a pattern in *T* backward. (How?)

```
Backward Search Algorithm
Backward Search( P[1,p] )
{
  i = p, c = P[p], First = C[c]+1, Last = C[c+1];
 while ( ( First \leq Last) and i \geq 2 ) {
     c = P[i-1];
     First = C[c] + Occ(c, First-1)+1;
     Last = C[c] + Occ(c, Last);
     i = i - 1;
  }
  if ( Last < First ) then
      return "no occurrence" ;
  else return ( First, Last );
```

References

[1] M. Burrows and D. Wheeler (1994).

A Block Sorting Lossless Data Compression Algorithm.
Technical Report 124, Digital Equipment Corporation.
[2] G. Manzini (2001).

An Analysis of the Burrows-Wheeler Transform. Journal of the ACM, 48(3): pages 407 – 430.

[3] P. Ferragina and G. Manzini (2000).

Opportunistic Data Structures with Applications. In Proceedings of FOCS, pages 390 – 398.

[4] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro (2004). An Alphabet-Friendly FM-Index. In Proceedings of SPIRE, pages 150 – 160.