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Abstract

Annotating maps, graphs, and diagrams with pieces of text is an important
step in information visualization that is usually referred to as label placement.
We define nine label-placement models for labeling points with axis-parallel
rectangles given a weight for each point. There are two groups: fixed-position
models and slider models. We aim to maximize the weight sum of those points
that receive a label.

We first compare our models by giving bounds for the ratios between the
weights of maximum-weight labelings in different models. Then we present
algorithms for labeling n points with unit-height rectangles. We show how
an O(n log n)-time factor-2 approximation algorithm and a PTAS for fixed-
position models can be extended to handle the weighted case. Our main
contribution is the first algorithm for weighted sliding labels. Its approxima-
tion factor is (2+ε), it runs in O(n2/ε) time and uses O(n/ε) space. We show
that other than for fixed-position models even the projection to one dimension
remains NP-hard.

For slider models we also investigate some special cases, namely (a) the
number of different point weights is bounded, (b) all labels are unit squares,
and (c) the ratio between maximum and minimum label height is bounded.
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1 Introduction

Label placement is one of the key tasks in the process of information visualiza-
tion. In diagrams, maps, technical or graph drawings, features like points, lines,
and polygons must be labeled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting technology
and the amount of information to be visualized. Due to the NP-hardness of the
general label-placement problem [FW91], cartographers, graph drawers, and com-
putational geometers have suggested numerous approaches, such as expert systems
[AF84], zero-one integer programming [Zor90], approximation algorithms [AvKS98,
vKSW99, SvK02], simulated annealing [CMS95] and force-driven algorithms [Hir82]
to name only a few. An extensive bibliography about label placement can be found
in [WS96]. The ACM Computational Geometry Impact Task Force report [Cc99]
identifies label placement as an important research area. Manually labeling a map is
a tedious task that is estimated to take 50% of total map production time [Mor80].

This paper deals with one of the most common label-placement problems, namely
labeling points with axis-parallel rectangles. With two exceptions this is the first
paper that gives approximation algorithms for labeling weighted points. The aim is
to maximize the sum of the weights of those points whose labels can be placed with-
out intersection. Solving this problem is extremely important in praxis: on a map of
Germany, e.g., attributing Berlin a higher priority (weight) than Wannsee ensures
that in case of limited space the capital rather than one of its districts receives a la-
bel. The only two other approximation algorithms for weighted label placement are
the following. First, Iturriaga [Itu99] showed how a factor-O(log n) approximation
algorithm of Agarwal et al. [AvKS98] for maximum-independent set on rectangle-
intersection graphs can be extended to handle weighted rectangles as well (n is the
number of rectangles here). Second, Erlebach et al. [EJS01] recently improved these
results for squares; they give a polynomial-time approximation scheme (PTAS) for
the weighted case.

Van Kreveld et al. defined six point-labeling models [vKSW99]. They forged
the term of slider models where a label can slide along one or several edges under
the constraint that it touches the point it labels, see Figure 1. This is opposed
to fixed-position models that allow only a constant number (like 4 or 8) of label
candidates per point. Van Kreveld et al. compared three fixed-position (namely 1P,
2PH, and 4P in Figure 1) and three slider models (1SH, 2SH, and 4S) with respect
to how many more points can be labeled in one model than in another using unit
square labels [vKSW99]. Since we are considering labels with equal height but
variable length, we need to classify more models. Figure 1 shows all nine fixed-
position models and slider models that we consider in this paper. In that figure,
each rectangle stands for a feasible label position. An arrow between two rectangles
indicates that additionally all label positions are feasible that arise when moving
one rectangle on a straight line onto the other. We refer the reader to [vKSW99]
for a more formal definition.

For each of their six labeling models, van Kreveld et al. gave approximation
algorithms for unit-height labels in the unweighted case. They also did an experi-
mental comparison that showed that algorithms for sliding labels perform especially
well on dense point sets such as scatterplots. Other applications with dense point
sets include drill holes or electrophoresis gels.

We extend the results of van Kreveld et al. by taking weights into account. More
specifically we present the following results. In all but the last section we assume
unit-height labels. First, in Section 2, we compare our nine labeling models by
giving bounds for the ratios between the weights of maximum-weight labelings in
different models. In Section 3, we show how to extend an O(n log n)-time factor-2
approximation algorithm and a PTAS for fixed-position models [AvKS98] to the
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weighted case. Both rely on line stabbing, a technique that has already been used
successfully for label placement, see [AvKS98, vKSW99]. The idea is to partition
the two-dimensional problem into easier one-dimensional subproblems by stabbing
the unit-height label candidates of the input points by horizontal lines of at least
unit distance such that each label candidate is stabbed. If the resulting subproblems
can be solved optimally, then the union of the subsolutions corresponding to either
all odd or all even stabbing lines gives a factor-2 approximation for the original
problem.

Other than for fixed-position models even the restriction to one dimension turns
out to remain NP-hard for slider models. Our proof in Section 4 is by reduction
from SubsetSum. This differs from most NP-hardness proofs in the label-placement
literature, which are by reduction from 3sat or Planar3sat. For a review, see
[vKSW99]. The only similar proof is by reduction from a special case of Partition

[GIM+01].
In Section 5 we present the first approximation algorithm for weighted sliding

labels, which is the main contribution of this paper besides the NP-hardness proof
and the comparison of labeling models. Its approximation factor is (2+ε), it runs in
O(n2/ε) time and uses O(n/ε) space. It is also based on line stabbing. Other than
for fixed-position models the one-dimensional problem for sliding labels can only
be approximated. For this purpose we use (and improve) a fully polynomial-time
approximation scheme [BD00] for single-machine throughput maximization from
the job-scheduling literature.

Sections 6 and 7 deal with two restrictions of the one-dimensional problem for
sliding labels (i.e. intervals) that can be solved optimally. In Section 6, we consider
the case when the number of different weights is bounded and receive a factor-2
approximation for all slider models. In Section 7 we restrict all intervals to unit
length and combine the resulting exact one-dimensional algorithm with a dynamic-
programming algorithm of Agarwal et al. [AvKS98] to construct a PTAS for labeling
points with sliding unit-square labels. In Section 8 we finally drop the restriction
on label heights and give algorithms with approximation factors of 3dlog2 βe and
(3+ε)dlog2 βe for fixed-position and slider models, respectively, where β is the ratio
of maximum and minimum label height. Throughout this paper, we assume that
labels are topologically open, i.e. they may touch.

1P 2PH
2PV 4P

1SH
1SV 2SH 2SV 4S

Figure 1: Each model has an abbreviation of the form xMD, where M ∈ {P,S}
stands for fixed-position model (P) or slider model (S), x ∈ {1, 2, 4} refers to the
number of fixed positions or sliding directions, and D ∈ {∅,H,V} indicates the
horizontal or vertical direction in which fixed-position labels are arranged or labels
can slide.
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Figure 2: Constant ratios between different labeling models.

2 Comparing labeling models

Given a finite set P of points in the plane, where each point p ∈ P is associated
with a weight w(p), let WM (P ) denote the maximum sum of weights of points whose
labels can be placed without intersections given labeling model M . If M1 and M2

are two different labeling models from Figure 1, the (M1,M2)-ratio is defined as

Ψ(M1,M2) = lim
n→∞

Ψn(M1,M2), where Ψn(M1,M2) = max
|P |=n

WM1
(P )

WM2
(P )

.

In order to bound this ratio simultaneously for several pairs of labeling models
with similar properties, we use definitions similar to those in [vKSW99].

Definition 1 Let v = (0, 1) be the unit vector parallel to the y-axis, directed up-
wards. We say that

• M1 can be y-flipped into M2 if any label position in M1 that is not allowed in
M2 can be translated by v into a valid label position in M2,

• M1 can be one-way y-slid into M2 if any label position in M1 can be translated
by σv into a valid label position in M2 for some σ ∈ [0, 1], and finally

• M1 can be two-way y-slid into M2 if any label position in M1 can be translated
by σv for some σ ∈ [−1/2, 1/2] into a valid label position in M2 such that a
corner of the label coincides with the point to be labeled.

Our bounds for ratios between different labeling models are summarized in Fig-
ures 2 and 4. The numbers that are attached to the arcs between two models M1 and
M2 give the (M1,M2)-ratio; intervals specify lower and upper bounds. In Figure 2
the arcs additionally indicate whether one model can be y-flipped (solid arrows),
one-way y-slid (dashed) or two-way y-slid (dotted) into the other. We will bound
the ratios between such pairs of models in the next three subsections, and finally
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investigate ratios that cannot be bounded by constants. These do not appear in
[vKSW99] since there only square labels were taken into account. In the following
we drop the prefix “y-” that was only meant for distinction with the definitions in
[vKSW99].

2.1 Flipping

For models that can be flipped into each other, such as 2PV into 1P and 2SH into
1SH, we have the following result.

Lemma 1 If M1 can be flipped into M2, then Ψ(M1,M2) = 2.

Proof. The lower bound comes from the lower-bound example for the unweighted
case, see Lemma 7 of [vKSW99].

In order to upper-bound the (M1,M2)-ratio, we consider an optimal M1-labeling
and flip each label by v = (0, 1) if it is not valid in M2. Clearly, neither the flipped
labels nor those that have not been flipped intersect other flipped labels. Taking
the subset with the larger weight sum yields Ψ(M1,M2) ≤ 2. r

2.2 One-way sliding

For models that can be one-way slid into each other, such as 2SV into 2PH and
1SV into 1P, we have the following result.

Lemma 2 If M1 can be one-way slid into M2, then Ψ(M1,M2) ≤ 3.

Proof. In order to upper-bound the (M1,M2)-ratio, we will employ line stabbing,
a shifting technique [HM85] that has been widely used to design approximation
algorithms, not exclusively for label placement [AvKS98, vKSW99]. We draw hori-
zontal lines h0, . . . , hm (in top-to-bottom order) with unit spacing over an optimal
M1-labeling such that no line contains a point nor a horizontal edge of an M1-label.
Note that every M1-label intersects exactly one horizontal line.

For i ∈ {0, 1, 2} let Li be the set of M1-labels that intersect hi+3j for any
0 ≤ j ≤ bm/3c. Next we translate each M1-label in Li into a valid M2-position by
a vector σv without causing intersections with any other labels in Li as follows. As
before, σ ∈ [0, 1] is a real and v = (0, 1) is the upwards pointing unit vector.

Let l ∈ Li be an M1-label intersecting some hj (without loss of generality j ≥ 2)
and let ∆j be the open horizontal strip bounded by the two lines hj−2 and hj+1.
Clearly, l ∈ ∆j . Since l intersects hj , the point of the label l lies below hj−1, and
no matter for which σ ∈ [0, 1] the vector σv translates l upwards into a valid M2-
position, l remains below hj−2 and thus within ∆j . Consider an M1-label l′ ∈ Li\{l}
intersecting some hj′ . If j = j′ then moving l and l′ vertically will not cause them
to intersect. On the other hand if j 6= j ′ then ∆j ∩ ∆j′ = ∅. Since l remains in
∆j and l′ in ∆j′ , the translated labels do not intersect in this case either. Thus we
can translate all M1-labels in Li into a set of non-intersecting M2-labels. Among
the resulting three sets, we take the one with the largest weight sum. This yields
Ψ(M1,M2) ≤ 3. r

Figure 3 proves the lower bounds given in Figure 2 (see dashed arrows).

2.3 Two-way sliding

In [vKSW99], two-way sliding is called corner sliding, and it is shown that Ψ(M1,M2)
is at most 2 if M1 can be corner slid into M2. In fact, the same proof on upper and
lower bounds also holds for the weighted case. Thus we have the following lemma.

Lemma 3 If M1 can be two-way slid into M2, then Ψ(M1,M2) = 2.
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Ψ(1SV, 1P) ≥ 7
3

Ψ(2SV, 1SH) ≥ 2Ψ(2SV, 2PH) ≥ 3

Figure 3: Lower-bound examples for one-way sliding.
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2 , 2N ]
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2 , 4N ]

2SH2SV 4P

1SH

4S

[N−1
2 , 2N ]
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2 , 4N ]

[N−1
3 , 2N ]

n
2

[N−1
3 , 2N ]

n

n
2

n
2

n
2

n
2

Figure 4: Ratios that cannot be bounded by constants. N is shorthand for log n.

2.4 Other ratios

The three techniques stated above only work when flipping or sliding is performed
parallel to the y-axis. The reason is that we require all labels to have the same
height. Labels might have different length, so we cannot apply our techniques when
flipping or sliding along the x-axis. In fact, in this case there are no constant ratios,
see Figure 4. However obtaining sublinear bounds for some ratios is not trivial as
we will show in the following.

First, it is easy to show Ψn(2PH, 1P) ≥ n by using labels of different length, say
1, 1

2 , 1
4 , 1

8 , . . . and the corresponding points on the x-axis at 0, 1− 1
2 , 1− 1

4 , 1− 1
8 , . . ..

Van Kreveld et al. gave this example [vKSW99, Figure 3] as an argument for only
considering square labels in their comparison. By placing a copy of the point set just
below the original set, we get Ψn(2SH, 2PV) ≥ n/2. The matching upper bounds
are obvious. With the same arguments, we can achieve all the n/2-bounds shown
in Figure 4.

To bound Ψn(1SH, 2PH), we consider two one-dimensional labeling problems
that correspond to 1SH and 2PH. Given n points on the x-axis, each with a label
length and a weight, find a feasible label placement that maximizes the sum of
weights of the labeled points. We can interpret these labels as intervals on a line.
In analogy to 1SH and 2PH we define two labeling models; a slider model 1d-1SH

7



where a label can be attached to its point anywhere between its endpoints and a
fixed-position model 1d-2PH in which a label must be attached to its point at one
of its two endpoints. We have the following result.

Lemma 4 1
2 log n ≤ Ψn(1d-1SH, 1d-2PH) ≤ log n.

Proof. Let P be a set of n points on the x-axis. For each point p ∈ P we are given
its position on the x-axis x(p), its weight w(p), and the length `(p) of its label. If
l is the label of p, then l must be placed within a “window” [r, d] on the x-axis
where r = x(p)− `(p) and d = x(p)+ `(p). (The choice of the variable names is due
to the similarity of our problem to scheduling problems which we exploit again in
Section 5. In scheduling, each job has a release time r and a deadline d.)

For the upper bound we assume that n = 2k for some integer k > 0. The
main observation that we use repeatedly below is the following. Consider a pair
of adjacent labels l = [a, b] and l′ = [a′, b′] of points p and p′ in a fixed optimal
1d-1SH-labeling. Let l be to the left of l′ (i.e. b ≤ a′) and assume without loss of
generality that l′ is not shorter than l. Then the right endpoint d of the window of
l must lie in the interval [a, b′]. As a result, we can move (at least) l within [a, b′] to
a valid 1d-2PH-position. Now l possibly intersects l′, but l does not intersect any
other 1d-1SH-labels because the translation is done only within [a, b′].

The overall translation is performed in k phases as follows. Let P0 be the subset
of points of P that are labeled in the optimal 1d-1SH-labeling. Number the 1d-1SH-
labels from left to right starting at 0, and pair labels with the numbers 2i and (2i+1).
In phase 1, translate for each pair (at least) one label to a valid 1d-2PH-position as
above. Denote by P1 ⊆ P0 the set of points whose labels have just been translated.
Then W1d-1SH(P1) = W1d-2PH(P1) ≤ W1d-2PH(P0) and |P1| ≥ |P0|/2. Recursively

repeat the same process at phase j with P0 \
⋃j−1

i=1 Pi and set Pj to the subset whose
labels are translated. After phase j we have that

W1d-1SH(Pj) = W1d-2PH(Pj) ≤ W1d-2PH(P0)

and |Pj | ≥ |Pj−1|/2. Due to the second inequality the process terminates after
k = log n phases. Summing up the first inequality yields

log n∑

j=1

W1d-1SH(Pj) ≤ log n · W1d-2PH(P0).

Since the subsets Pj partition P0 and P0 is the subset of P that is labeled in
the optimal 1d-1SH-labeling, the left term is equal to W1d-1SH(P0) = W1d-1SH(P ).
The right term is at most log n · W1d-2PH(P ) since P0 ⊆ P . Thus Ψn(1d-1SH,
1d-2PH) ≤ log n.

r

pleft pright

level 0

level 1

level 2

1
2
· 4k4k−1

4k

p

Figure 5: The lower bound construction for Ψn(1d-1SH, 1d-2PH). The points are
all meant to lie on the x-axis. Their windows are delimited by vertical strokes. The
labels of an optimal 1d-1SH-labeling are indicated by the bold line segments.

For the lower bound consider a set P of n points, where we assume n to be
2k − 1 for convenience. The construction is similar to the recursive construction
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of a complete binary tree of k levels, see Figure 5. At level 0 we place the root r
at x(r) = 22k−1. At level i (0 ≤ i ≤ k − 1) we place 2i points, where each point
p has weight w(p) = 2k−i and a label of length `(p) = 4k−i. If i < k − 1 then p
has two children pleft and pright that lie on level (i + 1) at x(pleft) = x(p) − 3

4`(p)
and x(pright) = x(p) + 3

4`(p). The window of p is [x(p) − `(p), x(p) + `(p)]. An
optimal 1d-1SH-labeling labels all points in P by centering the label of each point
p within its window, i.e. at [x(p)− `(p)/2, x(p)+ `(p)/2], see the bold line segments
in Figure 5. Due to our construction no two labels intersect. Since the weights of
the points at each level sum up to 2k, the total sum is W1d-1SH(P ) = k2k ≥ n log n.

However, any 1d-2PH-labeling can assign a label l = [a, b] to a point p only
such that either a or b coincides with x(p). In either way, the points in one of the
subtrees of p cannot be labeled because they lie entirely in l. We claim that the
weight of an optimal 1d-2PH-labeling is at most 2(2k − 1) = 2n, which proves the
lower bound. The proof is by induction on k, the number of levels of the tree. If
k = 1, P consists only of one point whose weight is 2, so the claim clearly holds.
Assume that for every tree with i < k levels, the sum of weights of the points
labeled is at most 2(2i − 1). Now consider the tree T with k levels. This tree
consists of a point at level 0 with weight 2k and of two subtrees L and R with
k − 1 levels each. The weight W (T ) of an optimal 1d-2PH-labeling of T is at
most max{max{W (L),W (R)} + 2k,W (L) + W (R)} because the 1d-2PH-labeling
has the choice to assign a label to the point at level 0 or not. By our assumption
max{W (L),W (R)}+2k ≤ 2(2k−1−1)+2k = 2(2k−1) and W (L)+W (R) ≤ 2(2k−2).
Thus W (T ) ≤ 2(2k − 1), which completes the proof. Our proof also shows that
exactly one point per level is labeled in the optimal 1d-2PH-labeling. r

Lemma 5 1
2 log n ≤ Ψn(1SH, 2PH) ≤ 2 log n

Proof. The lower bound is a direct consequence of Lemma 4. The upper bound
is obtained by reducing 2PH to two sets of one-dimensional problems with the help
of line stabbing as in [vKSW99], and by then applying Lemma 4. r

In fact, Lemma 5 even holds for fixed-position models with any finite number of
label positions. We now extend the arguments of Lemmas 4 and 5 to prove other
Θ(log n)-bounds. For the sake of briefness we write {4P, 2SV} when we mean that
a statement holds for both 4P and 2SV.

Lemma 6 1
2 (log n) − 1

2 ≤ Ψn(2SH, {4P, 2SV}) ≤ 2 log n.

Proof. For the lower bounds we construct an instance P that consists of two
point sets with the tree-like structure used in Lemma 4. We place a set T of
n/2 = 2t − 1 points on the x-axis and a copy T ′ slightly above. This means that
any 4P- or 2SV-labeling for T and T ′ cannot do better than 1d-2PH-labeling for
T and T ′. Thus W{4P,2SV}(P ) = 2 · W1d-2PH(T ) = 2 · 2(2t − 1) = 2n. However,
the optimal 2SH-labeling can label all points in P , so W2SH(P ) = 2 · t2t. Hence
Ψn(2SH, {4P, 2SV}) = t/2 · 2t/(2t − 1) ≥ t/2 ≥ 1

2 (log n) − 1
2 .

The upper bounds are achieved by the same argument as in Lemma 5. r

Lemma 7 1
3 (log n) − 1

3 ≤ Ψn(1SH, {4P, 2SV}) ≤ 2 log n.

Proof. The upper bound can be obtained as in the proof of Lemma 5. For the
lower bound we split our point set P in two equal halves T and T ′ of n/2 = 2t − 1
points as in the proof of Lemma 6. Again, both have the tree-like structure used in
Lemma 4. Other than in Lemma 6, however, we place T ′ at a distance of 1 above
T , see Figure 6. Thus all points can be 1SH-labeled and W1SH(P ) = t2t+1.

Now we consider an optimal 4P-labeling. We split the available space into three
regions: The space above T ′, the space below T , and the space between T and T ′.
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0’
1’
2’
3’

0
1
2
3

Figure 6: The lower bound construction for Ψn(1SH, 4P). The points in the upper
half are meant to lie on the line y = 1, those in the lower half on the x-axis. The
labels of an optimal 4P-labeling are indicated by rectangles (not drawn to scale).

The weight of the labels of an optimal labeling in each of these three areas is at
most the weight of a labeling that is optimal with respect to that area. Lemma 4
says that an optimal labeling for the space above T ′ and the space below T each
has at most weight 2(2t − 1) ≤ 2t+1. For the space in between we argue as follows.
Let L be a label in that area. We claim that the weight of any labeling within L
has at most the weight of L. This can be shown by induction over the level of L.
By our claim the weight of two labels at level 0 is an upper bound for the weight
of an optimal labeling that uses exclusively the space between T and T ′. Thus
W4P(P ) ≤ 2 · 2t+1 + 2 · 2t = 3 · 2t+1 and hence Ψn(1SH, 4P) ≥ t/3 ≥ 1

3 (log n) − 1
3 .

The case 2SV is analogous. r

Lemma 8 1
2 (log n) − 1

2 ≤ Ψn(4S, {4P, 2SV}) ≤ 4 log n

Proof. The lower bounds come from the same argument as that in Lemma 6 since
each 2SH-labeling is also a 4S-labeling. The upper bounds are obtained by first
two-way sliding a 4S-labeling into a 2SH-labeling with a factor-2 loss and by then
translating the 2SH-labeling as above into 4P- and 2SV-labelings with another loss
of a factor of 2 log n. r

3 An approximation algorithm for fixed-position

models

In this section we present approximation algorithms for unit-height labels under
all labeling models shown in Figure 1. Our algorithms employ line stabbing, a
technique that has been used before to tackle labeling problems with unit-height
labels [AvKS98, vKSW99].

Consider the problem of finding a maximum weight independent set (MWIS) of
n (topologically open) intervals on the x-axis. This problem is just slightly more
general than the one-dimensional version 1d-1P of 1P where input points are as-
sumed to be pairwise different, while this is not necessarily true for the left endpoints
of the intervals in the corresponding MWIS problem. MWIS on interval intersec-
tion graphs can be solved in O(n log n) time by a simple dynamic programming
algorithm [HTC92]. The one-dimensional version 1d-2PH corresponding to 2PH is
as follows. Given a set of n points and for each an interval length, find a MWIS
from the 2n intervals that are incident to one of the input points. We generally
view intervals as topologically open but now make them intersect artificially if they
belong to the same point. This can be achieved by a symbolic comparison rule,
which allows us to use the above algorithm, although Hsiao et al. assume disjoint
interval endpoints [HTC92].
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We can generalize 1d-2PH to the problem 1d-kPH in which each input point p
has at most k candidate intervals that all contain p. Applying the 1d-1P algorithm
to the resulting collection of kn intervals gives rise to:

Lemma 9 The problem 1d-kPH where each input point has at most k candidate
intervals can be solved in O(kn log n) time.

Combining line stabbing with the above lemma and with dynamic programming
as in [AvKS98] yields the following result.

Theorem 1 Weight maximization given fixed-position models (1P, 2PH, 2PV, and
4P) can be 2-approximated in O(n log n) time with linear space. These problems
can be (1 + 1/k)-approximated in O(n2k−1) time and space for any k ≥ 2.

Proof. We only sketch our algorithm for 4P, the most general problem among the
four problems. Given 4P each point p in P has four label candidates, each of length
`(p) and unit height. This gives rise to a set R of 4n rectangles.

We draw horizontal lines of at least unit distance so that (i) each line intersects
at least one rectangle, and (ii) each line contains neither points of P nor bottom
and top edges of rectangles. Note that such lines can be drawn in linear time from
top to bottom, provided that the y-coordinates of the rectangle edges have been
sorted. The set R is partitioned into subsets Ri that consist of all rectangles that
intersect line i. By Lemma 9 computing a MWIS for each Ri takes O(n log n) time
in total. Clearly, the solutions for every second line do not intersect. Thus by the
pigeonhole principle either the union of the solutions for the odd-numbered or for
the even-numbered lines must have at least half the weight of an optimal solution
for P .

Note that we never label a point with two of its four label candidates. The
reason is that if both belong to the same set Ri, then the symbolic comparison rule
for 1d-2PH makes them intersect, otherwise one label candidate belongs to the even
and one to the odd lines.

In order to obtain a PTAS, we employ dynamic programming as in [AvKS98]
with the only difference that an entry in the dynamic programming table is not the
number of labels in the optimal subsolution constructed so far, but the sum of their
weights. r

The above lemma also yields an O(kn log n)-time factor-2 approximation algo-
rithm for the two-dimensional analog kP of 1d-kPH.

4 The complexity of sliding in one dimension

Other than for fixed-position models even the restriction to one dimension turns out
to remain NP-hard for slider models. In this problem, which we refer to as 1d-1SH,
all points are given on the x-axis, and labels are (topologically open) intervals that
must contain or touch the point they label. The aim is to maximize the weight
sum of those points that can be labeled by intervals of the prescribed length such
that no two intervals intersect. Our proof is by reduction from SubsetSum. This
differs from most NP-hardness proofs in the label-placement literature, which are
by reduction from 3sat or Planar3sat. For a review, see [vKSW99]. The only
similar proof is by reduction from a special case of Partition [GIM+01].

For P ′ ⊆ P let w(P ′) be the sum of the weights of the points in P ′.

Theorem 2 The decision version of 1d-1SH is NP-complete, i.e. 1d-1SH is in NP
and it is NP-hard to decide the following. Given a number W and a set P of points
on the x-axis, each with a weight and a label length, is there a subset S of P with
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w(S) ≥ W such that each p ∈ S can be labeled with a sliding label of the given length
and no two labels intersect?

Proof. Clearly, 1d-1SH is in NP: we can non-deterministically guess a subset S
of P with w(S) ≥ W and then deterministically try to label it greedily from left to
right in polynomial time.

p− p1 p′1 p2 p′2 pn p′n p+C

c nC + B3nC 3nC

Figure 7: An instance of 1d-1SH to which an instance of SubsetSum is reduced.

To show the NP-hardness we reduce SubsetSum to 1d-1SH as follows. Given
positive numbers s1, . . . , sn and a bound B, the problem SubsetSum is to decide
whether there is a subset A of {1, . . . , n}, such that

∑
i∈A si = B. SubsetSum is

NP-complete [GJ79]. For our reduction to 1d-1SH we need a very large constant C
and a very small constant c, e.g. C = 1000

∑
1≤i≤n si and c = min1≤i≤n si/1000.

Now we construct (in polynomial time) an instance of 1d-1SH with 2n+2 points as
follows. See Figure 7 for an example. Let P = {p−, p+, p1, . . . , pn, p′1, . . . , p

′
n}, where

p− and p+ are two “stoppers” with x-coordinates x(p−) = 0 and x(p+) = nC + B,
and p1, . . . , pn, p′1, . . . , p

′
n are 2n “normal” points with x(pi) = (i− 1

2 )C and x(p′i) =
x(pi) + c for i = 1, . . . , n. The corresponding weights are w(p+) = w(p−) = 3nC,
w(pi) = C + si and w(p′i) = C. Label lengths are equal to point weights. Let
W = 7nC + B be the threshold for 1d-1SH and let S be the subset of P with all
points that receive a label in a fixed maximum-weight solution of 1d-1SH.

We show that the answer for SubsetSum is “yes” (i.e. there is a set A ⊆
{1, . . . , n} such that

∑
A si = B) if and only if the answer for 1d-1SH is “yes” (i.e.

w(S) ≥ W ). We also show that given a 1d-1SH-labeling with weight at least W we
can easily construct the subset A for SubsetSum.

Recall that in our instance label lengths equal point weights. Since the two
stoppers p− and p+ must be in S due to their large weights, and the distance
between p− and p+ is nC + B we have that w(S) ≤ W independently of the
SubsetSum instance.

On the one hand if there is a set A ⊆ {1, . . . , n} such that
∑

A si = B, then
w(S) ≥ W since there is a labeling L of weight W , and S corresponds to a maximum-
weight labeling. The labeling L is constructed as follows: label p− leftmost, p+

rightmost and then for i = 1 to n (i.e. from left to right) place a label touching its
left neighbor to pi if i ∈ A, otherwise to p′i. Note that each label is attached to its
point close to the label’s center since B � C. The labeling L is “tight”, i.e. each
label touches its neighbors. Thus in our reduction a yes-instance of SubsetSum is
reduced to a yes-instance of 1d-1SH.

On the other hand if the reduction yields a yes-instance of 1d-1SH, that is a
point set with w(S) ≥ W , then the original SubsetSum instance must have been
a yes-instance as well: we claim that the set A = {i : pi ∈ S} fulfills

∑
A si = B.

Since w(S) is always at most W , we have w(S) = W here. Therefore the weights of
the labeled points between p− and p+ sum up to exactly nC +B. Since B � C and∑

1≤i≤n si � C this is only possible if exactly n of these points are labeled. Among
those only the weights of the points of type pi (whose indices are in A) exceed C.
Thus

∑
A si = B.

This shows that a deterministic polynomial-time algorithm for 1d-1SH could be
used to decide the NP-hard problem SubsetSum. r

Our proof also shows that 1d-1SH remains NP-hard even if we restrict the prob-
lem to instances where point weights equal the corresponding label lengths.
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5 An approximation algorithm for slider models

Again we first tackle the corresponding one-dimensional problem. Other than in the
case of fixed-position models we cannot hope to solve 1d-1SH exactly in polynomial
time. Thus we are looking for an approximation algorithm or, even better, for a
fast (i.e. fully polynomial-time) approximation scheme. Due to its close relationship
to 1d-1SH we now state a scheduling problem, namely single-machine throughput
maximization: Given a collection J of n jobs J1, . . . , Jn, each with a weight wi,
a processing time (or job length) `i, a release time ri and a deadline di, find a
schedule that maximizes the throughput on a single machine, i.e. find a maximum-
weight subset J ′ of the jobs and for each job Ji ∈ J ′ an open interval Ii of length
`i that is contained in the execution window [ri, di] of Ji such that no two intervals
intersect.

Berman and DasGupta [BD00] have given a two-phase algorithm, ε-2PA, for
single-machine throughput maximization if the maximum ratio between the size of
the execution window and the processing time is bounded, i.e. if the so-called stretch
factor α = maxi{(di − ri)/`i} is bounded. Their algorithm has an approximation
factor of 2/(1 + 1/(2bαc+1 − 2 − bαc)) + ε for any ε > 0 and runs in O(n2/ε) time.
In the case α = 2 this yields a factor-(8/5 + ε) approximation. However, using a
symbolic comparison rule as in Lemma 9, we get the same approximation factor as
for 1 < α < 2, i.e. (1 + ε).

Their algorithm uses O(n2/ε) storage. We simplify their algorithm and show
how the storage consumption can be reduced to O(n/ε) for α ≤ 2 assuming the
above-mentioned symbolic comparison which ensures that all intervals of the same
job intersect. In phase I, the evaluation phase, ε-2PA discretizes the problem de-
pending on ε and on the job weights wi. Intervals are generated in order of non-
decreasing right endpoint and are put on a stack S. In phase II, the selection phase,
the intervals are successively taken off the stack and either put into the solution if
they do not intersect any other interval there, or discarded otherwise.

The main idea behind the discretization is a value vI = wI −
∑

I′∩I 6=∅,I′∈S vI′

that is attributed to each interval I when it is pushed on S. The weight wI of I is
the weight of the job to which I belongs. Phase I of ε-2PA consists of nothing but
repeatedly determining the interval I? whose right endpoint is leftmost among all
intervals I with vI ≥ εwI and then pushing I? on S. For an example, see Figure 8.
Note that the number of intervals on S per job varies greatly.

J

S

Ialgo

J1

J2

J3

J4

w1 = 1
w2 = 2
w3 = 3
w4 = 4

2
1
1

1
1

2
1

1

2 3 4

Figure 8: An example instance J with α = 2 and ε = 1, the stack S after phase I
of ε-2PA with the values of each interval, and the solution Ialgo with the weights of
the selected intervals.
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Lemma 10 ([BD00]) Given a collection J of n weighted jobs with stretch factor
α ≤ 2, ε-2PA finds a schedule whose weight sum is at least (1−ε) times the maximum
weight.

Proof. A proof of the approximation factor for any α can be found in [BD00].
We now give a much simpler proof for α ≤ 2 using our notation. Let S be the set
of intervals on the stack S right after the end of phase I of the algorithm. For a
subset S′ of S, let V (S′) be the sum of the values of the intervals in S ′. The proof
consists of two steps. We first show that the weight sum Walgo of the intervals in
the algorithm’s solution Ialgo equals V (S). We then show that V (S) > (1−ε)Wopt,
where Wopt is the weight sum of a fixed optimal solution Iopt.

To see Walgo = V (S) recall that the intervals are pushed on S in order of non-
decreasing right endpoint. We put the intervals in S in groups as follows. The first
group G1 consists of the leftmost interval I1 in Ialgo and all intervals that have been
pushed on S before I1. The next group G2 consists of the interval I2 to the right
of I1 in Ialgo and all intervals on S between I1 and I2, and so on. Note that each
interval on S belongs to a group since the topmost interval on S is in Ialgo. The
last interval Ii of group Gi always belongs to Ialgo. Recall that the value vi of Ii

equals the weight wi of the corresponding job minus the values of all intervals on
S below Ii that intersect Ii. Due to the way Ialgo is constructed in phase II of the
algorithm the first interval on S below Ii that does not intersect Ii is Ii−1. Thus
vi = wi − V (Gi \ {Ii}). This means that wi = V (Gi). Summing up these equalities
over all Ii in Ialgo yields Walgo = V (S).

To show V (S) > (1 − ε)Wopt we group the intervals on S differently. For each
interval I = (b, e) in Iopt the group GI now contains all intervals on S whose right
endpoint lies in (b, e]. Clearly, all groups are mutually exclusive, but their union
is not necessarily S. If I ∈ GI then we have V (GI) ≥ wI as above. Otherwise
consider the point of time t? in phase I just before the first interval is pushed on S
whose right endpoint lies to the right of I. At that moment I was not pushed on
S since the threshold vI ≥ εwI on its value was violated. Note that I would have
been attributed the value vI = wI −V (GI) since GI consists of all intervals on S at
time t? that intersect I. Thus V (GI) > (1− ε)wI , which yields V (S) > (1− ε)Wopt

after summing up over all I in Iopt. r

Lemma 11 The algorithm ε-2PA can be implemented to run in O(n2/ε) time using
O(n/ε) storage.

Proof. The threshold vI ≥ εwI on the value vI of an interval I to be pushed on S
ensures that at most 1/ε intervals of one job are pushed on S since they all intersect
each other in our case. Thus there are at most n/ε intervals on S at the end of
phase I.

In order to determine the next interval to be pushed on S in phase I we maintain
for each job Ji four parameters vi, bi, ei, and si. The number vi is the value that
would be attributed to the interval Ii = (bi, ei) of Ji that is in the leftmost position
satisfying vi ≥ εwi. The pointer si refers to an interval on S whose right endpoint
coincides with the left endpoint ei − li of Ii if such an interval exists. Otherwise
si = 0.

Since S is empty in the beginning, we initially have vi = wi, bi = ri, ei = bi + li,
and si = 0. We repeatedly push a copy of the interval Ii = (bi, ei) on S whose right
endpoint is leftmost, i.e. ei = min{e1, . . . , en}. After pushing Ii we must update
our parameters for all intervals Ij in our data structure (not in S!) that intersect
Ii. For these we reduce vj by vi. If this results in vj < εwj , we move Ij to the
right as follows. First, if sj = 0 we set sj to the last interval on S that does not
intersect Ij . Second, we repeatedly move sj to the next interval I on S, set the left
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endpoint bj of Ij to the right endpoint of I, set the right endpoint ej of Ij to bj + lj ,
and increase vj by the value of I since I does not intersect Ij any more. We keep
moving sj until either vj ≥ εwj or ej > dj . In the latter case we do not have to
consider job Jj any more. For an example, see Figure 9.

J

w1 = 4

w2 = 6

w3 = 8

S

J1

J2

J3

. . .

I3[1]

I2[1]

I1[1]

1
1

2
2

1

s2 s1s3

1
1

2
2

1
1

s2 s1s3

I2[2]

I1[2]

I3[1]

0

Figure 9: Our data structure during phase I of ε-2PA before and after a copy of
I3 is pushed on S. For each interval Ii the number vi is given in square brackets.
Again α = 2 and ε = 1. Note that not all intervals on S belong to jobs J1 to J3.

Clearly, each parameter can be maintained in time proportional to the size of
S right before phase II, and the interval to be pushed on S can be determined in
O(n) time. Thus phase I takes O(n2/ε) time and uses O(n/ε) space. Time and
space consumptions of phase II are subsumed by those of phase I. r

The problem 1d-1SH is very closely related to throughput maximization with
stretch factor 2: for each input point pi of the labeling problem, we define a job Ji

by setting its weight to that of pi, its length to the interval length `(pi) of pi, and its
execution window to [x(pi)− `(pi), x(pi) + `(pi)]. Then the length of the execution
window of each job is exactly twice the job length, i.e. α = 2. Note that 1d-1SH
and the scheduling problem are not completely equivalent. 1d-1SH is slightly more
restrictive in that the input points are required to come from a set, i.e. they are
pairwise different, while the corresponding midpoints of the job intervals can be
arbitrary.

Theorem 3 Weight maximization given slider models (1SH, 1SV, 2SH, 2SV, 4S)
can be (2 + ε)-approximated in O(n2/ε) time using O(n/ε) space.

Proof. Again we only consider the most general model 4S. For each input point
p, we define two axis-parallel candidate rectangles of length 2`(p) and unit height.
The upper (lower) rectangle touches p in the midpoint of its bottom (top) edge. A
label of p is entirely contained in the union of its upper and lower rectangle. Let R
denote the set of the resulting 2n rectangles.

As in Theorem 1, we draw horizontal lines of unit distance over R so that (i)
each line intersects at least one rectangle, and (ii) each line contains neither points
of P nor bottom and top edges of rectangles. Again R is partitioned into subsets
Ri that consist of all rectangles that intersect line i. Let W (L) be the weight sum
of a labeling L. We use ε-2PA to compute a labeling Li for each Ri. Lemma 10
guarantees that W (Li) ≥ Wi/(1 + ε/2), where Wi is the weight of a maximum-
weight labeling of Ri. We denote by Leven (Lodd) the union of the sets Li with i
even (odd). We return a labeling with weight max{W (Leven), W (Lodd)}.

We will now prove that W (L?) ≤ (2+ε)max{W (Leven), W (Lodd)}, where L? is
an optimal 4S-labeling for P . Partition L? into three subsets L?

even, L?
odd, and L?

mid,
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where L?
even (L?

odd) consists of those rectangles in L? that properly intersects an
even (odd) line, and L?

mid contains all rectangles in L? that touch two consecutive
lines with their top and bottom edges. Note that L?

mid is empty in slider models
that do not allow vertical sliding. Clearly, W (L?

even) ≤ (1 + ε/2)W (Leven) and
W (L?

odd) ≤ (1 + ε/2)W (Lodd). We show that there is an optimal labeling L? with
L?

mid = ∅, which proves our claim.
Suppose to the contrary that there is no optimal labeling L′ with L′

mid = ∅. Let
L? be any optimal labeling. Let G be an intersection graph whose nodes represent
labels of L?

mid. Two nodes in G are adjacent if the corresponding labels touch. G
is partitioned into a collection of maximally connected components. Consider a set
Q that consists of the labels of some maximally connected component of G. Let δ
be the maximum distance by which all labels in Q can be moved vertically without
intersecting labels in L? \ Q. If δ > 0, then we can move all labels in Q by a
sufficiently small amount and get an optimal labeling L′ with L′

mid = ∅.
If δ = 0, then there must be a path Π = (l1, . . . , lk) in G such that the point

p1 of the topmost label l1 lies on the bottom edge of l1 and the point pk of the
bottommost label lk lies on the top edge of lk. Suppose that such a path does not
exist. Then there are two labels in L? \Q that prevent us from moving Q vertically.
These labels must touch some labels in Q, which is a contradiction to Q being a
maximal connected component of G. Hence p1 and pk lie on the edges of l1 and
lk ∈ L?

mid, and thus on two horizontal lines. This contradicts the way we placed the
lines. r

6 An exact algorithm for a bounded number of

different weights

The following two sections deal with two restrictions of the problem 1d-1SH that
can be solved optimally. In this section we consider the case when the number of
different weights is bounded. We state our result in the language of scheduling.

Lemma 12 Let J be a collection of n jobs J1, . . . , Jn, where job Ji has weight
wi, release time ri, deadline di and length li. Let k be the number of different job
weights and let Vk be the number of possible throughputs. There is an algorithm that
computes a schedule for J with maximum throughput in O(nVk) time using O(Vk)
storage if the stretch factor α of J is less than 2.

Note that Vk is always at least n. Though in general Vk ∈ O(nk) we have that
Vk = nk in the interesting special case where the weights are the first k integers.
In this case throughput maximization with α < 2 can be solved in O(n2) time
(considering k a constant). We do not know how to relax the restriction α < 2 to
α ≤ 2. If a < 2 then the order of the jobs is the same in all possible schedules.

If nothing is known about the distribution of the weights, the price for exactness
is high: the runtime then becomes O(nk+1) compared with O(n2/ε) for a factor-
(1 + ε) approximation.

Proof. To simplify the presentation we allow a throughput of 0 and assume it is
counted by Vk. First we construct a sorted list L with one entry for each possible
throughput in n steps as follows. Start with L = (0). Suppose that after i steps L is
sorted and that it contains all throughputs that can be generated with the weights
w1, . . . , wi for some i < n. In step i + 1 simply make a copy L′ of L, add wi+1 to
each entry in L′ and merge L′ into L. Since the length of L is bounded by Vk, the
n steps take O(nVk) time in total.

Now we use dynamic programming with a table T of size Vk. There is an
entry T [v] for each possible throughput v ∈ L that stores the finish time of the
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leftmost schedule with throughput v. The leftmost schedule with throughput v is
the schedule that has the earliest finish time among all schedules with throughput
v. We fill the table in order of increasing throughput. Initially all entries have value
−∞. We compute T [v] for v > 0 as follows.

For each job we check whether v−wi ≥ 0 and if so, whether Ji can be scheduled
to the right of T [v − wi]. If yes, we schedule Ji as early as possible, i.e. we set its
finish time ti to max{ri, T [v − wi]} + li. If no, we set ti to +∞. Finally we set
T [v] := min{t1, . . . , tn} to the earliest possible finish time.

The maximum throughput vmax of J is the largest v for which T [v] < ∞. The
corresponding schedule s can be computed by using an additional table X of size
Vk. An entry X[v] of X stores the index of the last job that has been scheduled
when computing T [v]. Let i = X[vmax]. Then s consists of job Ji scheduled at
(T [vmax]−li, T [vmax]) and the jobs that can be computed recursively by investigating
X[vmax − wi].

In order to analyze the running time of our algorithm, observe that for each job
Ji we have to do at most Vk look-ups in T . The indices of the entries that we look
up for Ji increase monotonically while we fill T . Thus it is enough to maintain for
each of the k different weights wi a pointer that always points to T [v − wi]. The
maintenance of the pointers takes O(kVk) time in total. With this data structure
each entry T [v] can be computed in O(n) time, thus we have a total time complexity
of O(nVk).

The proof of correctness is by induction over the throughput. Let v > 0 be a
possible throughput value. Assume that all entries of T for values smaller than v are
correct. We have to show that the finish time T [v] which our algorithm computes
in fact corresponds to the schedule with the earliest finish time among all schedules
with throughput v. First observe that our algorithm computes only legal schedules.
This is due to the fact that no two intervals overlap and the stretch factor α is less
than 2; thus no two intervals of the same job can be scheduled. Let s be a schedule
of throughput v whose last job is Ji. Then we know that the finish time of s \ {Ji}
is at least T [v −wi] by our induction hypothesis. Since our algorithm tried all jobs
including Ji as the last job of the schedule for v, the finish time T [v] is at least as
early as that of s. r

Interestingly enough we can ignore the restriction α < 2 when using the above
scheduling algorithm for point labeling with sliding labels. This is due to the fact
that 1d-1SH and single-machine throughput maximization are not completely equiv-
alent. 1d-1SH is slightly more restrictive in that the input points are required to
come from a set, i.e. they are pairwise different, while the corresponding midpoints
of the job intervals can be arbitrary.

Lemma 13 Given a set P = {p1, . . . , pn} of points on the x-axis, each with a
weight wi and a label length li, 1d-1SH can be solved in O(nVk) time using O(Vk)
space, where k is the number of different point weights and Vk is the number of
possible weight sums.

Proof. We first convert our 1d-1SH-instance into a scheduling problem by setting
ri = pi − li and di = pi + li, and then apply a modified version of the dynamic pro-
gramming algorithm given in the proof of Lemma 12. When the original algorithm
computes T [v], the algorithm checks for each job Ji whether (a) v − wi ≥ 0 and
(b) T [v−wi] ≤ di − li, and then chooses the job that can be placed leftmost, i.e. for
which ti = max{ri, T [v − wi]} + li is minimum. For 1d-1SH (with stretch factor 2)
we additionally have to check whether (c) X[v − wi] 6= i, i.e. whether point pi has
not already received a label. We also have to modify the way in which we choose
the job that is scheduled. Let a job with ti = ri + li be an early job, otherwise a late
job. If there are several jobs with ti minimum, we choose a late job since an early
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job can still be scheduled later; right after the current job. In the case of 1d-1SH
the points pi = ri + li are unique, thus there is at most one early job and we can
always choose a late job if there is any choice at all.

The correctness of the modified algorithm can be shown similarly to that of the
original algorithm in the proof of Lemma 12: while so far α < 2 ensured that no
jobs are scheduled twice, this is now guaranteed by checking condition (c). r

Combining Lemma 13 with line stabbing as in the proof of Theorem 3 yields
factor-2 approximation algorithms for all slider models:

Theorem 4 Weight maximization given slider models can be 2-approximated in
O(nVk) time using O(Vk) space, where k is the number of different point weights
and Vk is the number of possible weight sums.

7 An approximation scheme for unit-square labels

This section deals with a special case of the problem 1d-1SH where all intervals have
unit length. This corresponds to labeling points with unit squares. We address this
special case since the more general problem of designing a PTAS for unit-height
rectangles seems to be difficult in the weighted case, and is solved in the unweighted
case [vKSW99].

The idea of our algorithm for 1d-1SH for unit-length intervals is to discretize
the continuous space of label positions of each point to a small number of label
candidates such that each optimal solution of the continuous problem corresponds
to a solution of the discrete problem that has the same weight. Then Lemma 9
solves the problem.

The algorithm is as follows. Sort the n different input points from left to right
and denote them by p1, p2, . . . , pn in this order. Clearly, p1 can do with only one
label candidate, namely its leftmost, [x1 − `1, x1]. For pi (i > 1) we also take
its leftmost candidate but additionally all the endpoints of the candidates of pi−1

that fall into the label window [xi − `i, xi + `i] of pi. Note that other than in the
general case at most one of the two endpoints can do that for each candidate of
pi−1. Intuitively speaking, we do not have to worry about the candidates of points
pj with j < i− 1 since their endpoints either do not fall into the window of pi or, if
they do, they also fall into that of pi−1 and thus will be taken into account. Hence
pi has at most i candidates. Lemma 9 yields

Lemma 14 For unit-length intervals the problem 1d-1SH can be solved in
O(n2 log n) time using O(n2) space.

Proof. Take any optimal solution of the continuous version of 1d-1SH. Consider its
leftmost label interval l1. Either l1 is in its leftmost position or we can push it there
without intersecting any other label. The next label l2 is either a label candidate
of our algorithm (if l2 touches l1 or is in its leftmost position) or we can slide it
to the left until it reaches such a position, again without intersecting other labels.
By repeating this procedure for all intervals of the optimal solution we obtain an
equivalent solution that uses merely label candidates which our algorithm computes.
Thus our algorithm finds a solution that is also optimal in the continuous case. r

Combining the above discretization for 1d-1SH with line stabbing and the dyna-
mic-programming algorithm of Agarwal et al. [AvKS98] gives us a PTAS for labeling
points with sliding unit-square labels.

Corollary 1 Given a set P of n points and an integer k ≥ 1 there is an algorithm
that finds a 1S-labeling for P whose weight is at least k/(k +1) times the maximum
weight. The algorithm takes O(n4k−2) time and uses O(n4k−2) space.
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Proof. In [AvKS98] Agarwal et al. give a PTAS for our labeling model 1P given
unit-height rectangles without weights. Their algorithm runs in O(n2k−1 + n log n)
time and uses O(n2k−1) space. They use line stabbing with horizontal lines of
unit distance to partition the input rectangles into sets R1, . . . , Rm. Then they use
dynamic programming to find the maximum independent set of rectangles in each
block Bi of k consecutive lines Ri, . . . , Ri+k−1 mod m for i = 1, . . . ,m. They consider
the k + 1 different solutions for the original problem that arise by dropping the
rectangles on every (k + 1)th line and joining the solutions obtained for the blocks
in between. They argue that by the pigeonhole principle one of these solutions
must have placed at least k/(k +1) times the maximum number of non-intersecting
rectangles.

The same algorithm can be used for the weighted case by storing the sum of
the weights of the selected rectangles in the dynamic programming table instead of
simply their number. After projecting all squares in a block Bi on the x-axis, we can
use our algorithm for 1d-1SH to compute O(b2

i ) label candidates for the bi points
that correspond to the squares in Bi. Analogously to Lemma 14 we can argue that
there is a solution of the resulting discrete problem with the same weight as the
maximum-weight solution of the 1S-problem for Bi. Thus applying the dynamic
programming algorithm of Agarwal et al. to the discrete set of label candidates
for Bi yields an optimal 1S-solution for Bi. The size of the dynamic programming

table becomes O(b
2(2k−1)
i ) since we have O(b2

i ) label candidates. The time needed

to fill the table is also O(b
2(2k−1)
i ). Thus computing maximum-weight solutions

for all m blocks takes O(n4k−2) time in total, and since bi can be linear in n, the
dynamic-programming table can have size O(n4k−2). r

8 An approximation algorithm for instances with

bounded height ratio

In this section, we label points with weighted sliding labels whose heights may vary,
but only within a constant factor. For each input point p in P we are given its
label length `(p) and height h(p). Let β be the ratio of maximum and minimum
label height, i.e. β = maxp∈P h(p)/minp∈P h(p). Usually a map or diagram uses
only a small number of different fonts whose sizes do not vary too much, thus β
is relatively small in practice and it is worthwhile designing an algorithm whose
approximation factor depends on β.

For the case of fixed-position models and arbitrary label heights, algorithms for
(weighted) maximum independent set in rectangle intersection graphs can be used.
Agarwal et al. achieve an approximation factor of O(log n) in the unweighted case
[AvKS98], Iturriaga explains how the ideas of Agarwal et al. can be extended to
handle weighted rectangles as well [Itu99]. Recently Erlebach et al. have improved
this result for weighted squares by giving a PTAS [EJS01].

Strijk and van Kreveld [SvK02] presented a practical factor-(1 + β) approxima-
tion algorithm for labeling unweighted points with sliding labels. Their algorithm
takes O(rn log n) time, r being the number of different label heights. We present a
new approximation algorithm for the weighted case. Its runtime is independent of
r and its approximation factor is better than that of [SvK02] for β > 11.

Theorem 5 Let P be a set of n points, each with a label, and let β be the ratio of
maximum to minimum height among these labels. Then the maximum-weight label-
ing for P can be 3dlog2 βe-approximated in O(kn log n) time given a fixed-position
model with at most k positions per point and (3+ε)dlog2 βe-approximated in O(n2/ε)
time for slider models.
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Proof. We normalize all label heights to the interval [1, β]. First we partition P
into m = dlog2 βe ≥ 1 groups Pj such that Pj = {p ∈ P | 2j−1 ≤ h(p) < 2j} for
1 ≤ j < m and Pm contains the remaining points. Let Lj (L) denote a maximum-
weight labeling for Pj (P ) and Wj (W ) its weight. By the pigeon-hole principle
there is a labeling Lj whose weight Wj is at least W/m. Now we combine line
stabbing with the 1d-algorithms of Sections 3 and 5 to compute a labeling of weight
at least Wj/3 or Wj/(3 + ε) for each Pj .

We show how to approximate the most general problem 4S; the same method
works for the other labeling models. As in Theorem 3, define 2n candidate rectangles
of Pj , denoted by R, and draw horizontal lines so that (i) two consecutive lines
are apart by 2j units, and (ii) each line contains neither points of Pj nor top or
bottom edges of rectangles in R. (For ease of presentation we ignore the fact
that rectangles might be very far apart vertically.) Let Ri be the set of candidate
rectangles intersecting line i. Then a (near-) optimal solution for Ri can be obtained
by our algorithms for the corresponding one-dimensional problems, see Lemma 9
and ε-2PA, respectively. We now consider candidate rectangles that lie completely
in the horizontal strip ∆ between the lines i and (i + 1). Since the height of these
rectangles is at least 2j−1 and the distance of the lines is 2j , there must be a
horizontal line in ∆ that stabs all of the rectangles. This implies that again we can
compute a (near-) optimal solution for the rectangles inside ∆ by Lemma 9 or ε-
2PA, respectively. Clearly, the partial solutions we compute for rectangles stabbed
by even-numbered lines are independent, similarly for odd-numbered lines and for
the inter-line strips. Thus one of these three solutions is at least of weight Wj/3
under fixed-position models and Wj/(3 + ε) under slider models. r

Conclusions

We have presented a number of fixed-position and slider models for labeling points
with axis-parallel rectangles. In the case of unit-height rectangles we have given
factor-2 and factor-(2 + ε) approximation algorithms for maximizing the weight
sum of those points that receive a label under fixed-position and slider models,
respectively. These algorithms use line stabbing and (near-) optimal algorithms for
the corresponding one-dimensional label- (or rather interval-) placement problems.
In the case of fixed-position models the 1d-problem is a special case of maximum
weight independent set, in the case of slider models the 1d-problem is a special
scheduling problem, namely single-machine throughput maximization. While there
is a fully polynomial-time approximation scheme for the latter problem [BD00], we
showed that the decision version is in fact NP-hard. Our reduction from subset
sum is the first such proof in the label-placement literature. We simplified the
approximation scheme and improved its space complexity.

We have investigated two special cases of label-placement problems with sliding
labels where the one-dimensional version can be solved optimally: if all intervals
are of equal length or if the number of different weights is bounded. Finally we
have presented an algorithm for arbitrary-height labels whose approximation factor
depends logarithmically on the ratio of maximum to minimum label height.

An interesting open question is whether there is a PTAS for sliding unit-height
labels as in the unweighted case [vKSW99]. We have given such a scheme for unit-
square labels.
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