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CURVE AND SURFACE
RECONSTRUCTION FROM NOISY
SAMPLES

by

SHEUNG-HUNG POON

Department of Computer Science

The Hong Kong University of Science and Technology

ABSTRACT

Reconstructing an unknown curve or surface from sample points is an impor-
tant task in geometric modeling applications. Sample points obtained from
real applications are usually noisy. For example, when data sets are obtained
by scanning images in the plane or images in three dimensions. In computer
graphics, many curve and surface reconstruction algorithms have been devel-
oped. However, their common drawback is the lack of theoretical guarantees on
the quality of the reconstruction. This motivates computational geometers to
propose algorithms that return provably faithful reconstructions. Algorithms
of this type are known when there is no noise in the input. This leaves the
problem of noise handling open. We propose a probabilistic noise model for
the curve reconstruction problem. Based on this model, we design a curve
reconstruction algorithm for noisy input points. The reconstruction is faithful
with probability approaching 1 as the sampling density increases. Then we
extend our approach to surface reconstruction from noisy input points. Not

xi



only do we improve the algorithm to make it run faster, we also make the noise
model deterministic which extends its applicability and simplifies the analysis
of the algorithm. We show that the surface reconstructed is faithful if the

input points satisfy the deterministic noise model.
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CHAPTER 1

INTRODUCTION

The problems of reconstructing curves and surfaces from sample points has been
studied extensively in computer graphics, geometric modeling, image processing,
computer vision, and computational geometry. The input consists of sample points
from the unknown smooth closed curve or surface S. The problem calls for com-
puting a polygonal curve / surface that is provably faithful. That means, when the
sampling density is sufficiently large, the reconstructed polygonal curve / surface
should be homeomorphic to S and the approximation error should approach zero.
There are two types of approximation error. First, the Hausdorff distance between
the reconstruction and S. Second, the differences between the normals of the recon-
struction and that of S. Both types of error should approach zero as the sampling

density increases.

Practical sample point sets may be noisy. For example, two-dimensional im-
ages obtained by scanning, three-dimensional medical data, and three-dimensional
scanned data points obtained by 3D scanners. In computer graphics and computer
vision, a lot of reconstruction algorithms have been proposed to handle noise. How-
ever, their common drawback is the lack of theoretical guarantees even when the
input samples are very dense. This motivates computational geometers to design
reconstruction algorithms that guarantee faithfulness. Several algorithms have been
proposed for noiseless sample points. Less is known about the faithful surface re-

construction problem from noisy samples.

The noisy samples are typically classified into two types. The first type are
samples that cluster around the curve / surface S but they generally do not lie on
it. The second type are outliers that lie relatively far from the curve / surface S. In
this thesis, we only consider the handling of noise of the first type with theoretical

guarantees. It is more difficult to handle the noise of second type with theoretical



guarantees, which is out of scope of this thesis. There are known filtering methods

for removing outliers [9, 27, 47, 48, 51, 52].

We summarize our main contributions in this thesis here. We first propose a
probabilistic noise model for the curve reconstruction problem. Based on this model,
we design a curve reconstruction algorithm for the noisy input. The reconstruction
is faithful with probability approaching 1 as the sampling density increases. Then
we extend our approach to perform surface reconstruction from the noisy input
points. We are able to make the noise model deterministic so that the analysis of
the faithfulness proof is simplified. We prove that the surface reconstructed is faithful
to the original surface if the input points satisfy the deterministic noise model. Both
of our curve and surface reconstruction algorithms follow the same framework. Our
algorithms first construct a set of center points from the given noisy sample points.
The center points are provably much less noisy than the input points. A subset of
these center points is then selected for the final surface reconstruction. This step can
be done using any existing faithful reconstruction algorithm for noiseless samples.
We choose the NN-crust algorithm [16] for reconstructing curves and the cocone

algorithm [5] for reconstructing surfaces, respectively.

We give a brief survey on the related work for curve and surface reconstruction
in Sections 1.1 and 1.2, respectively. Then we give an outline of this thesis in

Section 1.3.

1.1 Related work for curve reconstruction

Several curve reconstruction algorithms have been proposed in the geometric mod-
eling and image processing literature that achieve good experimental results. Fang
and Gossard [24] proposed to fit a deformable curve by minimizing some spring en-
ergy function. Dedieu and Favardin [13] described a method to order and connect
sample points on an unknown 2D curve. Taubin and Ronfard [50] proposed to con-
struct a mesh covering the sample points and then extract a polygonal curve that
fits the sample points. Pottmann and Randrup [43] used a pixel-based technique

to thin an input point cloud to a curve. This image thinning technique can handle



noise, but it is difficult to come up with an appropriate pixel size. Goshtasby [31]
obtained a reconstruction by tracing points that locally maximize a certain inverse
distance function involving the noisy sample points. The traced points form the
reconstruction. Lee [37] proposed a variant of the moving least-squares method
by Levin [38, 39]. Using a weighted regression, a new point is computed for each
noisy sample point such that the new points cluster around some curve. Then the
new points are decimated to produce a reconstruction. Although good experimen-
tal results are obtained with the above methods, there was no guarantee on the

faithfulness of the reconstruction.

Algorithms in [10, 44, 45, 46] tried to select a subset of Delaunay edges to approx-
imate the original curve. Edelsbrunner, Kirkpatrick, and Seidel [21] proposed the
a-shape for 2D shape reconstruction. Their algorithm tends to work well for sample
points with uniform distribution on the domain. Amenta, Bern, and Eppstein [3]
obtained the first result for curve reconstruction problem from noiseless samples
with theoretical guarantees. They proposed a 2D crust algorithm whose output is
provably faithful if the input satisfies the e-sampling condition for any ¢ < 0.252.
For each point z on S, the local feature size f(x) at x is defined as the distance from
z to the medial axis of S. For 0 < € < 1, a set S of samples is an e-sampling of S if
for any point = € S, there exists a sample s € S such that d(s,z) < e- f(z) [3]. Note
that the definition for local feature size applies also to higher dimensions. The 2D
crust algorithm invokes the computation of a Voronoi diagram or Delaunay trian-
gulation twice. Gold and Snoeyink [30] presented a simpler algorithm that invokes
the computation of Delaunay triangulation only once. Later, Dey and Kumar [16]
proposed an even simpler algorithm called NN-crust. They showed that the output
of their algorithm is faithful to the original curve if the input sample points satisfy

the e-sampling condition for any ¢ < 1/3 in [16].

Dey, Mehlhorn, and Ramos [17] proposed an algorithm to handle curves with
endpoints with guarantees. Dey and Wenger [18, 19] presented an algorithm to
handle sharp corners without guarantees; whereas Funke and Ramos [25] can do
that with guarantees. Giesen [28] discovered that the traveling salesperson tour

through the samples is a faithful reconstruction. Althaus and Mehlhorn [1] showed



that such a traveling salesperson tour can be constructed in polynomial time.

1.2 Related work for surface reconstruction

The surface reconstruction problem has been studied extensively in computer graph-
ics and computer vision. The first and widely known reconstruction algorithm in
computer graphics is the work of Hoppe et al. [34, 36, 35]. Their work performs quite
well in practice, and allows the presence of noise. Later, Curless and Levoy [12]
presented a volumetric method to reconstruct surface from range images. Medioni
and Tang [40, 49] applied a technique called tensor voting to infer the surface and
features on it. All these algorithms can also handle noise in the input, and appear

to be quite successful in practice. However, they do not have theoretical guarantees.

Some faithful reconstruction algorithms were proposed in computational geome-
try for the simple case that sample points are noiseless. Edelsbrunner and Mucke [22]
used the a-shape to construct the surface, and Edelsbrunner [20] proposed another
surface reconstruction algorithm by wrapping the sample points. The main draw-
back is that they perform well only for uniform sample set. Amenta and Bern [2, 4]
extended the approach of Voronoi filtering to do surface reconstruction.  Later,
Amenta, Choi, Dey, and Leekha [5] presented a simpler algorithm with a proof that
the reconstruction is homeomorphic to the original surface. Amenta et al. [6, 7]
gave another faithful reconstruction algorithm, which is called power crust. One
merit of the power crust algorithm is that it always output a water-tight surface
regardless of the sampling density of the input data set. Another algorithm given
by Boissonnat and Cazals [8] reconstructs a smooth implicit surface interpolating
the sample points. One can then mesh the implicit surface to obtain a mesh of the

desired resolution.

As we mentioned before, noise often arises in practical sample point set. Re-
cently, Mitra and Nguyen [42] presented methods to estimate surface normals from
point clouds, but did not proceed to finally reconstruct the surface for the sample
points. Very recently and independently, Dey and Goswami [15] proposed a surface

reconstruction algorithm from noisy samples. There are several major differences



between their work and ours in this thesis. In their noise model, the noise amplitude
is proportional to the local feature size and inversely proportional to the sampling
density; whereas in our model, it is an independent constant. Their algorithm selects
a set of “boundary” noisy sample points for reconstruction; whereas our algorithm
tries to estimate some center points close to the original surface for reconstruction.
Finally, they gave an implementation for their algorithm and had some promising

results, but we havn’t implemented our algorithm.

1.3 Thesis outline

We gave an introduction for the curve and surface reconstruction problem in the

current chapter (Chapter 1).

In Chapter 2, we propose a particular probabilistic model for noisy samples for
smooth curves on the plane. And in Chapter 3, provided that the input sample
points follows the probabilistic noise model, we prove that our reconstructed curve
is faithful to the original curve with probability approaching 1 as the number of
samples increases. The novelty of our algorithm is a method to cluster samples so
that each cluster comes from a relatively flat portion of S. This allows us to further

estimate points that lie close to S.

In Chapter 4, we propose a deterministic noise model for noisy samples for
smooth surfaces in three dimensions, and justify it. Making use of this deterministic
model, we can have a simpler and cleaner analysis for the faithfulness proof of our
surface reconstruction algorithm in Chapter 5. Our surface reconstruction algorithm

is a generalized version of the algorithm in Chapter 3.

And finally in Chapter 6, we conclude this thesis and propose some future re-

search problems.



CHAPTER 2

PROBABILISTIC NOISE MODEL FOR
CURVES

In this and next chapters, we only consider the given sample points are drawn from
an unknown closed smooth curve S on the plane. Suppose P is the given set of n
noisy sample points from S. As we mentioned in the introduction chapter, we only
consider noise of the first type, which are sample points cluster around and close to
S. We denote the maximum noise amplitude away from S by 4. We assume that

mingeg f(z) = 1 for convenience. So for any =z € S, f(z) > 1.

In this chapter, we present a probabilistic noise model for a curve (Section 2.1).
We then introduce the basic notations and some basic geometric lemmas in Sec-
tion 2.2. Finally in Section 2.3, we will look at some consequent technical lemmas
due to this model, which are needed later in the analysis of our curve reconstruction
algorithm in Chapter 3. Note that the proofs of some technial lemmas are given in

the appendix.

2.1 Sampling and noise model

We use probabilistic sampling to model the noise. A sample is generated by drawing
a point from S followed by randomly perturbing the point in the normal direction.
In a sense, it models the location of points on the curve by an input device, followed

by perturbation due to noise. Let L = fs %daz. The drawing of points from S
follows the probability density function #(x) That is, the probability of drawing
a point from a curve segment 7 is equal to fn ﬁdaz divided by L. This is known as

the locally uniform distribution. The distribution of each sample is independently

identical.

A point p drawn from S is perturbed in the normal direction. The perturbation
is uniformly distributed within an interval that has p as the midpoint, width 24, and

6



aligns with the normal direction at p. Note that the noise amplitude § remains fixed
regardless of the number of points drawn from S. Although the noise perturbation is
restrictive, it isolates the effect of noise from the sampling distribution which allows
an initial study of noise handling. It seems necessary that ¢ is less than 1. Otherwise,
as the minimum local feature size is 1, the perturbed points from different parts of S
will mix up at some place and it seems very difficult to estimate the unknown curve
S around that neighborhood. For our analysis to work, we assume that § < 1/(25p?)
where p > 5 is a constant chosen a priori by our algorithm. We emphasize that the

value of ¢ is unknown to our algorithm.

One may consider other sampling distributions. A more restrictive model is

the uniform distribution, in which the probability of drawing a point from a curve

segment 7 is equal to llsrrllg}}ll((g)) This model is attractive because it is natural to

sample in a uniform fashion in the absence of any information about the local feature
sizes. Despite the apparent difference, the locally uniform distribution is strongly
related to the uniform distribution which can be seen as follows. When 7 is short, the

Lipschitz property of the local feature sizes implies that the probability of drawing

dx

a point from 7 in the locally uniform model is @(LI"T(C)) for any point ¢ € n. This

length(n) )
L-f(c)

S, the probabilities of sampling in the locally uniform distribution and the uniform

is equivalent to O( . If we treat L and length(S) as intrinsic constants for
distribution differ only by a factor of local feature size. Thus our analysis for the
locally uniform distribution can be adapted easily for the uniform distribution case,

basically by slashing off a factor of local feature size. In particular, the reconstruction

w _ In“n _
is faithful with probability at least 1—O(n~ (" 7=1)) instead of 1—O(n A Frmax 1)).

Our algorithm and analysis do not make use of any estimation of local feature
sizes. This is demonstrated by the fact that our analysis can be adapted to the
uniform distribution case as briefly explained above. Our algorithm constructs a
small neighborhood around each noisy sample, and from this small neighborhood,
one can extract upper and lower bounds on the local feature size. However, the two
bounds differ by a factor that tends to infinity as the sampling density increases.
So the small neighborhood does not offer any reliable estimation of the local feature

size. (We will elaborate on this point when we describe our algorithm.) In fact,

7



we do not know how to obtain such estimation in the presence of noise, without
effectively solving the reconstruction problem first. After solving the reconstruction
problem, one may possibly estimate the local feature sizes using the Voronoi diagram
of the reconstruction as an approximation of the medial axis. This is beyond the

scope of this paper though.

2.2 Preliminaries

We call the bounded region enclosed by S the inside of S and the unbounded region
the outside of S. For 0 < a < §, St (resp., S, ) is the curve that passes through
the points ¢ outside (resp., inside) S such that d(q,q) = a. We use S, to mean S}
or Sy when it is unimportant to distinguish between inside and outside. S can be
visualized as the boundary of the union of the medial disks enclosed by S. If we
increase the radii of all such medial disks by «, S is the boundary of the union of
the expanded disks. S, has a similar interpretation after decreasing the radii of all

such medial disks by «. It follows that S and S, have the same medial axis.

The normal segment at a point p € S is the line segment consisting of the points
g on the normal of S at p such that d(p,q) < §. Given two points z and y on
S, we use S(z,y) to denote the curved segment traversed from x to y in clockwise

direction. We use |S(z,y)| to denote the length of S(z,y).

The following are some technical lemmas on some geometric properties of S,.
Their proofs can be found in the appendix. Lemma, 2.2.1 lower bounds the radius of
the tangent disk at any point on S,. Lemma 2.2.2 shows that a small neighborhood
of a point p on S, is flat enough to fit inside a double cone at p with small aperture.

Lemma 2.2.3 proves the small normal variation between two nearby points on S,.

Lemma 2.2.1 Any point p on S, has two tangent disks with radii f(p) — o whose

interior do not intersect S,.

For each point p on S,, take the double cone of points ¢ such that pg makes
an angle (m — 60)/2 or less with the support line of the normal at p. We denote the



complement of this double cone by cocone(p, ). Note that cocone(p, ) is a double

cone with apex p and angle 6.

Lemma 2.2.2 Let p be a point on S,. Let D be a disk centered at p with radius
less than 2(1 — a) f(p).

(i) For any point q € S, N D, the distance of q from the tangent at p is at most

d(p.a)?
2(1-a)f(p) "

(i) So N D C cocone(p,2sin* ;g’fljf%).

Lemma 2.2.3 Let p be a point on S,. Let D be a disk centered at p with radius at

(1=a)f(p)
4

most . For any point u € So, N D, the acute angle between the normals at p

. - —1 __d(puw) - —1 radius(D)
and u 1s at most 2sin % < 2sin %.

2.3 Decompositions

We will use two types of decompositions, G-partition and [B-grid. Let 0 < 8 < 1 be
a parameter. We identify a set of cut-points on S as follows. We pick an arbitrary
point ¢g on S as the first cut-point. Then for ¢ > 1, we find the point ¢; such that ¢;
lies in the interior of S(c;_1,co), |S(ci—1,¢i)| = B2f(ci—1), and |S(c;,co)| > B2 f(ci)-
If ¢; exists, it is the next cut-point and we continue. Otherwise, we have computed
all the cut-points and we stop. The B-partition is the arrangement of Sgr, Sy, and
the normal segments at the cut-points. Figure 2.1 shows an example. We call each
face of the (-partition a (-slab. The S-partition consists of a row of slabs stabbed
by S.

The cut-points for a G-grid are picked differently. We pick an arbitrary point ¢
on S as the first cut-point. Then for ¢« > 1, we find the point ¢; such that ¢; lies
in the interior of S(c;j_1,¢q), [S(ci—1,¢)| = Bf(ci—1), and |S(ci, co)| > Bf (). If ¢
exists, it is the next cut-point and we continue. Otherwise, we have computed all

the cut-points and we stop. The (-grid is the arrangement of the following;:

e The normal segments at the cut-points.

9



Figure 2.1: [-partition.

e 5, Sg“, and S; .

e ST and S, where a =i3§ and i is an integer between 1 and [1/3] — 1.

The (-grid has a grid structure. Figure 2.2 shows an example. We call each face of

the f-grid a (3-cell. There are O(1/3) rows of cells “parallel to” S.

f(ca)

Figure 2.2: 3-grid.

Given a (-partition, we claim that for every consecutive pairs of cut-points ¢;_1
and ¢;, B2f(ci 1) < |S(ci1,¢)| < 38%f(ci_1). For almost all consecutive pairs
of cut-points ¢;_1 and ¢;, |S(ci—1,¢;)| = B%f(ci—1) by construction. The last pair
cx and co constructed may be an exception. We know that |S(cg,co)| > B2f(ck)-
When we try to place g1, we find that [S(ckr1,c0)| < B2f(cky1)- So |S(ck,co)| <
B%f(ci) + B2f(cks1). By the Lipschitz condition, f(cpi1) < flex) + d(ck,cryr) <
F(er) + B F (). Thus [S(c,co)| < (267 + B f () < 367 F(cx).

Similarly, given a (-grid, we can show that for every consecutive pairs of cut-

points ¢;—1 and ¢;, Bf(ci—1) < [S(ci—1,¢)] < 3Bf(ci-1).
In Section 2.3.1, we bound the diameter of a (-cell. In Section 2.3.2, we lower

10



bound the width of a B-slab. In Section 2.3.3, we analyze the probabilities of some

(B-slabs and B-cells containing certain numbers of samples.

2.3.1 Diameter of a (-cell

We need a technical lemma before proving an upper bound on the diameter of a

(B-cell.

Lemma 2.3.1 Assume that 3 < 1/12. Let p and q be two points on S, such that
1S(p, )| < 3Bf(p). Then d(p,q) < d(p,q) + 736.

Proof. Refer to Figure 2.3. Let r be the point ¢ — ¢ + p. Without loss of generality,
assume that Zppr < Zprp. Lemma 2.2.3 implies that Zppr < 2sin~! 33. Therefore,

Figure 2.3: Tllustration for Lemma 2.3.1.

Zprp > m/2 — sin” ' 38. By sine law, d(p,r) = d(p’szi;i.séigrépﬁr < 65;2((21:5;;?) Note

that sin(2sin"!33) < 2sin(sin"!38) = 63 and since B < 1/12, cos(sin"!33) >
cos(sin~!(1/4)) > 0.9. So d(p,7) < 685/(0.9) < 785. By triangle inequality, we get
d(p,q) < d(g,r) +d(p,r) = d(p,q) + d(p,r) < d(p,q) + 70.

Lemma 2.3.2 Assume that § < 1/12 and § < 1. Let C be any (-cell that lies
between the normal segments at the cut-points ¢; and c;41. Then the diameter of C

is at most 1408f(¢;).

Proof. Let s and ¢ be two points in C. Let p be the projection of s towards 5 onto

a side of C. Similarly, let ¢ be the projection of ¢ towards ¢ onto the same side of

11



C. Note that p = 5 and G = £. The triangle inequality and Lemma 2.3.1 imply that

d(s,t) < d(p,q) +d(p,s)+d(q,t1)

< d(p,q) + 760 +d(p,s) + dl(q, t).

Since d(p,q) = d(3,t) < 36f(c;) and both d(p,s) and d(q,t) are at most 234, the
diameter of C' is at most 38f(¢;) + 1186 < 148f(¢;).

2.3.2 Slab width

The next lemma, lower bounds the width of slab in a (-partition.

Lemma 2.3.3 Assume thatd < 1/8 and 3 < 1/6. Let ¢; and c;j11 be two consecutive
cut-points of a B-partition. For any point on the normal segment at c;y1 (resp., ¢;),

its distance from the support line of the normal segment at ¢; (resp., ciy1) is at least

|S(ciycip1)]/6.

Proof. Assume that the normal at ¢; is vertical. Take any two points p, g € S, such
that p = ¢; and ¢ = ¢;41. We first bound the distance from ¢ to the support line of
the normal segment at ¢;. The same approach also works for the distance from p to

the support line of the normal segment at ¢;41.

Let r be the orthogonal projection of ¢ onto the tangent to S, at p. Observe
that the distance of ¢ from the support line of the normal segment at ¢; is d(p,r).
We are to prove that d(p,r) > |S(c;i,ciy1)|/6. For any point z € S,(p,q), we use

0, to denote the angle between the normals at Z and ¢;. By Lemma 2.2.3, we have

0, < 2sin”! 48 Since & € S(ci, 1), we have d(ci, 7) < [S(ei, #)] < [S(es, eis1)].

i

Thus 6, < 2sin~! % By our assumption on £, % <332 <1/12. It

follows that sin~! 139tz - 2S(eiciti)]

flei) Tlc) . Therefore,
4|S(ciaci+1)‘

bo S ey 2.1

flei) (2.1)

< 1262 (2.2)

12



This implies that S, (p, ¢) is monotone along the tangent to S, at p; otherwise, there
is a point 2 € S, (p, ¢) such that 6, = 7/2 > 1232, a contradiction. It follows that

S(c;, ¢i1) is also monotone along the tangent to S at ¢;. Refer to Figure 2.4. Assume

Figure 2.4: Tllustration for Lemma 2.3.3.

that p lies below ¢;, and ¢ lies to the right of p. Let r’ be the orthogonal projection

of ¢;+1 onto the tangent to S at ¢;. The monotonicity of S(c;, ¢; 1) implies that
(2.2)
d(ci, ") :/ cosBpdr > |S(ci,civ1)] - cos(126?) > 0.8/S(ci, civ1)l,
S(ciscit1)

as cos(126%) > cos(0.5) > 0.8. Let d be the horizontal distance between 7 and r'.
Observe that d = d(ci41,q) - sinf, < 06,, which is at most 44|S(c;, ci+1)| by (2.1).
We conclude that

dip,r) > d(ci,r') —d
> (0.8 —46)|S(ci,cit1)]

o<U/8 |8 (e, cirn)|
4
This lower bounds the distance from ¢ to the support line of the normal segment at

C;.

Let d, be the distance from p to the support line of the normal segment at c; .
We can use the same approach to lower bound d,. The only difference is that for

any point x € S, (p, q), the angle ¢, between the normals at Z and ¢;;1 satisfies

_1 1S(cis cigr)]
flcit1)
13

¢ < 2 sin



Note that the denominator is f(c;11) instead of f(¢;) in (2.1). Nevertheless, by
the Lipschitz condition, f(ciy1) > f(ei) — d(ci,civr) > flei) —[S(ciscigr)| 2 (1 —
38%)f(c;), which is at least 11f(c;)/12 as 332 < 1/12. Therefore,

~112|5(ci civn)| _, 2415(ci civn)| _ 5]S(ci, Citn))]

Uf(e) — 11£(ci) 7(c) < 1582

¢r < 2 8in
Observe that ¢, < 153? < /2. So Sa(p,q) and S(c;, ci11) are monotone along
the tangents to S, at ¢ and S at c;y1, respectively. Also, cos¢, > cos(154%) >
cos(0.5) > 0.8. Hence, by imitating the previous derivation of the lower bound of

d(p,r), we obtain

dy > (0.8—=50)|S(ci,cisr)]

‘5§>1/8 |S(Cz’,661+1)|_

2.3.3 Number of samples in cells and slabs

We first need a lemma that estimates the probability of a sample point lying inside

certain (3-cells and (-slabs.

Lemma 2.3.4 Let \p = \/% for some positive constant k. Let r > 1 be a
parameter. Let C be a (\i/r)-slab or (A\g/r)-cell. Let s be a sample. There exist
constants k1 and ko such that if n is so large that A\, < 1/6, then 52)\%/7"2 < Pr(se
C) < /<;M%/7"2.

Proof. Recall that L = [ ﬁdm. Assume that C' lies between the normal segments
at the cut-points ¢; and c¢;11. We use n to denote S(c¢;,¢;11) as a short hand.
By our assumption on \g, for any point z € n, if C' is a Ag-cell, then d(z,c;) <
3\ef(ci)/r < f(ei)/2; if C is a Mg-slab, then d(z,¢;) < 3A2 f(c;)/r? < f(c;)/12. The
Lipschitz condition implies that f(c;)/2 < f(z) < 3f(c¢;)/2. If C is a Ag-slab, then

222 622 ]

Pr(s € C) = Pr(3 lies on n), which is 7 -fn %daz € 312, T,5)

14
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then Pr(3 liesonn) = + - " ﬁdaz € [;)‘T’;, %] Since Pr(s € C' | 5 lieson ) €
Apd 2Xi 0 A A ALY
[ﬁa 25kr ] = [2_¢7 T]a Pr(s € C) € [ﬁa L_rg]

The following Chernoff bound [32] will be needed.

Lemma 2.3.5 Let the random wvariables X1, Xs, ..., X, be independent, with 0 <
Xi <1 for each i. Let S, = Y7 | Xi, and let E(S,) be the expected value of

Sn. Then for any o > 0, Pr(S, < (1 —0)E(Sy)) < exp(—%), and Pr(S, >

o2 n
(1+0)B(Sy)) < exp(— 525,

We are ready to analyze the probabilities of some (-slabs and (-cells containing

certain numbers of samples.

Lemma 2.3.6 Let \p = Bl *n for some positive constant k. Let r > 1 be a

parameter. Let C be a (A /r)-slab or (A\g/r)-cell. Let k1 and ko be the constants in

Lemma 2.3.4. Whenever n is so large that A\, < 1/6, the following hold.

(i) C is non-empty with probability at least 1 — n~2(1"" n/r?),
(i) Assume that r = 1. For any constant k > r1k?, the number of samples in C

14w In“ n)

is at most k1n'T¥ n with probability at least 1 — n~X .

(iii) Assume that v = 1. For any constant k < rgk?, the number of samples in C

14w (In“ n)

is at least k1n' n with probability at least 1 —n=* .

Proof. Let X;(i = 1,...,n) be a random binomial variable taking value 1 if the
sample point s; is inside C, and value 0 otherwise. Let S, = > | X;. Then
E(Sp) =31, E(X;) =n-Pr(s; € C). This implies that

B(S,) < mn)\% _ k1k2 In' T n B(S,) > KQ’I’L)\% _ kok? In' T n

— 2 2 - 2 2

By Lemma 2.3.5,




Consider (ii). Let 0 = 55 — 1> 0. Since r = 1, we have

kIn'™n = knAi(1 +0) > (1 + 0)E(Sy).
By Lemma 2.3.5,

Pr(S, > kIn'™n) < Pr(S, > (14 0)E(S,))

o?E(Sy)

< _ . \nJ
< oo

)
= exp(—Q(Int*¥n)).

Consider (iii). Let 0 =1 — & > 0. Since r = 1, we have
kIn'Tn = konAi(1 — o) < (1 — 0)E(Sy).

By Lemma 2.3.5,

Pr(S, <xIn't“n) < Pr(S, < (1—0)E(Sy))
o?E(S,)

= exp(—Q(Int*¥n)).
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2.4 Appendix

Proof of Lemma 2.2.1

Let M, be the medial disk of S, touching a point p € S,. By the definition of S,
there is a medial disk M of S touching p such that M and M, have the same center.
Moreover, radius(M,) = radius(M) — a > f(p) — a.

Proof of Lemma 2.2.2

Assume that the tangent at p is horizontal. Consider (i). Refer to Figure 2.5(a). Let
B be the tangent disk at p that lies above p and has center z and radius (1 —«)f(p).
Let C be the circle centered at p with radius d(p, q). Since d(p,q) < 2(1—a)f(p), C
crosses B. Let r be a point in C'N dB. Let d be the distance of r from the tangent
at p. By Lemma 2.2.1, d bounds the distance from ¢ to the tangent at p. Observe
that d(p,q) = d(p,r) = 2(1 — a)f(p) sin(%) and d = d(p,r) - sin(%). Thus,

~ . xTr ) 2
d=2(1— a)f(p)sin®(“BL) = 2<f5’”a‘§}<m-

2

(1-o) f(p)

kel
@

tangent to
Fq @t p

() (b)

Figure 2.5: Illustration for Lemma 2.2.2.

Consider (ii). Refer to Figure 2.5(b). By (i), the distance between any point in

F,ND and the tangent at p is bounded by %%. Let 6 be the smallest angle such

radius(D)? __ radius(D)

that cocone(p, ) contains S, N D. Then sing < ST—a)[(5) " admus(D) = 3(1=-a)f(7)"
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Proof of Lemma 2.2.3

Take any point v on S, N D. Let £ be the tangent to S, at u. Let ¢’ be the line that
is perpendicular to ¢ and passes through u. Let C' be the circle centered at p with
radius d(p,u). Let A and B be the two tangent circles at p with radius %.
Let = be the center of A. Without loss of generality, we assume that the tangent
to S, at p is horizontal, A is below B, wu lies to the left of p, and the slope of ¢
is positive or infinite. (We ignore the case where the slope of £ is zero as there is

nothing to prove then.) It follows that the slope of ¢’ is zero or negative. Refer to

Figure 2.6.

Figure 2.6: Illustration for Lemma 2.2.3.

By Lemma 2.2.1, u lies outside A and B. Let ¢ be the intersection point between
C and A on the left of p. Since d(p,q) = d(p,u) < % = radius(A4)/2, q lies

— 9gip—! _dpu)
above z. Also, Zprq = 2sin™" =575

Suppose that ¢ does not lie above z, see Figure 2.6(a). Since u lies above the

support line of gz, the angle between ¢ and the vertical is less than or equal to

= 9gin~! dpw)
Zprq = 2sin =) )"

Suppose that ¢ lies above z but not above p, see Figure 2.6(b). We show
that this case is impossible. Let w the intersection point between A and ¢’ on

the right of p. Note that p lies between u and w and Zupw > w/2. If we grow
18



a disk that lies below [ and remains tangent to [ at u, the disk will hit S, at
some point different from u when the disk passes through p or earlier. It follows
that there is a medial disk M, of S, that touches u and lies below [. Observe
that the center of M, lies on the half of ¢ on the right of u. Furthermore, the
center of M, lies on the line segment uw; otherwise, since Zupw > m/2, M, would
contain p, a contradiction. Thus, the distance from p to the center of M, is less
than max{d(p,u),d(p,w)} + d(p,p) < 2-radius(4) + a« = (1 — ) f(p) + a < f(p)-
However, since the center of M, is also a point on the medial axis of S, its distance

from p should be at least f(p), a contradiction.

The remaining case is that ¢’ lies above p, see Figure 2.6(c). Since u lies outside
B and the slope of ¢’ is zero or negative, ' lies between p and the center of B. The
situation is similar to the previous case where ¢’ lies between p and z. So a similar

argument shows that this case is also impossible.
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CHAPTER 3

CURVE RECONSTRUCTION

In this chapter, we will present an algorithm to reconstruct polygonal closed curves
from noisy samples drawn from a set of smooth closed curves. We assume each
input sample point in P follows locally uniform distribution, and the distribution of
each sample point is independently identical. We show that the output polygonal
reconstruction by our algorithm is faithful to the original curve S with probability

approaching to 1 as n increases.

In Section 3.1, we first present our algorithm. Then we states the main theorem
of this chapter and give an overview of the analysis of the faithfulness proof in
Section 3.2. The details of the analysis appear from Section 3.3 to Section 3.6.
Finally we summarize in Section 3.7. Note that the proofs of some technical lemmas

are given in the appendix.

3.1 Algorithm

Our algorithm consists of three main steps, POINT ESTIMATION, PRUNING, and
OuTPUT. In the POINT ESTIMATION step, the algorithm filters out the noise and
computes new points that are provably much less noisy than the input samples. Since
the sampling density is high, the distances of these new points from S can still be
much larger than the distances among them. Thus a direct reconstruction using all of
the new points would produce a highly jagged polygonal curve. As a remedy, in the
PRUNING step, the algorithm decimates the points so that the interpoint distances
in the pruned subset is large relative to their distances from S. See Figure 3.1.
Finally, in the OUTPUT step, we can run any provably good combinatorial curve
reconstruction algorithm. We choose to run NN-crust [16]. As it is quite simple,
we will then briefly describe its details here. In NN-crust algorithm, each sample s

in the given sample points P is connected to two edges. First s is connected to its
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Figure 3.1: The left figure shows the noisy samples. The middle figure shows the
new points computed. The right figure shows the remaining points after pruning.

nearest neighbor in P the obtain one edge say e. Then s is connected to the closest

sample among all samples u such that su makes an obtuse angle with e.

The following pseudocode gives a high level description of the above three steps
and more details of the pruning step. For each point z € R? that does not lie on the
medial axis of S, we use Z to denote the point on S closest to z. That is, Z is the

projection of z onto S. (We are not interested in points on the medial axis.)

Point Estimation: For each sample s, we construct a thin rectangle
refined(s). The long axis of refined(s) passes through s and its
orientation approximates the normal at 5. The center of refined(s)
is the new point s* desired. The distance d(s*, §) approaches zero

as n — oo.

Pruning: We sort the points s* in decreasing order of width(refined(s)).
Then we scan the sorted list and select a subset of center points:
when we select a center point s*, we delete all center points u*

from the sorted list such that d(s*,u*) < width(refined(s))"/3.

Output: We run the NN-crust algorithm on the selected center points

and return the output curve.

The main objective of POINT ESTIMATION is to align the long axis of refined(s)
with the normal at 3. This is instrumental to proving that d(s*, 3) approaches zero
as n — 0o. The construction of refined(s) is done in three steps. We give a highlight

first before providing the details.

First, we compute a small disk initial(s) centered at s. We prove upper and

nl/4

W ) which tends

lower bounds on the radius of initial(s), but their ratio is ©(

to infinity as n — 00. So initial(s) does not provide a reliable estimate of f(3).
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Second, we grow the disk neighborhood around s until the samples inside the disk
fit inside a strip whose width is small relative to the radius of the disk. The final
disk is the coarse neighborhood of s and it is denoted by coarse(s). The radius
of coarse(s) is in the order of § + radius(initial(s)). The orientation of the strip
approximates the tangent at §. Since S can bend quite a lot within coarse(s), the
approximation error may be in the order of sin"! . Thus an improved estimate is
needed. Third, we shrink coarse(s) to a smaller disk. We take a slab perpendicular
to strip(s) bounded by two parallel tangent lines of the shrunken disk. We rotate
the slab around s to minimize the spread of the samples inside along the direction of
the slab. Because of the minimization of the spread of samples inside, we can show

that the orientation of the final slab approximates the normal at 5 well.

We provide the details of the three steps in POINT ESTIMATION below. Let

w > 0 and p > 5 be two predefined constants.

Initial disk: We compute a disk D centered at s that contains In' ™% n

samples. Then we set initial(s) to be the disk centered at s with
radius y/radius(D). For sufficiently large n, the radius of D is less
than 1, which implies that initial(s) contains D. Figure 3.2 shows

an illustration.

Coarse neighborhood: We initialize coarse(s) = initial(s) and com-
pute an infinite strip strip(s) of minimum width that contains all

samples inside coarse(s). We grow coarse(s) and maintain strip(s)

radius(coarse(s))

~wian(sirip(s)). = P+ The final disk coarse(s) is the coarse

until

neighborhood of s. Figure 3.2 illustrates the growth process.

Refined neighborhood: Let N, be the upward direction perpendic-
ular to strip(s). The candidate neighborhood candidate(s, ) is
the slab that contains s in the middle and makes a signed acute

angle 6 with N;. The width of candidate(s, ) is equal to the min-

imum of \/radius(initial(s)) and radius(coarse(s))/3. The angle
0 is positive (resp., negative) if it is on right (resp., left) of Nj.
Figure 3.3 shows the initial candidate neighborhood that is per-
pendicular to strip(s). We enclose the samples in candidate(s, )N
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coarse(s) by two parallel lines that are orthogonal to the direction
of candidate(s,0). These two lines form a rectangle rectangle (s, 6)
with the boundary lines of candidate(s,#). The width of the rect-
angle rectangle(s,#) is the width of candidate(s,6). The height of
rectangle(s, ) is its length along the direction of candidate(s,0).
We vary 6 within the range [—7/10,7/10] to find an orientation
that minimizes the height of rectangle(s, ). Figure 3.3 illustrates
the rotation and the bounding rectangle. Let 6* be the minimiz-
ing angle. The refined neighborhood of s is rectangle(s,6*) and is
denoted by refined(s). We return the center point s* of refined(s).

- IR T S,

___________

Figure 3.2: On the left, the white dot is the sample s, the inner disk is D, and the
outer disk is initial(s). On the right, we grow initial(s) until strip(s) has a relatively
large aspect ratio. The final disk is coarse(s).

Figure 3.3: On the left, the initial candidate neighborhood is the one perpendicular
to strip(s). On the right, as we rotate the candidate neighborhood, we maintain the
smallest bounding rectangle of all samples inside.

A few remarks are in order. Recall that mingcgs f(z) is assumed to be 1. For

sufficiently large n (i.e., when the sampling is dense enough), the radius of initial(s)

is less than 1. So in the REFINED NEIGHBORHOOD step, +/radius(initial(s)) >
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radius(initial(s)). Clearly, coarse(s) contains initial(s). So both of the widths

of candidate(s,0) and refined(s) are at most y/radius(initial(s)) < 1 and at least
radius(initial(s))/3.

3.2 Overview of analysis

Our goal is to prove the following result:

Main Theorem Assume that 6 < 1/(25p?) and p > 5. Let n be the number of
noisy samples from a smooth closed curve. For sufficiently large n, our algorithm

computes a polygonal closed curve that has the following properties with probability

at least 1 — O(n_Q(}?naz_l)),

e For each output vertex s*, d(s*,8) = O((1n1+u")1/8f(§)1/4).

n
e For each output edge r*s*, the angle between r*s* and the tangent at 5 is

O((m)1/48f(§)25/24)_

n

e The output curve is homeomorphic to the smooth closed curve.

We first give an overview of the proof strategies here before diving into details
later. The hardest part is to argue that the point s* that we estimate for the sample
s indeed lies very closely to the curve. To illustrate the intuition, we assume that
the curve is a flat horizontal segment locally at 5. See Figure 3.4(a). So the noisy
samples in the local neighborhood lie within a band B of width 2. Thus the final
coarse(s) must have radius ©(pd + radius(initial(s))) in order to meet the stopping
criterion of growing coarse(s). Next, we would like to argue that the slope of strip(s)
approximates the slope of the tangent at §. We prove this by contradiction and
assume that strip(s) is tilted a lot. So a significant area of B lies outside strip(s) as
shown in Figure 3.4(b). Our goal is to show that this area contains a noisy sample
with high probability. Therefore, with high probability, strip(s) cannot be much

tilted from the horizontal. The details are in Section 3.3.

Directly discussing the emptiness of an arbitrary area (whether it contains a noisy
sample or not) is quite hard given the continuous distributions. We get around this
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(a) (b) (c)

Figure 3.4: The left figure shows coarse(s), the noise band B, and S. In the middle
figure, the bold strip is strip(s) and the shaded area is the significant area of B
outside strip(s). The shaded area should be non-empty with high probability. In
the right figure, the shaded rectangle is the candidate rectangle.

by decomposing the space around S into small cells by making use of the properties
in Chapter 2. Since the cells have more regular shape, we can show that each cell
is non-empty with high probability and we can also bound the diameters of the
cells. The cell diameter approaches zero as the sampling density increases. The
bound on the cell diameter enables us to show that the area of B outside strip(s)
in Figure 3.4(b) contains a cell. So the area contains a noisy sample with high

probability.

The next step is to construct the refined neighborhood of s so as to obtain an
improved estimate of the normal at §. This is done by rotating a candidate rectangle

to minimize its height. See Figure 3.4(c). The width of the candidate rectangle is

set to be the minimum of \/radius(initial(s)) and radius(coarse(s))/3. Clearly, we
want the width to be small in order to generate a large variation in the height even
when we have a small angular deviation from the normal at 5. In fact, we want
to show that radius(initial(s)) approaches zero as the sampling density increases.

14w

Recall that initial(s) is generated by identifying the In' ™ n nearest samples to s.

tw o with

We are to show that the number of samples inside a cell is at least In
high probability. Thus radius(initial(s)) is no more than the cell diameter. In
Figure 3.4(c), when we rotate the candidate rectangle, its upper and lower sides
may invade the interior of the band B. This is because there may not be any noisy

sample on the band boundary. Still, we want to keep the upper and lower sides of
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the candidate rectangle near the band boundary, otherwise we would not have a big
increase in height despite the angular deviation from the normal at 5. Fortunately,
as the cells are non-empty with high probability, the gaps between the upper and
lower sides and the band boundary must be too narrow for a single cell to fit in.

The details are in Section 3.4.

We have not discussed one important phenomenon so far. Since § is unknown,
it may be arbitrarily small. In this case, radius(coarse(s)) is only lower bounded by
radius(initial(s)) as we grow coarse(s) from initial(s). Thus we need to establish
a lower bound on radius(initial(s)), and hence radius(coarse(s)). We construct
another decomposition of the space around S into slabs. Then by upper bounding
the number of samples in each slab, we can lower bound radius(initial(s)) by the
slab “width”. The corresponding details are in the following section, in which the
radii of initial(s) and coarse(s) for each sample s will be bounded from above and

below.

In Section 3.5, we obtain the homeomorphism result by extending the NN-crust
analysis. In Section 3.6, we put everything together to prove the main theorem of

this chapter.

3.3 Coarse neighborhood

In this section, we bound the radii of initial(s) and coarse(s) for each sample s.

Then we show that strip(s) provides a rough estimate of the slope of the tangent to

S at 5. Recall that A\ = 4/ %

3.3.1 Radius of initial(s)

Lemma 3.3.1 Let h be a constant less than ﬁ and let m be a constant greater

than ,/K%, where k1 and k9 are the constants in Lemma 2.8.4. Let 1, = A\, /3 and

Ym = V14 . Let s be a sample. If 6 < 1/8, A\, < 1/12, and A\, < 1/12, then

P/ f(8) < radius(initial(s)) < Pm/ f(3)
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with probability at least 1 — O(n 210" ")),

Proof. Let D be the disk centered at s that contains In'™ samples. We first
prove the upper bound. Take a Aj,,-grid such that s lies on the normal segment
at the cut-point ¢y. Let C be the Aj,,-cell between the normal segments at ¢y and

14w

¢ that contains s. By Lemma 2.3.6(iii), C contains at least 2In" ™ n samples with

—Q(In® n) 1+w

probability at least 1—n, . Since D contains In" ™ n samples, radius(D) is less
than the diameter of C' with probability at least 1 — n~2(2“7) By Lemma 2.3.2,
radius(D) < 14X\, f(co) = 14X\, f(8). Hence radius(initial(s)) = /radius(D) <

V1A f(3).

Next, we prove the lower bound. Take a Ap-partition such that s lies on the
normal segment at the cut-point ¢g. Consider the cut-points ¢; for —1 < j < 1. (We
use c_1 to denote the last cut-point picked.) We have d(c_1,cp) < |S(c—1,¢0)] <
3\ f(c—1) < 0.03f(c—1) as A, < 1/12. The Lipschitz condition implies that

flemt) > £(e0)/1.03 > 0.8 (co). (3.1)

Let d_1 and d; be the distances from s to the support lines of the normal segments

at ¢_; and ¢y, respectively. By Lemma 2.3.3,

d,> [Sle=1:co)| o A2 f(e_1) (3;) A2 f(co)
- 6 - 6 8 ’

dy > |S(00701)| > A%f(co)'
- 6 - 6

By Lemma 2.3.6(ii), the A\j-slabs between c_; and ¢y and between ¢y and ¢; contain
at most In'*¥ n/3 points with probability at least 1 — O (n=2("“ ")) Hence, for D to
contain In'*“ n points, radius(D) > max{d_1,d1} > A2 f(cy)/6. Note that f(3) =

f(co) as § = ¢g by construction. It follows that radius(initial(s)) = y/radius(D) >

A/ f(8)/3.

3.3.2 Radius of coarse(s)

In this section, we prove an upper bound and a lower bound on the radius of

coarse(s).
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Lemma 3.3.2 Assume p > 4 and 6§ < 1/(25p%). Let m be the constant and b, be
the parameter in Lemma 3.3.1. Let s be a sample. If A, < 1/(504p%), then

radius(coarse(s)) < 5pd + m/ f(5)

with probability at least 1 — O(n=2"" 1)),

Proof. Let s; and sy be points on Sgr and Sy such that s = s5 = 5. Let D be
the disk centered at s with radius 5p0 + ¥,/ f(8). By Lemma 3.3.1, 1,/ f(8) >
radius(initial(s)), so D contains initial(s) with probability at least 1 — O(nSIn“ ™),

We are to show that coarse(s) cannot grow beyond D. First, since \,, < 1/(504p?),

hm = V14, < 1/(6p) < 1/24.

Observe that both s; and s lie inside D. Since 5p6 < 1/(5p) < 1/20 and 9, < 1/24,
radius(D) < (1 — 6)f(3). Thus, the distance between any two points in D N S; is
less than 2(1 — §) f(5). By Lemma 2.2.2(i), the maximum distance between D N S}

(5p0+9m / f(5))* (5p0/f(3)+¢m/f(5))*

and the tangent to S;’ at s; is at most S1=0)1(3) < EI6] as

f(38) > 1. Thus, this distance is upper bounded by % which is less than
0.51(5p8 + 9m)? as & < 1/(25p?). The same is also true for D N S;. It follows
that the samples inside D lie inside a strip of width at most 26 + 1.1(5p6 + 9,)? =
204+ 1.1(50)26% +2.2(5p)1hmd 4+ 1.1¢h2,. Since § < 1/(25p%) and 1, < 1/(6p), we have
1.1(5p)%6% < 1.16, 2.2(5p)hmd < 1.848, and 1.14)2, < 1y, /p. We conclude that the
strip width is no more than 2§ + 1.16 + 1.848 + v, /p < 50 + ¥ /p < radius(D)/p.

This shows that coarse(s) cannot grow beyond D.
Next, we bound radius(coarse(s)) from below. We use fmax to denote max,cg f ().

Lemma 3.3.3 Assume that§ < 1/8 and p > 4. Let h be the constant in Lemma 3.5.1.
Let s be a sample. If \p, < 1/32, then

radius(coarse(s)) > max{2,/pd, radius(initial(s))}
with probability at least 1 — O(n =" 1/ fmax)),
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Proof. Since coarse(s) is grown from initial (s), radius(coarse(s)) > radius(initial(s)).
We are to prove that radius(coarse(s)) > 2,/pd. Let D be the disk that has center
s and radius radius(coarse(s))/\/p. Let X be the disk centered at § with radius 6.
Note that s € X and X is tangent to S§ and S;. Since § < 1/8 and f(3) > 1,
f(5)—d > 6 and so Lemma 2.2.1 implies that X lies inside the finite region bounded
by S;“ and Sy .

Suppose that radius(coarse(s)) < 2,/pd. Then radius(D) < 2. If D contains
X, X is a disk inside D N X with radius at least radius(D)/2. If D does not contain
X, then since s € X, D N X contains a disk with radius radius(D)/2. The width
of strip(s) is less than or equal to radius(coarse(s))/p = radius(D)/,/p. Thus,
(D N X) — strip(s) contains a disk Y such that
1 1 radius(D)

radius(Y') > (Z — m) - radius(D) 5

v

Note that Y is empty and Y lies inside the finite region bounded by S;' and
S5 . Take a point p € Y. Since p € Y C D and radius(D) < 26, d(p,3) <
d(p,p) + d(s,5) + d(p,s) < 45 < 1/2 as § < 1/8. The Lipschitz condition im-
plies that f(p) < 3f(5)/2. Observe that radius(D) = radius(coarse(s))/\/p >
radius(initial(s))/\/p. Thus, Lemma 3.3.1 implies that radius(Y") > radius(D)/8 >
M/ f(3)/(24y/p) > M/f(B)/(30\/p) with probability at least 1 — O(n—tIn"n),
Let 8 = A\,/(420y/pfmax).- Then radius(Y) > 143f(p). By Lemma 2.3.2, Y con-
tains a (-cell. By Lemma 2.3.6(i), this S-cell is empty with probability at most
n~ " n/fmax) " This implies that radius(coarse(s)) < 2,/pd occurs with probability
at most O (n 0/ fmax)),

3.3.3 Rough tangent estimate: strip(s)

In this section, we prove that the slope of strip(s) is a rough estimate of the slope of
the tangent at s. We need the following technical lemma about various properties

of coarse(s) and S, inside coarse(s). Its proof can be found in the appendix.
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Lemma 3.3.4 Assume p > 5 and 6§ < 1/(25p%). Let m be the constant and b, be
the parameter in Lemma 3.5.1. Let s be a sample. If 2,/pd < radius(coarse(s)) <
5p0 + Q/)m\/m and ¥, < 1/100, then for any S, and for any point © € S, N
coarse(s), the following hold:

. §+1m O+Ym+20
(i) 506 + pm < 0.05, 55(;1@) < 0.03, and % < 0.03,

(11) Sa N coarse(s) consists of one connected component,

—1 5p5+'¢)m+25 <

(173) the angle between the normals at s and x is at most 2sin =

25sin~1(0.06),

(iv) & € cocone(sy,2sin™! W) C cocone(s1,2sin™1(0.03)) where sy is the

point on Sy such that §1 = §.

(v) 0.9f(3) < f(2) < 1.1f(3),

(vi) if z lies on the boundary of coarse(s), the distance between s and the orthogonal

projection of x onto the tangent at s is at least 0.8 - radius(coarse(s)), and

(vii) for any y € S, N coarse(s), the acute angle between xy and the tangent at x

is at most sin~(6pd + 1.24h,,,)) < sin~1(0.06).

We highlight the key ideas before giving the proof of Lemma 3.3.5. Let B be the
region between S; and S inside coarse(s). If strip(s) makes a large angle with the
tangent at 3, strip(s) would cut through B in the middle. In this case, if BN strip(s)
is narrow, there would be a lot of areas in B outside strip(s). But these areas must
be empty. Such areas occur with low probability. Otherwise, if BN strip(s) is wide,
we show that strip(s) can be rotated to reduce its width further, a contradiction.

We give the detailed proof below.

Lemma 3.3.5 Assume that p > 5 and § < 1/(25p?). Let m be the constant and
Y, be the parameter in Lemma 8.5.1. Let s be a sample. For sufficiently large n,
the acute angle between the tangent at § and the direction of strip(s) is at most
3sin! W +sin 1 (6p8 + 1.2¢h,) < 4sin~1(0.06) with probability at least 1 —
O~ 1/ fmax)),
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Proof. Let £1 and ¢ be the lower and upper bounding lines of strip(s). Without
loss of generality, we assume that the normal at § is vertical, the slope of strip(s)
is non-negative, S5 N coarse(s) lies below S; N coarse(s), and ¥, < 1/100 for
sufficiently large n. Let h and m be the constants and 1, and 1, be the parameters
in Lemma 3.3.1. We first assume that max{2,/pd, 1,/ f(3)} < radius(coarse(s)) <
5p0 + Q/)mm and take the probability of its occurrence into consideration later.

As a short hand, we use 7; to denote W and 79 to denote 6pd + 1.2t)y,.

Observe that both ¢; and ¢5 must intersect the space that lies between S; and
Sy inside coarse(s). Otherwise, we can squeeze strip(s) and reduce its width, a
contradiction. If /1 intersects S, N coarse(s) twice for some «, then ¢y is parallel
to the tangent at some point on S, N coarse(s). By Lemma 3.3.4(iii), the direction
of strip(s) makes an angle at most 2sin!#; with the horizontal and we are done.
Similarly, we are done if ¢ intersects S, N coarse(s) twice for some . The remaining
case is that both £; and /5 intersect S, N coarse(s) for any v at most once. Suppose
that the acute angle between the direction of strip(s) and the horizontal is more than

3sin~! 7 + sin~! 7. We show that this occurs with probability O(n =1/ fmax)),

coarse$)

Figure 3.5: Figure (a) illustrates that S; (p,q) lies below £;. Figure (b) illustrates
our choice of a cell C' that lies below /5.

Let ¢ be the right intersection point between S5 and the boundary of coarse(s).

If £, intersects S5 N coarse(s), let p denote the intersection point; otherwise, let p

denote the leftmost intersection point between Sy and the boundary of coarse(s).

Refer to Sigure 3.5(a). We claim that Sy (p, ¢) lies below £;. If /; does not intersect
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S5 N coarse(s), then this is clearly true. Otherwise, by Lemma 3.3.4(iii), the mag-
nitude of the slope of the tangent at p is at most 2sin~' ;. Since the slope of /; is
more than 3sin~! 5 +sin~! 9, Sy crosses £ at p from above to below. So Sy (p, q)

lies below 4.

We show that d(p,q) < vy, m& with probability at least 1 — r=2(n 7/ fmax)
Notice that pg is parallel to the tangent to S5 at some point on Sy (p,q). By
Lemma 3.3.4(iii), the tangent to S; (p, q) turns by an angle at most 4sin™'(0.06) <
7 /2 from p to g. This implies that S5 (p, ¢) is monotone with respect to the direction
perpendicular to pg. We divide pq into three equal segments. Let u and v be the
intersection points between S5 (p,q) and the perpendiculars of pg at the dividing
points. Assume that v follows u along Sy (p,q). Refer to Figure 3.5(b). Suppose

that d(p,q) > ¢¥p+/f(5)/2. Then

(3.2)

S ()] > d(pB,q) 5 ¥n 6f(=§)_
Since f(4) < 1.1f(3) by Lemma 3.3.4(v), |S; (u,v)| > 9n\/f(@)/7. Consider a
(Ak/V fmax)-grid where k = h/294 and 4 is a cut-point. (Note that A\; = 1/5,/98.)
Let C be the (A;/v/fmax)-cell that touches Sy (u,v) and the normal segment through
u. By Lemma 2.3.2, the diameter of C' is at most 14)\,\/f(@) = ¢n\/f(@)/7 <
|S5 (u,v)]. So the bottom side of C' lies within S (u,v). Let R be the region inside
coarse(s) that lies below £; and above S5 (p,q). From any point z € S5 (u,v) NC, if
we shoot a ray along the normal at x into R, either the ray will leave C first or the
ray will hit /1 or the boundary of coarse(s) in R. We are to prove that the distances
from z to ¢; and the boundary of coarse(s) in R are more than 2A;d > 2At8/v/ fmax-
This shows that the ray always leaves C first, so C lies completely inside R. Then the
upper bound on d(p, ¢) follows as C is empty with probability at most n =" 7/ fmax)
by Lemma 2.3.6(i).

Consider the distance from any point = € S5 (u,v) to ¢;. By Lemma 3.3.4(iii),
the angle between £; and the tangent at p (measured by rotating ¢; in the clockwise
direction) is at least 3sin~'n; + sin~!'ny — 2sin™' 7 = sin~' n; + sin~! 1o and at
most 7/2 + 2sin"!7;. By Lemma 3.3.4(vii), the acute angle between pz and the
tangent at p is at most sin~ ! 5. So the angle between pz and ¢; is at least sin~! 7,
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and at most 7/2 4+ 2sin~!'n; + sin"! 7. This implies that the distance from z
to ¢; is at least d(p,z) - min{n; , cos(2sin™'n; + sin"'7y)}. By Lemma 3.3.4(i),
n < 0.06 < cos(3sin 1(0.06)) < cos(2sin~ ! n; + sin ' ny). Therefore, the distance

(3.2)
from z to ¢, is at least d(p,z) - m > 5pd - d(p,x) > 256 - (d(p,q)/3) > 46/ f(3).
Since A = 15, /98, this distance is greater than 2A;d.

coars€s)

coars€s)

Figure 3.6: The shaded region denotes R in both figures. In figure (a), ¢ is the
closest point in R to z. In figure (b), p or ¢ is the closet point in R to z.

Next, we consider the distance d from any point z € S; (u, v) to the boundary of
coarse(s) in R. Take a radius sy of coarse(s) that passes through z. Suppose that y
lies outside R. Refer to Figure 3.6. If ¢; intersects S5 Ncoarse(s) at p (Figure 3.6(a)),
then d = d(q,z). If ¢; does not intersect S5 N coarse(s) (Figure 3.6(b)), then
d = min{d(p,z), d(q,x)}. Thus, by (3.2), d > d(p,q)/3 > u\/f(3)/6 > 2)\0.
The remaining possibility is that y lies on the boundary of R. Then either sy is
tangent to Sy at x or sy intersects S5 N coarse(s) at least twice. So zy is parallel
to the tangent at some point on S5 N coarse(s). By Lemma 3.3.4(iii), the acute
angle between zy and the tangent at 2 is at most 4sin™'7;. By Lemma 3.3.4(vii),
the acute angle between ¢z and the tangent at z is at most sin~'7,. So the angle
between gz and zy is at most 4sin~!n; 4 sin !y, It follows that d = d(z,y) >
d(q, ) - cos(4sin~ n; +sin~' 1) > d(q, ) - cos(5sin~1(0.06)) > 0.9 - d(q,z) > 0.9 -
(d(p, q)/3) = 0.15¢5\/F(3) > 2\40.
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In all, C lies inside R. So C must be empty which occurs with probability at
most n~ (" 7/ fmax) by Lemma 2.3.6(i). It follows that d(p,q) < ¢n+/f(5)/2 with
probability at least 1 —n—?0n“7/fmax) By Lemma 3.3.4(vi), the horizontal distance
between ¢ and the left intersection point between S; and the boundary of coarse (s)
is at least 1.6 - radius(coarse(s)) > 1.69,/f(3) > d(p,q). We conclude that ¢;

intersects S5 N coarse(s) exactly once at p.

Refer to Figure 3.7. Let y be the leftmost intersection point between S;' and
the boundary of coarse(s). Symmetrically, we can also show that /¢y intersects
Sgr N coarse(s) exactly once at some point z, Sgr(y,z) lies above /5, and d(y,z) <

Yn/f(3)/2 with probability at least 1 — n~ 200 n/fmax),

coarse §)

Figure 3.7: Rotating ¢; and /5 slightly in the clockwise direction decreases the
width of strip(s).

Consider the projections of Sg“(y, z) and Sy (p,q) onto the horizontal diameter
of coarse(s) through s. By Lemma 3.3.4(vi), the projections of y and ¢ are at dis-
tance at least 0.8 - radius(coarse(s)) from s. Thus, the distance between the projec-
tions of S§ (y, ) and S; (p.q) is at least 1.6 - radius(coarse(s)) — d(p,q) — d(y,z) >
1.6 - radius(coarse(s)) — n+/f(8) > 1.6 - radius(coarse(s)) — radius(coarse(s)) >
radius(coarse(s))/p. That is, this distance is greater than the width of strip(s).
But then we can rotate /1 and /s around p and z, respectively, in the clock-
wise direction to reduce the width of strip(s) while not losing any sample inside
coarse(s). See Figure 3.7. This is impossible. It follows that, under the condition
that max{2,/pd, 45 +/f(3)} < radius(coarse(s)) < 5p3 + ¥p+/f(3), the acute angle
between the direction of strip(s) and the tangent at 3 is at most 3sin™! 7y +sin™! 1,

with probability at least 1 — O(n("*7/fmax)) " By Lemmas 3.3.1, 3.3.2, and 3.3.3,
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the inequalities max{2,/p0, ¢/ f(5)} < radius(coarse(s)) < 5pd + 4/ f(5) hold
with probability at least 1 — O (nf(In“ ")/ fmax) " So the lemma follows.

3.4 Refined neighborhood

The results in Section 3.3 show that after the step COARSE NEIGHBORHOOD, the
algorithm already has a normal estimate at each noisy sample with an error in the
order of 6 + ,,. However, this error bound does not tend to zero as the sampling
density increases. This explains the need for the step REFINED NEIGHBORHOOD in
the algorithm. This step will improve the normal estimate so that the error tends
to zero as the sampling density increases. This will allow us to prove the pointwise

convergence.

We introduce some notations. In the step REFINED NEIGHBORHOOD, we align
candidate (s, #) with the normal at § by varying € within [—7/10,7/10]. Recall that
f is the signed acute angle between the upward direction of candidate(s,6) and
Ng, where Nj is the upward direction perpendicular to strip(s). Let angle(strip(s))
denote the signed acute angle between Ng; and the upward normal at §. If Ng
points to the right of the upward normal at 3, angle(strip(s)) is positive. Otherwise,
angle(strip(s)) is negative. We define 6; = 0 + angle(strip(s)). That is, 0 is the
signed acute angle between the upward direction of candidate(s,f) and the upward
normal at §. The sign of 6, is determined in the same way as angle(strip(s)). For
any S, and for any point p € S, N candidate(s, ), let -y, be the signed acute angle
between the upward direction of candidate(s,6) and the upward normal at p. The

sign of 7, is determined in the same way as angle(strip(s)).

We need the following two technical lemmas. Their proofs can be found in the
appendix. There are two main results in Lemma 3.4.1. First, we show that the
range of rotation [—x/10,7/10] of candidate(s,0) covers the normal direction at 3.
Second, we relate v, to 6,. This is useful because we will see that for a proper choice
of p, the height of candidate(s, ) is directly related to 7, (and hence to 65). We
will need to focus on a smaller area inside candidate(s,f). Lemma 3.4.2 bounds

distances and angles involving points on S, inside this smaller area.
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Lemma 3.4.1 Assume that § < 1/(25p%) and p > 5. Let s be a sample. Let Wy be
the width of candidate(s,8). For sufficiently large n, the following hold with probabil-
ity at least 1—O(n~ 2" 7/ fmax) throughout the variation of 6 within [—x /10,7 /10).

(i) Wy <0.1f(3).
(11) 65 € [-m/5,7/5] and 65 =0 for some 0 € [—m/10,7/10].

(113) Any line, which is parallel to candidate(s,0) and inside candidate(s,0), inter-

sects Sq N coarse(s) for any a exactly once.

(iv) For any S, and for any point p € SaNcandidate(s,0), 05s—0.2|05]|—3Ws/f(35) <
Yp < 05 +0.2|6,| + 3Ws/f(3).

Lemma 3.4.2 Assume that § < 1/(25p%) and p > 5. Let s be a sample. Let H
be a strip that is parallel to candidate(s,0) and lies inside candidate(s,0). When

n s sufficiently large, for any S, and for any two points u and v on So N H, the

following hold with probability at least 1 — O(n=n 1/ max)),

(1) d(u,v) < 3width(H).
(1) The angle between the normals at u and v is at most 9 width(H).

(11i) The acute angle between uv and the tangent to S, at u is at most 5 width(H).

3.4.1 Normal approximation

We show that our algorithm aligns refined(s) approximately well with the normal
at §. Our algorithm varies § so as to minimize the height of rectangle(s,). Let
6* denote the minimizing angle. Recall that refined(s) = rectangle(s,0*). Let 6}
denote 0* + angle(strip(s)). We apply Lemmas 3.4.1 and 3.4.2 to show that 6} is

very small.

Lemma 3.4.3 Assume that § < 1/(25p%) and p > 5. Let s be a sample. Let Wy be
the width of refined(s). For sufficiently large n, |0%| < 23W with probability at least
1 — O(nQ(ln“J n/fmax))_

36



Proof. We rotate the plane such that candidate(s,6*) is vertical. Suppose that
|0% > 23W,. We first assume that Lemmas 3.3.1, 3.3.2, 3.3.3, 3.4.1, and 3.4.2
hold deterministically and show that a contradiction arises with probability at least
1—O(n®n* 7/fmax))  The contradiction is that we can rotate candidate (s, 6*) slightly
to reduce its height further. Since these lemmas hold with probability at least
1 —O(n®n* n/fmax))  we can then conclude that |0*| > 23W, occurs with probability

at most O (nS2In* 7/ fmax)),

Without loss of generality, we assume that 6; > 0. That is, the upward normal
at s points to the left. Also, we assume that S; N coarse(s) lies below S5 N coarse(s).
Let L be the left boundary line of candidate (s, 6*). By Lemma 3.4.1(iii), L intersects
S5 N coarse(s) exactly once. We use p to denote the point L N Sy N coarse(s). We

first prove a general claim which will be useful later.

CLAIM 1 Orient space such that candidate(s,0) is vertical. If 05 >
23Wy, then for any «, S, N candidate(s,0) increases strictly from left
to right.

Proof. Take any point z € S, N candidate(s,#). By Lemma 3.4.1(iv),
v, > 0.805; —3Wy, which is positive as 0, > 23W, by assumption. There-
fore, the upward normal at z points to the left, so the slope of the tangent

to S, at z is positive.

We highlight the proof strategy before giving the details. If 8, > 23W, by
Claim 1, both S5 and S;“ increase from left to right inside candidate(s,6). Then we
divide candidate(s,0*) into three smaller slabs of equal width in left to right order,
and show that the lower side of rectangle(s, 0*) intersects Sy at a point a inside the
leftmost slab. Similarly, the upper side of rectangle(s,6*) intersects S;' at a point
b inside the rightmost slab. Since both S5 and S;' increase from left to right, this
allows us to rotate rectangle(s,6*) around a and b in the anti-clockwise direction to
reduce its height. This contradicts the minimality of the height of rectangle(s,0*).
We give the details in the following.

We first prove that the lower side of rectangle(s,0*) intersects S; within the
leftmost slab. Let A and m be the constants in Lemma 3.3.1. Let k = h/3240. Let
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H; be the slab inside candidate(s,0*) such that Hy is bounded by L on the left and
width(H;) = W,/3. Let H be the slab inside candidate(s, ") that is bounded by L
on the left and has width 30Xt/ f(3). Refer to Figure 3.8. Since radius(initial(s)) <

Hy

d : L
/v C

Figure 3.8: Illustration for Lemma 3.4.3.

Ym/f(5), radius(initial(s)) < 1 for sufficiently large n. So y/radius(initial(s)) >

radius(initial(s)). Since W, = min{\/radius(initial(s)),M}, we have

3
W, > radius(initial(s)) /3 > Ap+/f(5)/9. Thus

width(H) = 30M\,/F(3) = Ahli v()é(S) < % (3.3)

Thus, H lies inside H;. By Lemma 3.4.1(iii), Sj crosses H completely. Let r be the
intersection point between S5 and the center line of H. Take the (Ag/v/fmax)-grid
in which 7 is the first cut point. Let C be the (Ax/v/fmax)-cell such that C contains r
and C' lies between the normal segments at 7 and the second cut point. The distance
from r to the boundary of H is 15X m By Lemma 2.3.2, the diameter of C' is

at most 14, f(7) /v fmax < 14A,+/f(7). Since f(7) < 1.1f(3) by Lemma 3.3.4(v),
the diameter of C is less than 15X,/ f(3). It follows that C lies inside H.

Let u be the rightmost vertex of C' on Sy. Let v be the vertex of C different
from u on the normal segment at u. Let z be the intersection point between Sy
and the right boundary line of H;. We are to prove that z lies above C. Since
C' is non-empty with very high probability, the lower side of rectangle(s, 6*) should

intersect S5 inside Hy at a point below z then.

By Claim 1, v is the highest point in C' and z is the highest point on Sy (p, z).
Let d, and d;, be the height of v and z from p, respectively. Let ¢ be the acute
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angle between pu and the horizontal line through p. Since ¢ is at most the sum
of 7, and the angle between pu and the tangent at p, by Lemma 3.4.2(iii), we
have ¢ < 7, + 5width(H). By Lemma 3.4.2(i), d(p,u) < 3width(H). Observe
that d, < d(p,u) - sin¢ + d(u,v). So d, < 3¢pwidth(H) + 2X\;0 < 3, width(H) +
15width(H)? + 2Md. By (3.3), we get d, < Wy, /4 + 5W2/48 + 2);0. We bound
26 as follows. Recall that W, = min{y/radius(initial(s)), radius(coarse(s))/3}.
TIf Wy = +/radius(initial(s)), by Lemma 3.3.1, Wy > /A,/3£(3)"/* > \/\/3. So
20,0 < 20, = A\, /1620 < 0.002W2. If W, = radius(coarse(s))/3, by Lemmas 3.3.1
and 3.3.3, Wy > 2,/pd/3 and Wy > M\ /F(3)/9 > A\n/9. We get A\, = \j,/3240 <
W, /360 and 20 < 3W,//p < 3W,/V/5, s0 200 < 0.004W2. We conclude that

Wsvp
4

dy < +0.2W2.

We observe that pz is parallel to the tangent at some point z on Sj (p,z). Then by
Lemma 3.4.2 (ii), v, > v, —9 width(H) = vy, —3Wj. Since d, = width(H,)-tan~y, =
(Ws/3) - tan-y,, we get

W, WS'Yp

L)

dy 2>
3

Since 07 > 23W, by our assumption, Lemma 3.4.1(iv) implies that -, > 0.80; —
3Ws > 15W,. Therefore, d, — d, > Wiy, /12 — 1.2W2 > 0. Tt follows that = lies
above C.

Since C'is a (Ag/v/fmax)-cell, by Lemma 2.3.6(i), C' contains some sample with
probability at least 1 — 2" »/fmax)  Thus, the lower side of rectangle(s,6*) lies
below z with probability at least 1 —n®(n“ 7/fmax) On the other hand, the lower side
of rectangle(s,6*) cannot lie below S5 N Hy, otherwise it could be raised to reduce
the height of rectangle(s,0*), a contradiction. So the lower side of rectangle(s,6*)

intersects Sy M Hy at some point a. See the left figure in Figure 3.9.

Let Hs be the slab inside candidate(s,0*) such that Hy is bounded by the right
boundary line of candidate (s, 0*) on the right and width(H,) = W,/3. By a symmet-
ric argument, we can prove that the upper side of rectangle (s, 6*) intersects Sgr N H,

at a point b.
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Figure 3.9: In the right figure, the middle bold rectangle is the obtained by a
slight anti-clockwise rotation. Its height is smaller than that of the middle dashed
rectangle.

Consider an angle 6 that is slightly less than 6*. As shown in the right figure
in Figure 3.9, this is equivalent to rotating the candidate neighborhood in the anti-
clockwise direction. By Lemma 3.4.1(ii), 65 can reach zero during the variation of
. Thus, as 07 > 0, decreasing 6 from 6* is legal. Moreover, as 07 > 23W;, the small
rotation keeps 6, greater than 23W,. Correspondingly, we rotate the lower and
upper sides of rectangle(s,6*) around a and b, respectively, to obtain a rectangle R.
Orient the plane such that the new candidate neighborhood becomes vertical. By
Claim 1, Sy increases strictly from left to right, so S5 crosses the lower side of R
at most once at a from below to above. Similarly, Sgr crosses the upper side of R at
most once at b from below to above. This implies that R contains all the samples
inside the new candidate neighborhood . Since a is on the left of b and below b,
the anti-clockwise rotation makes the height of R strictly less than the height of
rectangle(s,0*). This contradicts the assumption that the height of rectangle(s, 0*)

is already the minimum possible.

3.4.2 Pointwise convergence

Once refined(s) is aligned well with the normal at 3, it is intuitively true that the
center point of refined(s) should lie very close to 3. The following lemma proves this

formally.
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Lemma 3.4.4 Assume that 6 < 1/(25p%) and p > 5. Let s be a sample. Let
W be the width of refined(s). For sufficiently large n, the distance between the

center point s* of refined(s) and 3 is at most (1380 + 3)W with probability at least
1— O(nfﬁ(ln“’ n/fmax)).

Proof. We first assume that Lemmas 3.3.1, 3.3.2, 3.3.3, 3.4.1, 3.4.2, and 3.4.3 hold
deterministically and show that the lemma is true with probability at least 1 —
O(nn* n/fmax)) -~ As these lemmas hold with probability at least 1—O (n(n 7/ fmax)),

the lemma follows.

Assume that s lies on S, the normal at 3 is vertical, and S5 N coarse(s) is above
S5 N coarse(s). Let rq (resp., r,) be the ray that shoots downward (resp., upward)
from s and makes an angle 0 with the vertical. Let z and y be the points on Sgr
and S hit by r, and rg respectively. Let z be the point on S5 hit by ry. Let s¢
be the point on S5 such that s; = 5. Without loss of generality, we assume that

07 > 0. Refer to Figure 3.10.

Figure 3.10: Illustration for Lemma 3.4.4.

Our strategy for bounding d($, s*) is as follows. By triangle inequality, d(3, s*) <
d(s*,y) + d(8,y). Thus it suffices to bound d(s*,y) and d(3,y). While d(3,y) can
be bounded directly, a few intermediate steps are needed to bound d(s*,y). If the
upper and lower sides of refined(s) pass through z and z, respectively, then d(s*,y)
is just the distance between the midpoint of z and y. Then we consider the cases

that the upper and lower sides of refined(s) do not pass through z and z, and bound
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the maximum displacement of s* from the midpoint of zz. This yields the bound

on d(s*,y). We give the details in the following.

We first bound the distance between y and the midpoint of zz. By Lemma 3.3.4(iv),
the acute angle between s;z and the tangent at s; (the horizontal) is at most
sin='(0.03). It follows that Zss;z < 7/2+sin='(0.03). So Lszs) = m—0F — Lssyz >
7/2 — 0 — sin"1(0.03), which is greater than 0.9 as 6% < 7/5 by Lemma 3.4.1(ii).
By applying sine law to the shaded triangle in Figure 3.10, we get

d(s,s1) -sinff (6§ + )b} .
= < . .
d(s1.7) sin/szsy  — sin(0.9) <20+ )t (34)

Similarly, we get

_ d(s,s)-sin@; ol
d(5,y) = &2 s <« s 900t 3.5
5 = = Zegs = sm(0g) < 2% (3:5)

By triangle inequality, d(s, s1) — d(s1,2) < d(s,z) < d(s,s1) + d(s1,2). Then (3.4)
yields
(0+a)—2(0+a)f; <d(s,2) <(d+a)+2(d +a)b;. (3.6)

We can use a similar argument to show that

(0 —a)—2(0 —a)fi <d(s,z) < (0 —a)+2(6 — a)bl, (3.7)
a—2a0; <d(s,y) < a+ 2a0:. (3.8)

Let d; and d,, be the distances from the midpoint of 2z to  and y, respectively. Since
d(z,z) = d(s,z)+d(s,z), by (3.6) and (3.7), we get 20 — 4607 < d(z, z) < 20 +4067.
Therefore, § — 200% < dy < § + 200%. Since d(z,y) = d(s,z) + d(s,y), by (3.7) and
(3.8), we get § — 200; < d(z,y) <0+ 200;. We conclude that

dy = |d; — d(z,y)| < 460%. (3.9)

Second, we bound the displacement of s* from the midpoint of zz. There are

two cases.

Case 1: the upper side of refined(s) lies above x. The upper side of refined(s) must
intersect S;' N candidate(s,0*) at some point v, otherwise we could lower it
to reduce the height of refined(s), a contradiction. Since d(z,v) < 3W by
Lemma 3.4.2(i), the distance between z and the upper side of refined(s) is at
most 3Ws.
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Case 2: the upper side of refined(s) lies below z. Let h be the constant in Lemma 3.3.1.
Let k = h/270. Take the (Ax/v/ fmax)-grid in which 7 is the first cut point. Let
C be the cell such that C' contains x and C lies between the normal segments

at £ and the second cut point.
We claim that C lies inside candidate(s,0*). Since radius(initial(s)) <

m/ [ (8), we have radius(initial(s)) < 1 for sufficiently large n. Thus we get
\/radius(initial (s)) > radius(initial(s)). So

W, = min{\/radius(initial(s)), radius(coarse(s))/3}

> radius(initial(s))/3,

which is at least Ap+/f(5)/9. By Lemma 2.3.2, the diameter of C is at most
1AM f () /v T < 14X /F(@). Since f(#) < 1.1£(3) by Lemma 3.3.4(v), the
diameter of C' is less than 15A;+/ f(3). Since W5 > Ap\/f(5)/9 = 30 e/ f(3),

C must lie inside candidate(s, 6*).

Since C'is a (Ag/v/fmax)-cell, by Lemma 2.3.6(i), C' contains some sample
with probability at least 1 —n =" 7/fmax)  Thus, the upper side of refined (s)
cannot lie below C. It follows that the distance between x and the upper side

of refined(s) is at most the diameter of C, which has been shown to be less

than Wy/2.

Hence, the position of the upper side of refined(s) may cause s* to be displaced
from the midpoint of zz by a distance of at most 3W,/2. The position of the
lower side of refined(s) has the same effect. So the distance between s* and the
midpoint of zz is at most 3W. It follows that d(s*,y) < d, + 3W,. By (3.9), we get
d(s*,y) < 460% + 3W,. Starting with triangle inequality, we obtain

d(s,s") < d(s%,y) +d(S,y)

<4507 + 3W, + d(3,y)

(3.5)
< 600; 4+ 3Ws.

Since 0% < 23W; by Lemma 3.4.3, we conclude that d(8,s*) < (1380 + 3)Ws.
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3.5 Homeomorphism

In this section, we prove more convergence properties which lead to the proof that
the output curve of the NN-crust algorithm is homeomorphic to S. For each sample
s, we use s* to denote the center point of refined(s). We briefly review the processing
of the center points. We first sort the center points in decreasing order of the widths
of their corresponding refined neighborhoods. Then we scan the sorted list to select
a subset of center points. When the current center point s* is selected, we delete all

center points p* from the sorted list such that d(p*, s*) < width(refined(s))'/3.

In the end, we call two selected center points s* and t* adjacent if S(3,t) or
S(t,5) does not contain @ for any other selected center point u*. We use G to
denote the polygonal curve that connects adjacent selected center points. Note that
the degree of every vertex in G is exactly two. Clearly, if we connect § and ¢ for
every pair of adjacent selected center points s* and t*, we obtain a polygonal curve
G’ that is homeomorphic to S. Our goal is to show that the output curve of the
NN-crust algorithm is exactly G. Since there is a bijection between G and G’, the

homeomorphism result follows.

Throughout this section, we assume that width(initial(s)) < 1 for any sample s,

which is true for sufficiently large n. There are a few consequences. First, it implies

that y/radius(initial(s)) > radius(initial(s)). Second, since

width(refined (s)) = min{/radius(initial(s)), radius(coarse(s))/3},

we get width(refined(s)) < \/radius(initial(s)) < 1. This implies for any constants
a > b > 0, width(refined(s))® < width(refined(s))®. Lastly, width(refined(s)) >
radius(initial(s))/3.

We need the technical results Lemmas 3.5.1-3.5.6. The proofs of Lemmas 3.5.1,

3.5.3, 3.5.4, and 3.5.5 are given in the appendix.

Lemma 3.5.1 There exists a constant py > 0 such that when n is sufficiently large,
for any two center points p* and ¢*, if d(p, q) < f(p)/2, then Wy < p1 f(p)\/ W) with
probability at least 1 — O(n =0 1/ fmax)y,
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Lemma 3.5.2 Let p* and g* be two selected center points. Then

d(p*,q*) > maX{Wpl/3, qu/?’}.

Proof. Assume without loss of generality that p* was selected before ¢*. Since

q* was selected subsequently, ¢* was not eliminated by the selection of p*. Thus,

d(p*,q*) > W, "* > w,/.

Lemma 3.5.3 When n is sufficiently large, for any two center points z* and y*
such that d(z,79) < f(9)/2 and d(z*,y*) > Wy1/3, the acute angle between z*y* and

Y is O(f(g])Wyl/G) with probability at least 1 — O(n=2" 1/ fmax)),

Lemma 3.5.4 When n is sufficiently large, for any three center points z*, y*,
and z* such that § € S(i,%), d(#,2) < max{f(%)/5,f(2)/5}, d(z*,y*) > W,'*,

and d(y*,z*) > Wyl/3, the angle Zx*y*z* is obtuse with probability at least 1 —
O(nfﬁ(ln” n/fmax)).

Lemma 3.5.5 There exists a constant ps > 0 such that when n is sufficiently

large, for any edge e in G connecting two center points p* and ¢*, length(e) <

,ugf(ﬁ)Wpl/3 + ugf((j)qu/g with probability at least 1 — O(n =0 1/ fmax))

Lemma 3.5.6 When n is sufficiently large, for any two selected center points p*
and ¢* such that p* and q* are not adjacent in G and d(p*,q*) < f(p)/5, there is
an edge e in G incident to p* such that the angle between e and p*q* is acute and

length(e) < d(p*, ¢*) with probability at least 1 — O(n =21/ fmax)),

Proof. Since p* and ¢* are not adjacent in G, there is some selected center point u*
adjacent to p* such that @ lies on S(p,q) or S(q.p), say S(p,q). By Lemma 3.5.2,
d(p*,u*) > wa/? and d(g*,u*) > wa/?. By Lemma 3.5.4, the angle Zp*u*q* is
obtuse with probability at least 1 — O(n=?(n“n/fmax)) Tt follows that Zu*p*q* is
acute and d(p*,u*) < d(p*, ¢*).
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We apply the above technical lemmas to show that the output curve of the NN-
crust algorithm is exactly G. Then this allows us to show that the output curve is

homeomorphic to the underlying smooth closed curve.

Lemma 3.5.7 For sufficiently large n, the output curve obtained by running the

NN-crust algorithm on the selected center points is exactly G with probability at

Q(ln“'J n_l))

fmax

least 1 —O(n~

Proof. We first prove the lemma assuming that Lemmas 3.4.4, 3.5.4, 3.5.5, and 3.5.6
hold deterministically. We will discuss the probability bound later.

Let p* be a selected center point. Let p*u* and p*v* be the edges of G incident
to p*. Without loss of generality, we assume that p lies on S(u, ). By Lemma 3.5.2,

d(p*,u*) > Wpl/3 and d(p*,v*) > Wpl/g.
Let k = 1385 + 3. By Lemmas 3.4.4 and 3.5.5, d(p,u) < d(p,p*) + d(u,u*) +

d(p* u*) < kW, + kWy + pof (3)Wo'> + paf (@)Wa'?, which is less than (f(p) +
f(@))/30 for sufficiently large n. The Lipschitz condition implies that

0.9f(p) < f(u) < L.Lf(p).
So we get

f(p) + f(@)
30

f(p) + f(a)

d(p,u) <

<0.07f(p),  d(p*u’) < < 0.07f(p).

Similarly, we can show that

d(p,v) < 0.07f(p), d(p*,v*) < 0.07f(p).

Let p*¢* be an edge computed by the NN-crust algorithm when it processes
the vertex p*. Assume to the contrary that p*¢* is not an edge in G. If p*q* is
computed in step 1 of the NN-crust algorithm, then ¢* is the nearest neighbor of
p*. So d(p*,q*) < d(p*,u*) < 0.07f(p). By Lemma 3.5.6, there is another edge e in
G such that length(e) < d(p*, ¢*), a contradiction. Suppose that p*¢* is computed
in step 2 of the NN-crust algorithm. As we have just shown, the step 1 of the
NN-crust algorithm already outputs an edge, say p*u*, of G where u* is the nearest
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neighbor of p*. Observe that d(a,0) < d(p,u) + d(p,0) < 0.14f(p) < 0.2f(u). By
Lemma 3.5.4, Zu*p*v* is obtuse. By the NN-crust algorithm, Zu*p*q* is also obtuse.
Since the NN-crust algorithm prefers p*¢* to p*v*, d(p*, ¢*) < d(p*,v*) < 0.07f(p).
By Lemma 3.5.6, G has an edge e incident to p* that is shorter than p*¢* (p*v* too)
and makes an acute angle with p*¢*. The edge e is not p*v* as e is shorter than
p*v*. The edge e is not p*u* as Zu*p*q* is obtuse. But then the degree of p in G is

at least three, a contradiction.

We have shown that each output edge belongs to G. Since the NN-crust algo-
rithm guarantees that each vertex in the output curve has degree at least two, the

output curve and G have the same number of edges. So the output curve is exactly

G.

Since Lemmas 3.4.4, 3.5.4, 3.5.5, and 3.5.6 hold with probability at least 1 —
O(n*Q(lnu "/fmax)), the output edges incident to p* are edges of G with probability
at least 1 — O(n=2("" 7/fmax)) " Since there are O(n) output vertices, the probability

w
In n_q

that this holds for all vertices is at least 1 — O(niQ(fmax )).

Corollary 3.5.1 For sufficiently large n, the output curve obtained by running the

NN-crust algorithm on the selected center points is homeomorphic to the underlying

- (ln“’n

smooth closed curve with probability at least 1 — O(n fmaxfl)).

Proof. We have shown that the output curve is G. Let G’ be the curve obtained by
connecting p and ¢ for each edge p*q¢* of G. G' is homeomorphic to the underlying
smooth closed curve as p* and ¢* are adjacent in G. Clearly, G is homeomorphic to

G’ as there is a bijection between the edges of G and G'.

3.6 Finale

We make use of the lemmas in the previous subsections to prove the key result of

this paper, stated as the Main Theorem in Section 3.2.
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Proof of the Main Theorem. First of all, for any sample s, let W denote the
width of refined(s). By construction, Wy < \/radius(initial(s)). By Lemma 3.3.1,

radius(initial(s)) = O((lnHw )14 f(3)1/2). Thus Wy = O((IHHW )YBF(3)H).

By Lemma 3.4.4, as n tends to oo, for each output vertex s*, d(s*,§) = O(Ws)
with probability at least 1 —O(n =" 7/fmax)) " Since there are O(n) output vertices,

In% n
the distance bounds hold simultaneously with probability at least 1—O(n_9(m —1) )
Next, we analyze the angular differences between the tangents of the smooth closed

curve and the output curve.

Let r*s* be an output edge. By Lemma 3.5.5, with probability at least 1 —
O(n 0”1/ fmax)) e have

d(r*,s*) < paf (FYWP + pa f (3)W]/3, (3.10)

Let £ = 1380 4+ 3. Using the above, the triangle inequality, and Lemma 3.4.4, we get

IN

d(r, 8) d(r,r*) +d(3,s") +d(r*,s") (3.11)

< kW + kW, + paf (FA)W,3 + paf (5)W 3, (3.12)

By (3.10), d(r*, s*) < f(7)/5+f(3)/5 for sufficiently large n. The Lipschitz condition
implies that f(7) < 1.5f(8). So d(r*,s*) < f(5)/2. Thus, Lemma 3.5.1 applies and
yields W, < iy f(3)v/W, with probability at least 1—O(n~?(n* n/fmax)) " Substituting
into (3.12), we conclude that

d(7,8) < psf(3)3w e, (3.13)

for some constant p3 > 0.

Let 6 be the angle between 75 and the tangent at 5. By Lemma 2.2.2(ii), we have

B A ) Rk L
0 < sin 5

. Let 0" be the acute angle between r*s* and 75. By (3.13),
d(7,8) < f(3)/2 for sufficiently large n. Thus, by Lemma 3.5.3, 8’ = O(f(3) 51/6)
with probability at least 1 — O(n=2("* 7/fmax)) for sufficiently large n. We conclude
that the angle between r*s* and the tangent at 5, which is upper bounded by 6 + 6,

is O(f(§)Wsl/6). Since there are O(n) output edges, the angular difference bounds

hold simultaneously with probability at least 1 — O(n _Q(lf[;na:_l)).
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The output curve is homeomorphic to the smooth closed curve by Corollary 3.5.1.

3.7 Summary

We have presented an algorithm to reconstruct polygonal closed curves from noisy
samples drawn from a set of smooth closed curves. The output polygonal recon-
struction converges to the original curve with probability approaching to 1 as n
increases. Although we have assumed that there is only one smooth closed curve in
our analysis for notational simplicity, the analysis can be carried over to the general
case. A straightforward implementation of our algorithm takes O(n?) time. We
view the analysis as our major contribution as it is the first result that deals with
faithful curve reconstruction from noisy samples. Since the analysis is already quite

involved, we did not spend much effort in looking for a faster algorithm.
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3.8 Appendix

Proof of Lemma 3.3.4

A straightforward calculation shows (i).

If S, N coarse(s) consists of more than one connected component, the medial
axis of S, intersects the interior of coarse(s). Since S and S, have the same medial

axis, the distance from § to the medial axis is at most 2 radius(coarse(s)) < 2(5pd +
Y/ F(8)) < 2(500 + 1) f(8) < f(8) by (i), a contradiction. This proves (ii).

Let s; be the point on S, such that §; = 5. The distance d(s;,z) < d(s,z) +

d(s,s1) <500 + Pmr/f(8) +25 < (5pd + tm + 26) f(5). By Lemma 2.2.3, the angle

. .1 d(s1,) s —1 5p0+Ym +24
between the normals at s; and x is at most 2sin T=3)7() < 2sin (1-0) <

2sin"1(0.06) by (i). This proves (iii).
By Lemma 2.2.2(ii), z € cocone(s1,2sin* %) C cocone(s1,2sin"1(0.03)).
This proves (iv).

The distance d(5,2) < d(s,3) + d(s,z) + d(z,2) < 5p6 + Ym\/f(5) + 2§ <
(500 + P +20)f(5) < 0.1f(5). Then the Lipschitz condition implies (v).

< sin }(0.5)

< 2sin £(0.03)—-

Figure 3.11: Tlustration for Lemma 3.3.4.

Consider (vi). Refer to Figure 3.11. Assume that the tangent at s is horizon-

tal. By sine law, sin Zszs) = SSERENE < i as d(s, 1) < 26 and

d(s,z) = radius(coarse(s)). Since radius(coarse(s)) > 2,/pé and p > 5, we have
Zswsy < sin! ﬁ < sin"1(0.5). By (iv), Zs187 > 71— Zswsy — (/2 +sin"1(0.03)) >
7/2 — sin~!(0.5) — sin~1(0.03). Thus, the horizontal distance between s and z is

equal to d(s,z) - sin Zsysz > d(s,z) - cos(sin~1(0.5) + sin=!(0.03)) > 0.8 - d(s, z).

20



Consider (vii). Since y € S, N coarse(s), d(z,y) < 2radius(coarse(s)) < 2(5p0 +
Ym+/ f(5)) which is at most 0.1f(5) by (i). So Lemma 2.2.2(ii) applies and the acute

angle between zy and the tangent at z is at most sin—! % <sin ! %

Since f(#) > 0.9f(3) by (v) and § < 1/(25p?), the acute angle is less than sin ! (1.2(5p6+
¥m)), which is less than sin=!(0.06) by (i).

Proof of Lemma 3.4.1

We first assume that max{2,/pd, 5/ f(5)} < radius(coarse(s)) < 508 + thm/ f(3)
and radius(initial(s)) < m+/f(5). We will take the probabilities of their occur-

rences later into consideration.

Since W, < \/radius(initial(s)) < v@mf(5)"/* and 1, < 0.01 for sufficiently
large n, W < 0.1f(8). This proves (i).

By Lemma 3.3.5, for sufficiently large n, |angle(strip(s))| < 4sin~1(0.06) < «/10.
Since 0 € [—n/10,7/10], 05s = 6 + angle(strip(s)) € [—n/5,7/5] and 65 = 0 for some
6. This proves (ii).

Consider (iii). Let ¢ be a line that is parallel to candidate(s,0) and inside
candidate(s,6). We first prove that ¢ intersects S,. Refer to Figure 3.12. Without
loss of generality, assume that the normal at § is vertical, the slope of candidate (s, 0)
is positive, and £ is below s. Let s; and s5 be the points on Sgr and Sy , respectively,

such that s = $3 = 3. Shoot two rays upward from s; with slopes :I:sinfl(0.03).
Also, shoot two rays downward from sy with slopes 4sin™!(0.03). Let R be the re-
gion inside coarse(s) bounded by these four rays. By Lemma 3.3.4(iv), S, Ncoarse(s)
lies inside R. Let = be the upper right vertex of R. Let y be the right endpoint of a
horizontal chord through s;. Let L be the line that passes through z and is parallel
to £. Let L' be the line that passes through s and is parallel to £. Let z be the point

on L such that sz is perpendicular to L.

We claim that L' is above L and L and L' intersect both the upper and lower
boundaries of R. By Lemma 3.3.4(iv), Zzs1y < sin™!(0.03), so Zzsy < 2sin~1(0.03).

Observe that cos Zsysy = d[l((ssjf;)) < mdius(ffame(s)). Since radius(coarse(s)) > 2,/pd,

cos Lsisy < 1/y/p < 1/4/5 which implies that /s;sy > 7/3. Since Zsjsz =
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< sin*(0.03)

Figure 3.12: Tlustration for Lemma 3.4.1(iii).

Zs18y — Zxsy, we get
Zsysz > /3 —2sin71(0.03) > 7/5 > |6 (3.14)

So L' cuts through the angle between ss; and sz. It follows that L’ is above L. Ob-
serve that L' intersects s;z. By symmetry, L' intersects the left downward ray from

s9 too. We conclude that L and L’ intersect both the upper and lower boundaries

of R.

Since 05| < w/5 and Zszz = Zs1sx— |0, by (3.14), Zszz > m/3—2sin"1(0.03) —
/5 > 0.3. The distance from s to L is equal to d(s,z) - sinZsxzz > d(s,z) -
sin(0.3) > 0.2 - radius(coarse(s)). Recall that ¢ lies below s by our assumption.
The distance between ¢ and s is at most Ws/2 and our algorithm enforces that
Wy /2 < radius(coarse(s))/6. So £ lies between L' and L. Since L and L' intersect
both the upper and lower boundaries of R, so does £. It follows that ¢ must intersect

Sa N coarse(s).

Next, we show that £ intersects S, N coarse(s) exactly once. If not, £ is parallel
to the tangent at some point on S, N coarse(s). By Lemma 3.3.4(iii), the angle
between ¢ and the vertical is at least 7/2 — 2sin~!(0.06) > /5, contradicting the
fact that |6 < 7/5.

Consider (iv). Let £ be a line that is parallel to candidate (s, 6) and passes through
s. By (iii), £ intersects S, at some point b. We first prove that 05 — 0.2]0,] < 7y, <
05s40.2]05|. Let s1 be the point on S, such that § = s7. Assume that the tangent at s
is horizontal, s is above s1, and b is to the left of s. Let C be the circle tangent to S,

at s1 that lies below sy, is centered at z, and has radius f(8) — . By Lemma 2.2.1,
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direction ofcandidate(s,0)

normal atp

tangent atp

Figure 3.13: Ilustration for Lemma 3.4.1(iv).

Sq does not intersect the interior of C. Refer to Figure 3.13(a). Let sa be a tangent
to C that lies on the left of . We claim that Zasxz > |0s|. Otherwise, d(s,z) >
d(a,z)/sin(n/5) = (f(5) — §)/sin(x/5) > f(5) +§ > d(s,z), a contradiction. So
sb lies between sa and sz. Let sr be the extension of sb such that r lies on C.
We have d(a,s) = \/d(s,2)? —d(a,2)? < /(f(3) +0)?2 = (f(3) — )2 = 2,/0f(3).
Thus, d(r, s) < d(a,s) < 21/6f(3). Observe that

Ldlrys) -sinl6y| _ ) 2/00G) - 16y
) )

Zrrs =sin~

Since 0 < 1/(25p?) and |0;| < 7/5, we have

2V/0f(3) 105 _ 2V/0f(3) - 16| _ 28105  _2Vo-16| _ oo (3.15)

d(r,z) fE =0 IE-6/VFE) T 10
Combing (3.15) with the following fact
<06 = sin 'z <11z, (3.16)
we get Lrxs < 22y oI )10 W. Since d(b,s1) < d(r,s1) = d(r,z) - 2sin £ we get

d(b,s1) < d(r,z) - Lrxs < 2.24/0f(3) - |0s].
53



Let 7' be the acute angle between the normals at b and s;. By Lemma 2.2.3,

v < 2sin ! AL < oin 1 22V < gy 1 220000 By (3.15) and (3.16), we

conclude that 7' < % < 0.2|05]. Tt follows that

Os — 0.2/05] <O — v <y <05 +9" <05 +0.2]0].

Next, we prove the upper and lower bounds for v, for any point p € S, N
candidate (s, 6). Let n be the acute angle between bp and the line that passes through
b and is perpendicular to candidate (s, ). See Figure 3.13(b). By Lemma 3.3.4(vii),
the acute angle between bp and the tangent at b is at most sin=!(0.06). It follows
that 7 < v, +sin='(0.06) < 6, +0.2|6,| +sin~'(0.06) < 1.2(r/5) +sin~'(0.06) < 0.9.
Thus,

d(b,p) < UL < 0.9W,.
2 cosn

Note that Wy < radius(coarse(s))/3 < (500 +1m ) f(5)/3, which is less than 0.02f(5)
by Lemma 3.3.4(i). Also, by Lemma 3.3.4(v), f(p) > 0.9f(5). It follows that

d(b,p) < 0.9W, < 0.02f(p). (3.17)

So we can invoke Lemma 2.2.3 to bound the angle v between the normals at b and
p:

d(b’p) < 2 co—1 OQWS _ S 2Sin71

" int —2% sin T —— %
N - a/G) )

By (3.17), W,/ f(p) < 0.03. So by (3.16), we get v < 2.2W,/f(p). Since f(p) >
0.9f(3), we conclude that v < 3W/f(8). This implies that

05 — 0.2]0s| —3Ws/f(3) < —7" < < m+7" <0 +0.2|05] + 3W/f(3).

Finally, we have proved the lemma under the conditions that max{2,/pd, 45/ f(5)} <

radius(coarse(s)) < 5pd + m+/f(8) and radius(initial(s)) < ¥m+/ f(5). These con-
ditions hold with probabilities at least 1 —O(n~ 00" 7/ fmax)) by Lemmas 3.3.1, 3.3.2,
and 3.3.3. So the lemma, follows.
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Proof of Lemma 3.4.2

Let ¢ be the acute angle between uv and the tangent to S, at u. Let 1 be the acute
angle between uv and the direction of candidate(s,6). By Lemma 3.3.4(vii), ¢ <
sin~1(0.06). Son > 7/2—y,—¢ > 1 /2—7,—sin"1(0.06). By Lemma 3.4.1(i), (ii), and (iv),

0 > 7/2-1.2(r/5)—3(0.1)—sin~1(0.06) > 0.4. Thus, d(u,v) < MM < )

3 width(H). This proves (i).

Consider (ii). Note that W, < radius(coarse(s))/3 < (5pd + ) f(3)/3. So by
(i), d(u,v) < 3W, < (500 + 1) f(5). By Lemma 3.3.4(i) and (v), 5pd + ¥, < 0.05
and f(u) > 0.9f(8). It follows that

d(u,v) < 0.061(i). (3.18)

Thus, we can invoke Lemma 2.2.3 to bound the angle ¢ between the normals at u

and v:

d(u,v) < 2in-! 3 width(H) < 95in-! 4 width(H)

(1—a)f(u) ~ 0.9(1 — ) f(3) f(8)
Since 4 width(H)/f(3) < 4Ws/f(5) which is at most 0.4 by Lemma 3.4.1(i), we can
apply (3.16) to conclude that £ < 9width(H)/f(5) < 9width(H). This proves (ii).

¢ <2sin”!

Finally, by (3.18), we can invoke Lemma 2.2.2(ii) to bound the acute angle

between uv and the tangent at u. This angle is at most sin~! % which is less
than £/2.

Proof of Lemma 3.5.1

We prove the lemma by assuming that Lemma 3.3.1, 3.3.2, and 3.3.3 hold determin-
istically. The probability bound then follows from the probability bounds in these
lemmas. For i = p or ¢, let R; = radius(coarse(i)) and let r; = radius(initial(i)).
The Lipschitz condition implies that f(p)/2 < f(¢) < 3f(p)/2. Let h and m be the

constants in Lemma 3.3.1.

Suppose that W), = ,/r,. By Lemma 3.3.1, we have

Mv/T@) _ \/ P /F5)
3 3m

)

Wp:\/ﬁz\/



Note that W, < ,/rg and rq < /14, f(¢) by Lemma 3.3.1. So we get

42mf 63m+\/F () 63

Suppose that W), = R, /3. First, since R, > 2,/pd by Lemma 3.3.3, we get pd <
3y/PWp/2. Second, W), = R, /3 > rp/3 which is at least A/ f(p)/9 by Lemma 3.3.1.

So we get \/ Anf(B) = VmIf(B)/h < 3/mW,/h - f(p)/* < 3/mW,[h - f(p

Finally, since W, < R,/3, by Lemma 3.3.2, we get

500 T4, f(q
P f(q)

Wo = =57 3
< 58 A f (D)
3 3
5/ pW, 21m
< WO 2 1(5).

Proof of Lemma 3.5.3

We prove the lemma by assuming that Lemmas 3.4.4 and 3.5.1 hold deterministically.
The probability bound then follows from the probability bounds in these lemmas.

We translate z*y* to align y* with §. Let z denote the point z* + § — y*. Let
k = 1385+ 3. By triangle inequality and Lemma 3.4.4, d(z, z) < d(z*,z)+d(y*,9) <
kW, + kW,,. Since d(Z,9) < f(§)/2, by Lemma 3.5.1, W, < uf(4)/Wy. So
d(z, z) < kpy f(§)\/Wy+kW,, which is smaller than Wl/3 < d(z*,y*) for sufficiently
large n. Thus, Zz is not the longest side of the triangle Zyz. It follows that ZZyz

is acute. Since d(Z,z) is an upper bound on the height of z from Zgy, we have

Zijz < sin~! ZE‘;:;% = sin! d?:z(zf:zz/z) < sin Hkuf(§)W, /6 + kW;/3). We conclude
that Zzyz is O(f(gj)Wyl/G) as n tends to co.
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Proof of Lemma 3.5.4

We first show that d(z,2) < min{f(%)/4, f(2)/4}. Assume that d(z,2) < f(z)/5.
By the Lipschitz condition, we have f(Z) > 4f(z)/5. Therefore, d(z,2) < f(z)/5 <
f(2)/4.

Let D be the disk centered at Z with radius f(z)/4. Observe that S(z,2) lies
completely inside D. Otherwise, the medial axis of S intersects the interior of D
which implies that f(z) < f(z)/4, a contradiction. So d(Z,y) < f(Z)/4. The
Lipschitz condition implies that f(y) > 3f(z)/4.

We claim that the angle ZzyZ is obtuse. The line segments £y and gz are parallel
to the tangents at some points on S(Z,7) and S(g, 2), respectively. Lemma 2.2.3

implies that Z7§2 > 7 — 4sin™! ad%;gm =1 —4sin'(1/4) > 7/2.

Since d(Z,9) < f(2)/4 < f(y)/3, by Lemma 3.5.3, the angle between z*y* and
&7 is negligible with probability at least 1 — O(n~2I0* "/fmax)) a5 n tends to co. A
symmetric argument shows that the angle between y*z* and ¢z is negligible with

probability at least 1 —O(n 200 7/ fmax)) ag n tends to co. Thus, Zz*y*z* converges

to Z2gyZz which is obtuse.

Proof of Lemma 3.5.5

Note that p* and ¢* are adjacent and they are selected by the algorithm. Let
k = 1385 + 3. Let D, be the disk centered at p* with radius (1 + kuyf(5))W,’".
Let D, be the disk centered at ¢* with radius (1 + kmf(cj))qu/S. By Lemma 3.4.4,

d(p,p*) < kW), which is less than Wpl/3 for sufficiently large n. So p lies inside Dy,

Similarly, ¢ lies inside Dj.

If D, intersects D, then d(p*,¢*) < (1 + ulf(ﬁ))Wpl/3 +(1+ ulf(q”))qu/3 and
we are done. Suppose that D, does not intersect D,. We claim that S(p,q) N D,
is connected. Otherwise, the medial axis of S intersects the interior of D, which
implies that f(p) < radius(D,) which is less than f(p) for sufficiently large n, a
contradiction. Similarly, S(p, ¢) N D, is connected. It follows that S(p, §) — (Dp,UD,)

is also connected. There are two cases.
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Case 1: S(p,q) — (Dp U D) does not contain @ for any sample u. Let y be the
endpoint of S(p,q) — (Dp U Dy) that lies on D,. Let h be the constant in
Lemma 3.3.1. Take a Ap-partition such that y is the first cut-point. Since
S(p,q) — (Dp U Dy) does not contain @ for any sample u, by Lemma 2.3.6(i),
S(p,q) — (DpUD,) does not contain S(y, c;), where ¢; is the second cut-point,
with probability at least 1 — O(n~20n“ ")), Tt follows that

|5(5,G) — (Dp U Dg)| < N f (y)- (3.19)

Since d(p,y) < 2radius(D,) = 2(1 + kuyf(5))W,/>, d(B,y) < f(5)/2 for

sufficiently large n. Thus, f(y) < 3f(p)/2, so A2 f(y) < 3X2f(p)/2. Since
W, > radius(initial(p))/3 which is at least A\p\/f(p)/9 by Lemma 3.3.1, we
have A} f () < 243W,; /2. Substituting into (3.19), we get

1S(P,q)| < 243W} /2 + 2radius(D,) + 2radius(D,).

By Lemma 3.4.4, d(p,p*) < kW, and d(q,q*) < kW,. We conclude that

d(p*,q*) < d(p,p*) +|S(F, @) + (G, q") < paf (BYWp"* + pa f (G W, for some
constant g > 0.

Case 2: S(p,G) — (Dp U D,) contains 4 for some sample u. We show that this case
is impossible if Lemmas 3.5.1 and 3.5.4 hold deterministically. It follows that
case 2 occurs with probability at most O(n 00"/ fmax))  We first claim that

d(p*,u*) > Wp1/3. If not, Lemma 3.5.1 implies that W, < uyf(p \/_ for
sufficiently large n. But then d(p*, ) < d(p*,u*) + d(a,u*) < 1/3 + kW, <
Wy 1/3 + kpi f(p \/_ This is a contradiction as @ lies outside D,. Similarly,
d(g*,u*) > Wy 1/3 8o u* is not eliminated by the selection of p* and ¢*.

Next, take any selected center point z* different from p* and ¢* such that

G € S(u,z). We show that u* is not eliminated by the selection of z*. Assume

to the contrary that this is false. So d(u*,z2*) < Wl/?’. By Lemma 3.5.1,

Wy < p1f(2)V/W, for sufficiently large n. Let ¥’ = 1 + k + kuy. Then
(i, 2) < d(u*, 2*) +d(2*, 3) +d(u*, i) < WP L kW, + kW, < WP + kW, +
ki f2) VW, < K f(2)W. W3, For sufficiently large n, k'f(2)W. w3 < f(2)/5.
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By Lemma 3.5.4, the angle Zu*q*z* is obtuse. It follows that d(q*,2*) <
d(u*, z*) < Wzl/3, contradicting Lemma 3.5.2.

Symmetrically, we can show that »* is not eliminated by any selected center
point z* different from p* and ¢* such that p € S(Z, ). In all, our algorithm

should select another center point u* such that @ € S(p, q) — (D, U Dg). This

contradicts the assumption that p* and ¢* are adjacent in G.
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CHAPTER 4

DETERMINISTIC NOISE MODEL FOR
SURFACES

In this chapter, we extend and improve the noise model in Chapter 2 to surfaces in
three dimensions. We use S to denote the smooth closed surface and P to denote
the set of noisy sample points from S. The noise amplitude of P is the maximum
of the distances from P to the surface S. We denote the noise amplitude of P to S
by 4.

First, we introduce some basic notations and some basic geometric lemmas in
Section 4.1. In Section 4.2, we present a deterministic noise model for surfaces. In
Section 4.3, we justify this deterministic model using a variant of the probabilistic
noise model defined in Chapter 2. Note that the proofs of some technical lemmas

are given in the appendix of this chapter.

4.1 Preliminaries

Recall that the medial axis of S is the set of centers of empty balls that touch S
at more than one point, and for any pint x € S, the local feature size f(x) is the
minimum distance from z to the medial axis of S. We assume that mingeg f(z) =1
for convenience. So for any x € S, f(z) > 1. We suppose the noise amplitude § < 1

as we only consider noise of first type.

For any a € [—4,0], S (resp., S, ) is the collection of points in R* that lie
outside (resp., inside) S and their distances from S are exactly a. We use S, when
it is unimportant to distinguish between inside and outside. Note that S, and S

have the same medial axis. We use S to denote the set of points sandwiched between
S;' and Sy .
Given two objects A and B, we use d(A, B) to denote the minimum distance

between A and B. Given two coplanar vectors/lines in 3D, the plane spanned by

60



them is the plane that contains them. Given two vectors, lines, or planes A and B
in 3D, we use Z(A, B) to denote the smallest angle between them. If A and B are

disjoint, we translate one of them to measure Z(A4, B).

For each point p € S,, we use n, to denote the outward unit normal of S, at p,
and T}, to denote the tangent plane of S, at p. We use p to denote the point on S
such that d(p, p) = a. Note that n, and n; have the same support line, and T}, and
T; are parallel. We use B(p, d) to denote a ball centered at p with radius d.

We state three geometric lemmas that will be useful later. Their proofs can be

found in the appendix.

Lemma 4.1.1 Any point p on S, has two tangent balls with radii f(p) — o whose

interior do not intersect S,.

The next lemma follows from results in [2, 29]. It basically says that the neigh-

borhood of any point on S, is fairly flat, and the normal varies slowly.
Lemma 4.1.2 Assume that 6 < 1/6. Let p,q € S, be two points.

(i) Ifd(p.q) = X(f(p)—0) for some A < 1, then d(q,T,) < d(p,q)* and Z(pq,Tp) <
arcsin(d(p, q)).

(it) If d(p,q) = Amin{f(p) — 0, f(§) — 0} for some X\ < 1/5, then Z(np,ng) <
3d(p, q).-

The following lemma shows that the distance between nearby points on S are

preserved in S, up to a constant factor.

Lemma 4.1.3 Assume 6 < 1/10. Let p,q € S, be two points such that d(p,q) = d
for some d < 1/5. Then d/2 < d(p,q) < 3d/2.

4.2 Sampling and noise model

Let w be a fixed positive constant (we think of it as very small). We assume that
the set P of noisy samples satisfies the following conditions.
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There exists parameters 0 < e < € < €1 < 1 depending on n such that

(i) e1 = 0 as n — oo,

(ii) €1 = O(e), €2 = Q(e°) for some constant ¢ > 1.
and for any point p € S, we have

(i) [B(p,e)n Pl =1,
(ii) |B(p,e1) N P| > 2In“n,

(iii) [B(p,e2) N P| < iIn“n.

w

In Theorem 4.3.1, specifically, we can prove that for e = ©({/ %), €1 =0O(¢{ lnT")

and ey = @(\/%), our deterministic model is satisfied with high probability by

a set of sample points generated according to a uniform distribution. In a sense,
the parameters €, €1, €5 measure the “sampling density”. It would be nice that the
three parameters collapse to a single one (with some appropriate adjustment in the
conditions), but our analysis in the justification is not strong enough to do so. It
is also more natural that e = Q(¢e), but we can only justify our model for ¢ > 3/2.
Therefore, we will assume throughout this paper that e; = Q(e/2). We remark that

our algorithm does not know the values of €, €1, €2, and the noise amplitude 4.

4.3 Justification

Consider generating the noisy samples using the following random process. First,

points are drawn from S according to a uniform distribution. That is, the probability

area(A)
area(S)

of drawing a point from a region A is equal to . Second, each point z drawn is
perturbed uniformly within a line segment with width 24, centered at z, and aligned
with n,. Moreover, the distribution of each sample point is independently identical.
A similar model was used in the curve case in Chapter 2. Our goal is to prove that
the samples generated by the above random process satisfy our deterministic model

with probability at least 1 — exp(—(In® n)).
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For any constant k& > 0, let \; denote ¢ % Note that 0 < A < 1 for
sufficiently large n. Let s be a point on S,. Let R; C S, denote the patch {p €
Sa 1 d(p,s) < Ag}. Let Ry C S, denote the patch {p € S, : d(p,s) < )\2/2}. The
Ag-cell at s is the union of line segments with midpoints on Ry, normal to Ry, and
with length 2A;0. Note that the Ag-cell may not lie completely inside S, but at least
half of it on one side of R; does. The Ag-rod at s is the union of line segments with
length 2, inside S, and normal to some point in Ry. The following two lemmas

bound the sizes of a Ag-cell and a A-rod.
Lemma 4.3.1 The Ag-cell at a point s lies inside B(s,2\g).

Proof. Assume that s € S,. Let C denote the Ag-cell at s. Let p be any point in C.
Let ¢ be the projection of p along the normal to S,, i.e., p = ¢G. Then d(p,q) < \xd
and d(g, s) < A\g. Thus d(p, s) < d(p,q) +d(g,s) < A\ + A < 2).

Lemma 4.3.2 The Ai-rod at a point s contains B(s, Ai/2/4) ns.

Proof. Let C denote the A\i-rod at s. Let p be a point in B(s, )\z/2/4) NS. Assume
that p € S,. Let s’ denote the projection of s onto S, along the normal direction.
Clearly d(s',s) < d(s,p) < )\z/2/4. Thus d(s',p) < d(s',s) + d(s,p) < Ai/2/2.
Assume that s € Sg. Let p’ denote the projection of p onto Ss along the normal
direction. By Lemma 4.1.3, d(s,p’) < 2d(s',p) < )\iﬂ. Thus p’ € C' N Sp, which

implies that p € C'N S,.

We give a highlight of our proof. We first upper and lower bound the probabilities
of a sample appearing in the A\g-cell and Ag-rod at s. Based on these probability
bounds, we can show that the number of samples inside the A\;-cell at s is essentially
©(In¥ n) with high probability. The same holds for the Az-rod at s. By setting €
and ey appropriately, we then show that the Ag-cell lies inside the ball B(s, ;) and
the ball B(s,e€2) lies inside the Ag-rod. Hence the conditions in our deterministic

noise model are satisfied. We give the details of the proof below.
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The next technical lemma, follows from the fact that a small neighborhood of

any point on S, is fairly flat.

Lemma 4.3.3 Assume that r < (1 — 0)/20. Let p be a point on S,. Let'Y be
the infinite cylinder with radius r and azis aligned with n,. Then the area of the

connected component in' Y N S, containing p is O(r?).
Next, we bound the probability of a sample appearing in the Ag-cell and Ag-rod.

Lemma 4.3.4 Let C be the Ap-cell or Ai-rod at a point s € S. Assume that n is
so large that A\, < 1/4. Then for any sample p, ng)\i <Pr(pe )< m)\% for some

constants k1 and K.

Proof. Consider the case that C' is a A\g-cell. Assume that s lies on S,. Let RC S
denote the patch {Z : x € CNS,}. Project R orthogonally onto the region R’ on the
tangent plane T at 5. Take a point ¢ in the boundary of C N S,. Let ¢’ denote the
orthogonal projection of ¢ onto Ts. By definition, d(s,q) = A\x. Then Lemma 4.1.3
implies that Ag/2 < d(3,q) < 2.

Clearly, d(3,q') < d(3,q) < 2\;. Thus R’ lies within the disk on Tj centered at
§ with radius 2\;. Then by Lemma 4.3.3, area(R) = O(A7). On the other hand,
d(5,q") = d(8,q) cos £(q8,T5) > A\p/2-cos £(G83,T;). By Lemma 4.1.2(i), £(¢$,T;) <
arcsin(d(s, q)) < 2d(s,q) < 4\. Since A, < 1/4 by assumption, Z(G5,T;) < 1. So
cos Z(48,Ts) > cos(1) > 1/2. This implies that d(3,q') > A\¢/4. Thus R’ contains
a disk on T; centered at § with radius A\;/4. Combining with the previous upper

bound, we conclude that area(R) = ©(\2).

The probability of drawing a point from R is thus ©()?)/area(S). The probabil-

A Ak

ity that the perturbation throws the point drawn from R into C is at least 35~ = =,

and at most % = M. It follows that for any sample p, Pr(p € C) = ©O()\3), as-

suming that area(S) is an intrinsic constant for S.

Now consider the case that C is a Ag-rod. We also let R C S denote the patch
{Z : 2 € CN S,}. By the definition of a A\g-rod and an argument similar to the

one in the above, we can show that area(R) = ©(A}). Then the probability of a
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sample falling inside C' is same as the probability of drawing a point from R, which

is area(R)/area(S) = O(A3}).

Next, we bound the number of samples inside the Ag-cell and Ag-rod in Lemma 4.3.6.
The following Chernoff bound [32] stated in Lemma 4.3.5 will be needed for doing
that.

Lemma 4.3.5 Let the random wvariables X1, Xo,... ., X, be independent, with 0 <
Xi <1 for each i. Let S, = Y7 Xi, and let E(S,) be the expected value of

Sn. Then for any o > 0, Pr(S, < (1 —0)E(Sy)) < exp(—%), and Pr(S, >

(1+ 0)B(Sy)) < exp(— 5250,

Lemma 4.3.6 Assume that n is so large that Ay, < 1/4. Let C be a Ai-rod or \-cell

at a point s € S. Let k1 and ko be the constants in Lemma 4.5.4.

(i) C' is non-empty with probability at least 1 — exp(—Q(In“ n)).

(1) For any constant k > k1k, the number of samples in C is at most kIn“ n with

probability at least 1 — exp(—Q(In® n)).
(11i) For any constant k < Kok, the number of samples in C' is at least k1n* n with

probability at least 1 — exp(—Q(In® n)).

Proof. Let X;(i = 1,...,n) be a random binomial variable taking value 1 if the
sample point s; is inside C, and value 0 otherwise. Let S, = >, X;. Then

E(Sy,) =Y., E(X;) =n-Pr(s; € C). This implies that

E(Sy) < kinA} = k1kIn“n, and

E(Sy) > /‘CQTL}\% =Kok In“n
By Lemma 4.3.5,

Pr(S, <0) = Pr(S, <(1—-1)E(S,))




Consider (ii). Let 0 = £ — 1 > 0. We have
1
kIn“n = knA}(1 4+ 0) > (1 4+ 0)E(S,).
By Lemma 4.3.5,

Pr(S, > kln“n) < Pr(S, > (1+0)E(Sy))

o?E(S,)
2+2a/3)

= exp(—Q(In“n)).

VAN

exp(—

Consider (iii). Let 0 =1 — - > 0. We have
2
kIn“n = konA} (1 —0) < (1 — o) E(Sn).
By Lemma 4.3.5,

Pr(S, < kIn“n) < Pr(S, < (1—-0)E(Sy,))
_UQE(Sn)

VAN

exp(

= exp(—Q(In“n)).

We are ready to prove that the random process produces samples that satisfy

our deterministic model with high probability.

Theorem 4.3.1 Let X be n points on S that are drawn uniformly. For each x € X,
define py = x + azng, where ay is drawn uniformly and independently from [—0, d].
There exists €,€1,€x such that {p, : * € X} satisfy our deterministic model with

probability at least 1 — exp(—Q(In* n)).

Proof. Choose two constants ¢ and b such that 2 < koa and % > k1b. We prove
the theorem for € = 2Ay, ¢ = 2A,, and €3 = AZ’/2/4. First of all, it is clear that
e1 = O(e) and e; = Q(e%/?). For convenience, we use “with high probability” to
mean “with probability at least 1 — exp(—Q(In“ n))”.
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Let p be a point in S. Let C be the Aj-cell at p. By Lemma 4.3.6(i), C contains
a sample with high probability. By Lemma 4.3.1, C lies inside the ball B(p,2X\;) =
B(p,€). Thus |B(p,e) N P| > 1 with high probability.

Let Cy be the Ag-cell at p. By Lemma 4.3.6(iii), C contains at least 2In“n
samples with high probability. By Lemma 4.3.1, C; lies inside the ball B(p,2X,) =
B(p,€e1). Thus |B(p,e1) N P| > 21In“ n with high probability.

Let Cy be the A\j-rod at p. By Lemma 4.3.6(ii), Cy contains at most %ln“’n

samples with high probability. By Lemma 4.3.2, the ball B(p, \Y/*/4)NS = B(p, )N
S lies inside Cy. Thus |B(p,e2) N P| < %ln“’ n with high probability.

67



4.4 Appendix

Proof of Lemma 4.1.1

Let M, be the medial ball of S, touching a point p € S,. By the definition of S,,
there is a medial ball M of S touching p such that M and M, have the same center
and radius(M,) = radius(M) —a > f(p) — a. Let B be a ball of radius f(p) — « that
touches S, at p. If S, intersects the interior of B, the medial axis of S, intersects

the interior of B. But then radius(M,) < radius(B) = f(p) — a, a contradiction.

The next lemma consists of a lemma by Giesen and Wagner [29] and a lemma

by Amenta and Bern [2].
Lemma 4.4.1 Let p,q € S be two points.

(i) If d(p.q) = M(p) for some A < 1, then d(q,Ty) < %f(p) and L(pg,Ty) <

arcsin(3).

(it) If d(p,q) = Amin{f(p), f(q)} for some X < 1/3, then Z(ny,n,) < ﬁ

We are ready to prove Lemmas 4.1.2 and 4.1.3.

Proof of Lemma 4.1.2

Let f, denote the local feature size function for any point on S,. As S and S, share

the same medial axis, f,(p) > f(p) — 0 > 1/2 for any point p € S,.

Consider (i). We have d(p,q) = Bfa(p) for some 3 < \. Lemma 4.4.1(i) implies
that

IN

B fa(p)/2
= d(p,9)*/(2fa(p))

< d(p,q)*.

d(anp)

And Z(np,n,) < arcsin(g) < arcsin( d}f’(‘;))), which is at most arcsin(d(p, q)).
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Consider (ii). Let g denote min{f(p) — 0, f(¢) — d}. We then have

d(p,q) = Bmin{fa(p), fa(q)}

for some f < A <1/5. Lemma 4.4.1(ii) implies that

Z(np,nq) < /6/(1_3/6)
< d(p,q)/((1 —3P)g).

Note that g > 1—46 > 5/6 and 1 — 38 > 2/5. So (1 —38)g > 1/3, which implies
that Z(np,ng) < 3d(p, q).

Proof of Lemma 4.1.3

Let r be the point p+ (¢—¢). W.l.o.g., assume that Zppr < Zprp. By Lemma 4.1.2,
Zppr < 3d. Therefore, Zjrp > /2 — 3d/2. By sine law, d(p,r) = 2snien
7(305%53/2). Since § < 1/10 and cos(3d/2) > cos(3/10) > 0.9, we have d(p,r) < d/2.

By triangle inequality,

d(p,q) < d(q,7)+d(p,r)
= d(p,q) +d(p,r)
3d/2.

IN

Similarly, d(p, q) > d(q,r) — d(p,r) > d/2.

We need the Lemmas 4.4.2, 4.4.3, and 4.4.4, to prove Lemma 4.3.3.

Lemma 4.4.2 Let p € S, be a point. Let k and d be constants such that k > 2

and kd < 1/20. Let £ be a line such that d(p,?) < d and Z(np,¢) < w/4. Then £
intersects So N B(p, kd) at exactly one point.

Proof. Let C = S, N B(p,kd). We first show that ¢ intersects C. Suppose not.

Translate ¢ towards p until £ touches C' at some point q. We claim that ¢ € int(C).

By this claim, £ is tangent to S, at q. Observe that n, lies on the plane through

g and orthogonal to £. This implies that Z(n,,ng) > 7/2 — Z(ny, £) > m/4, which

contradicts Lemma 4.1.2(ii). We now prove the claim. Suppose that ¢ € 9C. Then
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q lies on the boundary of B(p,kd) and between the medial balls at p. Refer to
Figure 4.1. Let £, be the support line of n,. Let ¢ be the projection of ¢ onto
the plane containing £, and ¢. Starting with Lemma 4.1.2(i), we have Z(pq,T,) <
arcsin(kd) < 1/10 as kd < 1/20. Also, Z(¢p,¢') < Z(¢p,¢) < 7/4. Thus

Llpg,t') = /2= Lty l') — £L(pq. Tp)

> w/4—1/10.

But then d(p,£) > d(p,¢') = kdsin Z(pgq,¢') > d as k > 2 and sin(r/4—1/10) > 1/2,

a contradiction.

B(p.kd

Ip

Figure 4.1: Tllustration for the proof of Lemma 4.4.2.

Next, we show that £ intersects C' at exactly one point. Suppose that there are
two points z,y € £ N C. Note that d(z,y) < 2kd. By Lemma 4.1.2(i), Z(zy,T,) <
arcsin(2kd) < 1/5 as kd < 1/20. So Z(ng,¢) > w/2 — 1/5, which implies that
£(ng,ny) > m/4—1/5> 3kd as kd < 1/20. This contradicts Lemma 4.1.2(ii).

Lemma 4.4.3 Assume that 6 < 1/2. Letp € S, be a point. Let d < 1/20. LetY be
the infinite cylinder with radius d and axis aligned with n,. Let C' be the connected
component of Y NS, containing p. Let H be a plane passing p and n,. Then CNH

s a curve segment, and C is a topological disk.

Proof. First, we show that C' C S, N B(p,2d). Consider any point ¢ on C. Observe
that the two balls of radius 1 — 0 tangent to S, at p do not intersect S,\{p}. Asd
is less than the radius 1 — ¢ of the two balls, it is clear that Z(pg,T,) < 7/4, which
implies d(p, q) < 2d.
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By Lemma 4.4.2, ¢ intersects S, N B(p,2d) at exactly one point. Since C' C
SoaNB(p,2d), ¢ intersects C with at most one point. Suppose ¢ does not intersect C.
Then we can translate £ toward n,. At some point, ¢ will be tangent to some point
z on C, which means n, — n,. However, we can prove that n, and n, make an acute
angle, which then leads to a contradiction. As d(p, z) < 2d and by Lemma 4.1.2(ii),
Z(np,n;) < 3d(p,z) <6d <m/2. So¢NC is exactly one point. Therefore C N H is

a curve segment, and C' is a topological disk.

Lemma 4.4.4 Let p be a point on S,. Let H be a plane passing through p making
an acute angle with ny. Let curve Fy = So N H. Then the radius of curvature of Fy,

at p is at least (f(p) — 6) cos Z(ny, H).

Proof. By Lemma 4.1.1, there are two tangent balls By, By of S, at p of radius
f(p) — 0 that do not intersect S,\{p}. We show that there are two tangent disks
Dy, Dy of F, at p of radius (f(p) — 0) cos Z(np, H) that do not intersect Fy,\{p}.

Consider the plane H' containing n, and the normal to H. Consider the cross-

section of everything on H' in Figure 4.2. Let D; = By N H. As B; does not

=

Figure 4.2: Tllustration for the proof of Lemma 4.4.4.

intersect So\{p}, D1 does not intersect F,\{p}. Let = and y be the centers of B;
and Dy, respectively. As xy — py, radius(D1) > d(p,y) = (f(p) — 0) cos Lzpy =
(f(p) — d)cos L(ny, H).

Now we can do the proof for Lemma 4.3.3.
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Proof of Lemma 4.3.3

First we establish the lower bound. Let H be a plane that contains the normal to
S, at p. Consider any point ¢ € S, NY N H. Let C be the connected component
of S, N'Y containing p. Let D be the projection area of C' onto T),. As C'is a
topological disk by Lemma 4.4.3, D is a disk. Thus area(C) > area(D) > 7r2.

Then we will establish the upper bound. The radius of curvature at any point
g on C is at least 1 — 6. Consider the projection of C' onto T},. Let .J be the curve
segment H N C according to Lemma 4.4.3. Refer to Figure 4.3: H N7}, is the z-axis,

y

Figure 4.3: Tllustration for the proof of Lemma 4.3.3.

and n, is the y-axis. Let ¢ be any point on J, and let ¢ be its projection onto T,.
By Lemma 4.1.1, there are two tangent disks of J at p on H of radius R =1 — «
at p. As r <R, it is clear that Z(pgq,T,) < m/4, which implies d(q,t) < d(p,t) < r.
Thus d(p,q) < v2r < 3r/2. Then by Lemma 4.1.3, d(p,§) < 2d(p,q) < 3r. By
Lemma 4.1.2(ii), Z(ny.ny) < 97 < 9/20 < 7/6, which implies Z(n,, H) < 7/6
as n, lies on H. By Lemma 4.4.4, the radius of curvature of J at ¢ is at least
(1 —6)cosZL(ng, H) > (1 — d)cosn/6 = M, which means the curvature k(q)

of any point on J is at most 7 Let v be the angle between the tangent of

2

(1-0)°
J at ¢ and the horizontal. Let s be the arc length along J from p to ¢. Then as
ds = (i)

dy = k(q)ds = k(q) secydzx < sec ydx.

2z
V3(1-9)

V3(1-9)
2

So ‘/5(575) cos ydy = dx. Thus by doing integration on both sides,
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: : : : 2z 2r 2 1—-6
which implies siny < 7301-0) < 730-0) and cosvy > \/; as r < S5 Therefore,

ds = secydx < \/gdx.

Suppose H' is the plane obtained by rotating H through an angle df around n,
(i.e. the y-axis in Figure 4.3 and Figure 4.4). Let J' be the curve segment H' N C.
Suppose Y’ be a smaller cylinder concentric to Y and passing through a point g on
J. Let ¢’ be the intersection point J' NY’. Refer to Figure 4.4. The arc length dt
from ¢ to ¢’ along the boundary of Y’/ N C is approximately d(q, ¢').

y

xde

Figure 4.4: Tllustration for the proof of Lemma 4.3.3.

Consider another plane @) passing through ¢ and ¢’ and perpendicular to T},. Let
¢" be the line through ¢’ perpendicular to T,. Let ¢” be the projection of ¢ onto ¢'.
Now dt =~ d(q,q') = d(q,q")sec £¢'qq" = zdfsec Zq'qq". By Lemma 4.1.2 (i) and

since dt is very small,

Zdqd" = Z(ad\Tp)
< Z(ad' Ty) + £(Ty, Tp)
< arcsin(d(q,q")) + Z(np, ng)
< 2dt+ Z(np,ng)
< 7/6.

Thus dt < zdf sec g = %xdﬁ.

Refer to Figure 4.5. The surface area of C'is [ [dsdt < ff(\/gdx)(%xdﬂ) <
for 027|' ﬁxdediﬁ = fOT 2\/§7T$d$ _ [\/571'312]6 _ \/57'(7"2.
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Figure 4.5: Tllustration for the proof of Lemma 4.3.3.
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CHAPTER 5

SURFACE RECONSTRUCTION

In this chapter, we will present an algorithm to reconstruct polygonal closed surfaces
from noisy samples P obtained from a set of smooth closed surfaces. We assume P
satisfies the conditions of the deterministic noise model as defined in the previous
chapter. We show that the output polygonal reconstruction by our algorithm is

faithful to the original surface S when n = |P| is large enough.

Our surface reconstruction algorithm is described in section 5.1. Then we give
an overview on the analysis of our faithfulness proof in Section 5.2, and we give the
details of the analysis in Section 5.3, 5.4 and 5.5. We summarize in Section 5.6.

Note that the proofs of some technical lemmas are given in the appendix.

5.1 Algorithm

Similar to the framework for the curve reconstruction algorithm in Chapter 3, our al-
gorithm for surface consists of three main steps called POINT ESTIMATION, PRUNING
and SURFACE RECONSTRUCTION. QOur algorithm first filters noise and then applies
cocone to obtain a triangulated surface. The noise filtering procedure consists of
two steps, POINT ESTIMATION and PRUNING. In the first step, which is the POINT
ESTIMATION step, new points are computed that are provably close to S. However,
the distances of these new points from S can be much larger than the distances
among them. Using all the new points to form a reconstruction would produce a
highly rugged surface. In the second step, which is the PRUNING step, some of the
new points are pruned so that the interpoint distances in the remaining subset of
new points are large relative to their distances from S. Now we can apply the cocone
algorithm (or any faithful surface reconstruction algorithm for noiseless samples) to

produce a provably good surface in the final SURFACE RECONSTRUCTION step. We
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remark that our algorithm does not estimate the model parameters €, €1, 2. It may

be possible to do so, but we do not rely on any such estimate.

We further highlight the POINT ESTIMATION step. At each sample p € P,
we grow a ball neighborhood called coarse neighborhood until the noisy samples
inside the neighborhood fit inside a sufficiently thin slab. This thin slab is an
approximation of the tangent plane at p, i.e., the direction normal to the thin slab
approximates n,. However, due to noise, the size of the ball neighborhood is in the
order of the noise amplitude d. As the surface can bend quite a lot inside this ball
neighborhood, the approximation error of the estimated normal is also in the order
of . Thus we have a second phase to improve the estimate in a smaller neighborhood
called refined neighborhood around p. We take some directions slightly different from
the normal estimate due to the coarse neighborhood. We construct a narrow tube
oriented in each direction. We trim each tube to the shortest cylinder containing
all samples inside. Among all cylinders, the orientation of the shortest one provably
approximates n, well. We provide the algorithmic details below. Recall that w > 0,

p > 20, and 0 < v < 1/8 are constants chosen in advance.

POINT ESTIMATION. For each noisy sample p € P, we compute a point p* that

approximates p as follows.

Initial ball. We compute a ball initial(p) centered at p with In“ n sam-

ples inside.

Coarse neighborhood. We initialize coarse(p) to be the ball centered
at p with radius r, = radius(initial(p))”. We compute an infinite
slab candidate(p) that contains all samples inside coarse(p). A slab
of minimum width would be nice, but a 2-approximation suffices
which can be computed in linear time [33]. We repeatedly double
the size of coarse(p) and maintain candidate(p) until the radius of

coarse(p) is not less than p - width(candidate (p)).

Refined neighborhood. Let D be the unit sphere of directions centered
at p. We cover D by a set of caps as follows. Grid the boundary of
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the bounding box of D into square cells of width /7. Project the
grid vertices onto D towards the center of D and put a cap with
angular radius /7, centered at each projected grid vertex. Let
hy, be the line through p orthogonal to candidate(p). We examine
all caps on D. Let ¢ be the line through p and the center of a
cap. If Z(hy,£) > w/10, examine the next cap. Otherwise, let
Ly(¢) denote the infinite tube with axis ¢ and radius r,/4. We
trim L,(¢) to obtain the shortest cylinder C,(¢) that contains all
noisy samples inside L,(¢) N coarse(p). After going through all
caps, we pick the shortest cylinder C,(/;) generated. The line £,

approximates n, and the center p* of Cy(¢;) approximates p.

PRUNING. We scan the cylinder centers in an arbitrary order and select a subset C*:

when we select the center p*, we delete all centers ¢* not yet selected that satisfy

d(p*,q*) < 3 7’p/4-

SURFACE CONSTRUCTION. We run the cocone algorithm [5] on the centers in C*
and return the output surface, say N. One modification is that instead of using
polar normals, we use the estimated normal /; for each p* € C*. The details are

provided in section 5.5.5.

We analyze the running time of the algorithm. PRUNING clearly takes O(n?)
time. In SURFACE CONSTRUCTION, the most time-consuming step is the construction
of the 3D Voronoi diagram which takes O(n?) time. INITIAL BALL takes O(n) time
for each sample. It remains to show that COARSE NEIGHBORHOOD and REFINED
NEIGHBORHOOD take O(n!*7) time for each sample. We need a technical lemma on
the relations among n, €, €1, €5, whose proof is given in the appendix. Recall that
we are working with the deterministic noise model, so these relations are derived

based on it.
Lemma 5.1.1 €,¢; = O((%)Wg) and € = Q((%)3/4)-

Lemma 5.1.2 The algorithm runs in O(n**7) time.
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Proof. In growing coarse(p), we spend O(n) time to compute candidate(p) after
each doubling. So the total time needed is O(nlog(R,/r},)), where R, is the radius
of the final coarse(p). By the model, radius(initial(p)) > ey which is Q(1/n%/*)
by Lemma 5.1.1. Thus, r, = radius(initial(p))? = Q(1/n3/*). We will show in
Lemma 5.3.2 that R, < 20p0 + 2ry,, which is O(1+rp). Thus log(R,/rp) = O(logn),
implying that COARSE NEIGHBORHOOD takes O(nlogn) time per sample. Thus it

takes O(n?logn) total time.

In REFINED NEIGHBORHOOD, for each L, (¢), collecting the samples inside L, (¢)N
coarse(p) and computing Cy(¢) takes O(n) time. Let K be the set of caps on
D considered in the algorithm for sample point p. Since the angular radius of
each cap is /Ty, the area of each cap is O(ry). Thus the number of caps |K]|
considered for sample point p is O(1/r,). So the total time to compute all Cy(¢)
for the corresponding directions in K is O(n/r,). As r, = Q(1/n%/%), we have
n/r, = O(n'*+37/%) = O(n'*7). Thus REFINED NEIGHBORHOOD takes O(n't7) time

per sample. Thus it takes O(n?*?) total time.

On the other hand, as PRUNING and SURFACE RECONSTRUCTION takes O(n?)

time. Hence the total running time is O(n?*7).

5.2 Overview of analysis

In the consequent sections, we will prove the theoretical guarantees ensured by our

algorithm, that are summarized in the following theorem.

Theorem 5.2.1 Assume p > 1 and § < 1/(1600p?). Let 0 < v < 1/8 be a constant
parameter. Given a noisy sampling P of S that satisfies our deterministic noise
model, our algorithm constructs a a triangulated surface N in O(n?*7) time such

that as n increases,

(i) each vertex p* of N converges to p,

(ii) the normal of each triangle T in N converges to the normal at p for some
vertex p* of T, and
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(11i) N is homeomorphic to S.

Not surprisingly, the framework of our proofs for faithfulness for the recon-
structed surface is similar to the curve case in Chapter 3. We need to go through
the analysis for the coarse neighborhood, the refined neighborhood, and the home-

omorphism proof.

Consider the final coarse neighborhood coarse(p) at a sample point p. Due to the
criterion to sustain the growing of coarse(p), coarse(s) must have radius ©(pd +rp),
where r,, is the radius of initial coarse ball at p. Next, we would like to argue that
the normal of candidate(s) approximates the surface normal at 5. We claim that
the deviation is actually O(pd + r,). We prove this by contradiction and assume
that candidate(s) is tilted a lot. Then a significant volume of S N coarse(p) lies
outside candidate(s). Our goal is to show that this particular volume contains a

noisy sample so that a contradiction is established. The details are in Section 5.3.

As the normal estimation in the coarse neighborhood depends on the noise am-
plitude, and thus does not converge to zero when n increases. So we need to proceed
to have a better estimate in the refined neighborhood. In the refined neighborhood
at p, we rotate a thin cylinder of width ©(r,) centered at p. In the algorithm,
the both bases of a cylinder are set to tightly bound all the sample points inside
the cylinder. Our target cylinder axis direction £}, is a direction so that the cylinder
height is minimum. For efficiency, in our algorithm, we only seek for an approximate
minimum height. The proof intuition is that when £} is close to the surface normal,
the corresponding cylinder height will be quite small; otherwise the corresponding
cylinder height will be large. Thus we can eliminate the latter option, and we can
prove that £7 is close to the surface normal. From this, we can then prove the center
p* of this cylinder of small height is close to the original surface S. The details are

in Section 5.4.

Finally, to prove that the normals of the output triangles approximate well the
surface normals and the reconstructed surface is homeomorphic to the original sur-
face S, we adapts the proof technique in the cocone paper [5] for noiseless sample

points. The main problem we need to get through is that in their original proof they
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assume that all the sample points must be on the original surface S, which is not

true in our case. The details are in Section 5.5.

5.3 Coarse neighborhood

We first bound the size of coarse(p) which allows us to bound the approximation

error of the initial estimate of n,,.

5.3.1 Radii of initial(p) and coarse(p)

The next two lemmas bound the radii of initial(p) and coarse(p).

Lemma 5.3.1 Then Q(e/?) = ey < radius(initial(p)) < e, = O(e). Also, r2 > e

and r, = O(€") for sufficiently large n.

Proof. By our deterministic model, as initial(p) contains In“ n samples, the ra-
dius of initial(p) is less than €; = O(e) and at least e = Q(e3/2). Then r, =
(radius(initial(p)))? = O(€7).

Since r, > radius(initial (p))” > €5 and 3 = Q(1/n%*) by Lemma 5.1.1, we have
rp = Q(1/n3/*) = Q(1/n%/32) as v < 1/8. By Lemma 5.1.1, e = O((2>2)2/9). Thus
for sufficiently large n, rf, > €.

Lemma 5.3.2 Assume p > 1 and § < 1/(1600p?). Then
max{2./pd,r,} < radius(coarse(p)) < 10pd + 21,

for sufficiently large n.

Proof. Let R, = radius(coarse(p)). We first upper bound R,. Suppose to the
contrary that R, > 10pd + 2r,. Since the final coarse(p) is obtained by repeated
doubling B(p,ry,). The algorithm must come across a ball B such that 5pd + r, <
radius(B) < 10pd + 2r,. Before reaching the final coarse(p), we show that the
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algorithm should have stopped and reported B as the final coarse ball, which would

lead to contradiction.

Let z and y be points on S;r and S;, respectively, such that £ = § = p. As
rp, = O(e”) by Lemma 5.3.1, r, — 0 as n — oc. As § < 1/(1600p?) and for

sufficiently large n,
radius(B) < 10pd + 21, < (f(p) — 6)/2.

Thus for any points a,b € BN Sy, d(a,b) < 2radius(B) < f(p) — 6. Let d, be
the maximum distance between B N Sy and T,. As r, < 1/(320p) for large n by
Lemma 5.3.1 and 40p < 1/v/3, Lemma 4.1.2(i) implies that

d; < (2radius(B))?
< (2008 + 47p)?
< (\/5/2"‘47':0)2
< 044 (4V5+167,)r,
8 1
= 5/4+(M+@)Tp
T
< §/44 -2
/ 1p

Similarly, the maximum distance d, between B N Sy and Ty is at most ¢ + Z—f).
Therefore, if we enclose the noisy samples in B NS using a slab L parallel to Tj,,
then width(L) < d, +dy + 2§ < 46 + ;—7‘; < radius(B)/(2p). Since we compute a
2-approximation of the thinnest slab, the slab width computed by the algorithm
for B is at most radius(()B)/p. But then, the algorithm should have stopped and

reported B. This is a contradiction.

Next, we lower bound R,. Clearly, R, > r, by construction. We show that
R, >2,/pd. Let B = B(p,R,/./p) and let X = B(p,d). Note that p € X and X is
tangent to S;’ and S5 . Lemma 4.1.1 implies that X is sandwiched between S;' and
Sy as f(p) —d > 4.

Assume to the contrary that R, < 2,/pd. Then radius(B) < 26. Since p € X,
BN X contains a ball with radius radius(B)/4. The width of candidate(p) is at most
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R,/p = radius(B)/\/p. Thus, (B N X) — candidate(s) contains a ball ¥ such that
Y is empty, Y is sandwiched between Sg“ and S5, and

1 1 )
(§ - ﬁ) - radius(B)

> R,/(16p).

radius(Y’)

Vv

Since R, > rp, by construction, radius(Y) > r,/(16,/p) > r2 for sufficiently large
n. By Lemma 5.3.1, rf} > €. But then Y contains a noisy sample, a contradiction.

Hence R, > min{2,/pd,rp}.

5.3.2 Rough normal estimate

We remark that the following analysis of the approximation error assumes that
rp < 1. Since 1, = radius(initial(p))” < O(€”) and € = O((%)Q/g), the smaller v
is, the larger n needs to be so that r, < 1. This is a tradeoff between the running
time and the number of samples needed to achieve a small approximation error. Of
course, as -y is a constant with respect to n, v does not affect the asymptotic behavior
of the algorithm. Next, we show that candidate(p) is a rough approximation of T}, in
Lemma 5.3.4. To do this, we need one more technical lemma (Lemma 5.3.3), which

proof is deferred to appendix.

Lemma 5.3.3 Assume that § < 1/2. Let p € S, be a point. Let d < 1/20. Let
H be a plane passing p and n,. Then S, N B(p,d) N H is a curve segment, and
So N B(p,d) is a topological disk.

Lemma 5.3.4 Assume p > 1 and § < 1/(1600p%). For sufficiently large n, the

angle between T, and candidate(p) is at most 20pd + 4r, +4/p.

Proof. Let p € S,. If T, and candidate(p) are parallel, we are done. Suppose not. Let
H be the plane spanned by n, and the line perpendicular to candidate(p). Figure 5.1
shows the cross-section on H. Let L denote the strip candidate(p) N H. Note that
width(L) = width(candidate(p)). Let £ be the line on H through p parallel to L. By

82



coarsep)

Figure 5.1: Tllustration for the proof of Lemma 5.3.4.

Lemma 5.3.3, the boundary of B(p, R, — €) intersects the curve S, N H N coarse(p)

at exactly two points. Let ¢ be one of them.

Since B(q,€) contains some noisy sample, B(q,€) must intersect candidate(p)
as candidate(p) contains all noisy samples inside coarse(p). Thus B(q,e) N H must

intersect L.

Assume to the contrary that Z(T),¢) > 20p0 + 4r, + 4/p. Since R, < f(p) — 0,
Lemma 4.1.2(i) implies that Z(pg, T,) < arcsin(R, —¢) < arcsin R,,, which is at most
arcsin(10pd + 27,,) by Lemma 5.3.2. Then Z(pq, £) > Z(Tp, £) —arcsin(10pd + 27),) >
20p0 4+ 4rp, +4/p — 20pd — 4rp, = 4/p. Tt follows that

2
d(q,£) > d(p,q) - sin Z(pq,£) > (R, —¢€) - 0T +e+

As 2 > € by Lemma 5.3.1 and /e < 1/(p +2) for large n by Lemma 5.1.1, we have
R, > rp > \/e > (p+2)e. This implies that d(q,¢) > R,/p+e > width(L)+ ¢, which
contradicts the fact that B(q,e) N H intersects L.

5.4 Refined neighborhood and point conver-
gence

By Lemma 5.3.4, since 10p5 < m/12 as § < 1/(1600p?), the angle between T}, and

candidate(p) is at most m/12 for sufficiently large n. Since our algorithm enforces
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the angle between a tube axis £ and the direction orthogonal to candidate(p) is at
most 7/10, Z(ny,?¢) < /12 + n/10 < 7/5. Recall that the radii of the tubes L, (¢)
and cylinders C,(¢) are set to r,/4. We want to show that REFINED NEIGHBOR-
HOOD gives a provably good estimate of n,. We need the following several technical

lemmas, whose proofs are given in the appendix.

Lemma 5.4.1 Let? be an arbitrary line through a sample point p such that Z(n,, ) <
7/5. For any o € [—0, 6], Ly(£)Ncoarse(p)NSy is a topological disk inside B(x,1,/2),
where x = €N coarse(p) N S,.

The following lemma bounds some distances from p to S, in terms of Z(n,, ).

Lemma 5.4.2 Let £ be an arbitrary line through a sample point p such that 6 =
L(np,?) < w/5. For any o, let py € S, with p1 = p. Let © = £ N coarse(p) N Sy.

Then (i) d(p1,z) < 0d(p,p1)/2, (ii) d(p,z) < LeLIECXp0)YL - 0p i) d(p, z) >

cos
d(p,p1)—02d(p,p1)*/4
cos f :

The following lemma is for proving the point convergence later.

Lemma 5.4.3 Let{ be a line through a sample point p such that 6 = Z(n,. £) < 7 /5.
Let e be the segment £ NS N coarse(p). Let q be the point e N'S. Then d(q,m) <

262602/ cos 0, where m is the midpoint of e.

Proof. Suppose e = g1qo where ¢ € S;—,QQ € S5 . Let pipy denote the normal
segment passing through p, where p; € Sgr,pg € Sy . Let ty = ¢NT),, and ty = £NT),.
And let ¢ = £ N Tj;. Refer to Figure 5.2. Note that ¢ is the midpoint of the segment
ti1te. By Lemma 5.4.2 (ii) & (iii) and the fact that d(p,t1) = d(p,p1)/ cos 8, we get

02d(p7p1)2
d —d(p,t)| < ————~-
‘ (pa ql) (pa 1)‘ = 4cos 6 )

62462
cos f

which is at most as d(p,p1) < 24. Since p, q1,t are collinear, we conclude that

252

0
d(t <l|d —d(p.t1)] <
(17111) _| (P,Q1) (P, 1)\ = osf
84



Figure 5.2: Tllustration for the proof of Lemma 5.4.3.
Similarly we can prove d(tz,q2) < 6202/ cos 6. Thus
d(t,m) < 626%/ cos 6. (5.1)

62462
cosf’

The same argument also shows that |d(p,q) — d(p,t)| < Since p,q,t are

collinear, we conclude that

6252
d(t <|d —d(p,t)| < 2
(t,q) < ld(p,q) —d(p,t)| < (5.2)
Hence, by 5.1 and 5.2, d(g,m) < d(t,m) + d(t,q) < 2626%/ cos 0.

5.4.1 Height bounds of cylinders

We prove upper and lower bounds on the heights of cylinders tested by the algorithm.

Lemma 5.4.4 Let 0 = Z(np,f) < 7/5. Assume that 0 < \/ry. Let p be the point
N SN coarse(p). Let p* be the center of Cp(£). Then the height of Cyp(£) is at most

25+62 6> . 20252
:gs(, + 21y /Tp; and d(p*,q) < TF +Tp/Tp-

Proof. Let e = q1go be the segment £ N S N coarse(p), where ¢ € S;',qg € S5 .
Let By, By be the upper and lower bases of Cy(¢) respectively. Assume that B; lies
on the same side of ¢ as ¢;. Let by = N By and by = £ N By. Let pips be the
normal segment passing through p where p; € S;',pz € S5 . Note that T, T, ,T),
are parallel. Refer to Figure 5.3

85



Figure 5.3: Illustration for the proof of Lemma 5.4.4.

We first show that d(q1,b1) < Tp/Tp- There are two cases to consider.
Case 1: by lies between ¢; and ¢. Since B(q,€) contains a sample point, we have
d(q1,b1) < €, which is at most r) by Lemma 5.3.1.
Case 2: qi lies between b; and ¢. In this case, By must intersect the patch L,(¢) N
S;’ N coarse(p), otherwise we could have moved Bj close to g to decrease the height
of Cp(£). Let u be a point at the intersection. So d(q1,b1) < r,/4 - tan Zgiub;. We

bound Zgiub; as follows.

ZqIUbl S é(qluaTtM)-'_Z(nque)

VAN

Llqu,Ty,) + L(ng,,ng,) + ZL(ny,, £)

= Lqu,Ty) + Z(np,,ng, ) + 0.
Since d(q1,u) < r,/2 by Lemma 5.4.1, Lemma 4.1.2 (ii) implies that Z(qu,Ty,) <
arcsin(r,/2) < rp. By Lemma 4.1.2 (ii), Z(np,,nq,) < 3d(p1,¢1). By Lemma 5.4.2
(i), d(p1,q1) < 0d(p,p1)/2 < 060. So Z(ny,,ng,) < 366. Therefor Zqiub; < 1, 43560+
0 <2,/rp as 6 < /rp by assumption. Hence d(qi,b1) < rp/4 - tan(2,/rp) < /Ty

for sufficiently small 7.

Similarly we can prove d(qz,b2) < 1,/7p. It follows that

d(p, b1) < d(p,q1) + d(q1,b1)
Lemma 5.4.2(ii) , 02d , 2/4
< (p,p1) +COS 0(17 p1)?/ .
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Similarly, we also have

d(p, p2) + 0%d(p,p2)?/
cos 6

4
d(p,bz) < + Tp\/Tp-

Hence the height of C},(¢) is d(b1,b2) < 2046°5% 2rp\/Tp-

cos f

Next, we upper bound d(p*,q). Let m be the midpoint of e. As p* is the
midpoint of bybs, we have d(p*,m) < ry,/r5. On the other hand, by Lemma 5.4.3
(i), d(g,m) < 20262/ cos . Thus by triangle inequality, we have

dp*,q) < d(g,m)+d(p*,m)

< 26%60%/cos O + 1\ /T

Lemma 5.4.5 Let 0 = Z(ny,f) < w/5. Assume that 0 > 32,/r,. Then the height

of Cp(£) is at least 25—92‘52 + 21y /Tp-

cos

Proof. Assume that £ is vertical. Let H be the plane spanned by £ and n,. Let p;
be the point on S; such that p; = p. Let & denote SN L,(¢) N H. By Lemma 5.3.3,

¢ is a curve segment. Let ¢ and b be the endpoints of &.

We first analyze the directions of the normals of ¢ on H. Consider any point
z € €. Let n), be the projection of n, onto H. Note that n/, is the normal of £ at z on
H. Observe that Z(n,,n),) < Z(ny,n,) = Z(ny,,n2). By Lemmas 5.4.1 and 5.4.2(i),
d(p1,z) < 66 + r,/2. Lemma 4.1.2 (i) implies Z(n,,,n,) < arcsin(6d + r,/2) <
200 4+ rp. So ZL(ny,nl,) <200 + ).

Assume that 6 > 32, /r,. We argue that ¢ strictly increases or decreases from a
to b. If n,, points to the left of £, then n), also points to the left of £, making an angle
(1 =26)0 —rp >0as > 32,/r,. So ¢ strictly increases from a to b. Conversely, if

n, points to the right of £, then ¢ strictly decreases from a to b.

W.Lo.g., assume that ¢ strictly increases from a to b. Refer to Figure 5.4. Let
q1 be the point £N Ss. Let g be the horizontal line through ¢;. Let h be the vertical
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B

0

Figure 5.4: Tllustration for the proof of Lemma 5.4.5.
line at distance € from b. Let b’ be the point A N &, Then

(', g)

Vv

(rp/4 —€)tan((1 —26)0 —rp)

(rp/4 —€)((1 —28)0 —rp).

v

As e <12, rp/4—e > ry(1/4 —r,) which is at least r,/8 for sufficiently large n.
Since 6 > 32,/rp, (1 —26)0 —r, > 16,/r, when r, is small. We conclude that

d(t',g) > 2rp\/Tp-

Since the ball B(b',€) contains a noisy sample, the upper end of C,(¢) must
be at distance at least d(b',g) — € from g, which is at least 2r,,/7, — € > /T
as € < 7"%. By Lemma 5.4.2(iii), the distance from p to the upper end of Cp(¢) is

d(p,p1)—0%d(p,p1)*/4
cos 6

distance from p to the lower end of C,(¢) . Hence the height of Cy(¢) is at least

at least + rpy/Tp- We can derive a similar lower bound for the

D00 | 9y [T

cos 0

5.4.2 Point convergence

We are now ready to show the refined cylinder direction £ and the cylinder center

p* approximate normal n, and surface point p well.

Lemma 5.4.6 (POINT CONVERGENCE) Assume that § < 1/(1600p%). Let p* and

¢y be the center point and approzimate normal direction computed for p. Then

L(np,f;‘,) = O(\/ﬁ) and d(p,p*) = O(\/’r_p).
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Proof. Consider the cylinder C)(¢;) computed by the algorithm. Let h be its height
and let = Z(ny, £;). Consider the caps covering the sphere of directions centered
at p in REFINED NEIGHBORHOOD. n, projects to a point inside some cap. Let ¢
be the line through the center of this cap and p. So Cp(¢') is the corresponding
cylinder. Let h' be its height and let 6’ = Z(n,,¢'). Note that ' < /7.

Assume to the contrary that 6 > 32, /r,. By Lemmas 5.4.4 and 5.4.5, h — h >
C — (', where

26 ,
C= m(cosﬁ —cos#), and

26262
cosfcosf'

52
C'= m(ﬁ2 cos 0’ + 6" cos 0) <

Since 6 > 326¢’,

. 0+0 . -0
2sin sin

2 2

cosf' — cos@

Vv

2sin — sin —

2 4

Vv

2.

=D
ol >

Vv

6%/16.
Thus,

562 25202
8cosfcos®  cosbBcosl
562
8 cosfcos b
> 0

(1— 166)

as 6 < 1/(1600p?). So h —h' > 0. This contradicts the fact that Cp(¢;) has the
minimum height. Hence 6 < 32, /7.

Let g be the point £; N S. By Lemma 5.4.2 (i), d(p,q) < 0d(p,p)/2, which

is at most 060 as d(p,p) < 2§. By Lemma 5.4.4, d(p*,q) < 20°67 4 Tpy/Tp- Thus

— cosf

d(p.p*) < d(p,q) + d(p*,q) = rpy/Tp + O(0) = O(/rp) as § < 32,/T). Hl
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5.5 Triangle normal and homeomorphism

Since the selected center points in C* are not on the surface S, we cannot directly use
the proofs in the cocone paper [5] for noiseless sample points. Instead we adapts their
technique for our homeomorphism proof. We first need a concept called Restricted
Delaunay triangulation on S, which was defined in say [23]. We will describe it first

in the subsection below.

5.5.1 Restricted Delaunay triangulation

The Voronoi diagram Ve of C* contains the Voronoi cells Vi« for all points p* € C*,

where V)« is defined to be
{z € R®: d(z,p*) < d(z,q") for any ¢* € C* and ¢* # p*}.

The Delaunay triangulation Dc- of C* has a edge p*q* if Vj» NV« is a face, has
a triangle p*g*r* if V- N V= N Vi« is an edge, and has tetrahedron p*g*r*s* if
Vpr N Vg N Ve NV« is a point.

The restriction of Vo~ to the surface S is called the restricted Voronoi diagram

of C* on S, denoted as Ve«|s. It contains all the restricted Voronoi cells V-

S =

Vp« N'S. The dual of these restricted Voronoi cells defines the restricted Delaunay

s. Specifically, D¢~

triangulation D~ s N

Vg

s has an edge p*q¢* if and only if V-

*

s # 0, and a triangle p*¢*r* if and only if V- s # (. Assuming

s N Vs

s N Vg
that S does not pass through a Voronoi vertex in general position, there is no

tetrahedron in D¢+

S.

Edelsbrunner and Shah [23] showed that the underlying space of D¢+|g is home-
omorphic to S if the following closed ball property holds: each V,-|g is a topological
5N Vg
sN V-

disk, each nonempty pairwise intersection V) s is a curve segment, and each

nonempty triple intersection Vs |g N V- s is a single point.

5.5.2 Overview for homeomorphism

Now let’s have an overview on how we proceed to prove the homeomorphism.
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In the algorithm, all the center points are scanned to select a subset C* of center
points: when a center point p* is selected, we delete all unselected center points
u* such that d(p*,u*) < r,l,/s. We prove that the output manifold by running the
cocone algorithm on C* is a faithful reconstruction of S. We assume the points in
C* are in general position. In practice most Delaunay triangulation codes simulate

general position, so this is not an unreasonable assumption.

In the noiseless case, Amenta, Choi, Dey, and Leekha [5] prove that the cocone
algorithm returns a faithful reconstruction. The key step is proving that the normal
of each triangle converges to the normal at some triangle vertex. Based on this
result, one can then show that the restricted Delaunay triangles are not removed
during the manifold extraction. This is important as it guarantees that there is
some underlying manifold to be extracted. Furthermore, the convergence of triangle
normals implies that the output surface is locally flat, which is instrumental to

proving the homeomorphism.

The main tool in proving the homeomorphism and the convergence of normals of
triangles is that there are two large tangent balls on opposite sides of S that touch
S at each noiseless sample. The radii of these tangent balls are at least the local
feature size of the sample, and these tangent balls do not contain other noiseless
samples. We claim that an analogous result holds in the noisy case. So the proofs

in [5] can be adapted here.

Specifically, let p* be the center point computed for a noisy sample, and let
p* € S,. We claim that there are two large tangent balls By and By on opposite
sides of S, that touch S, at p*. The radii of By and By are at least ¢ for some
constant 0 < ¢ < 1. Note that ¢ is very large compared to the inter-center distances
which is 0(7’,1,/8) after pruning. We do not need the radii of By and Bs to be

proportional to the local feature size because we use uniform sampling.

By the point convergence lemma, the selected center points C* lie inside a thin
shell. We will look at this and some basic properties of the selected centers points
C* in Section 5.5.3. Then in Section 5.5.4, we will prove that there are two large
empty tangent balls at each center point p*. With this lemma, we prove that the
union of all restricted Delaunay triangles is homeomorphic to S in Section 5.5.6.
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In Section 5.5.5, we review the cocone reconstruction algorithm. Finally in Sec-
tions 5.5.7, 5.5.8 and 5.5.9, we prove the properties on the sizes and normals of the
reconstructed triangles and the homeomorphism between the reconstruction and the

original surface S.

5.5.3 Thin shell

The point convergence lemma (Lemma 5.4.6) immediately implies the following
lemma, which says that the center points are close to the surface S, and the es-

timated normals are close to the surface normals.

Lemma 5.5.1 For any center point p*, d(p*,p) = O(€7/?) and Z(ny-,n,) = O(7/?).
Moreover, d(p*,p*) = O(e/?).

Proof. By Lemma 5.4.6 and Lemma 5.3.1, d(p*,p) = O(/rp) = O(e/?). As p*

is the closest point on S to p*, d(p*,p*) < d(p*,p) = O(¢"/?). Thus d(p*,p) <
d(p*, p*)+d(p*, p) = O(€"/?). By Lemma 4.1.2 (ii), Z(ny~,n,) < 3d(p*,p) = O(e7/?).

H

Moreover, d(p*,p*) < d(p*,p) = O(/?).

By this lemma, we have d(p*,p*) = O(¢?/?) for any p* € C*. Let A =
max{p*ec*}d(p*,];*), which is O(¢?/?). Let Sa be the volume between S{ and
Sy Then all center points in C* lie inside Sn. The following lemma says that the

center points C* in SA are dense.

Lemma 5.5.2 For each point q € Sa, there is a center point p* € C* such that
d(p*,q) = O("®).

Proof. The ball B(q,€) contains a sample point s € P by our deterministic noise
model. Then d(q,s*) < d(q, s)+d(s, 5) +d(3,5*) < e+ (A+€)+d(5,5*) < O(/?) +
d(3,s*). Since d(3,s*) < d(3,s*) + d(s*,s*) = O(¢"?) by Lemma 5.5.1, we have
d(q, ) = O(e").
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If s* € C*, then we are done. Otherwise s* is decimated when a center point
p* is selected. This means d(s*,p*) < Y7, = O(e"/®). Thus d(q,p*) < d(q,s*) +
d(s*,p*) = O(e1/?).

Corollary 5.5.1 For any p* € C*, Vp+|s,ipha 5 contained in a ball of radius O(e7/8)

centered at p*, where a < A.

Next, we prove that after pruning, the distance between the selected center

points is large when compared with A.

Lemma 5.5.3 Let p*,¢* € C*. Then d(p*,q¢*) > 63/8_
Proof. Assume that, in the algorithm, p* is selected before ¢*. So d(p*, ¢*) > 7“1,1,/8.
Recall that r, = radius(initial(p))” and radius(initial(p)) > e by Lemma 5.3.1. So

d(p*,q*) > €)',

5.5.4 Twin empty tangent balls

We then prove that for any center point p* € S,, where @ < A, there are twin balls
tangent to S, at p* and empty of the center points in C*. This lemma allows us to

adapt many proofs from the cocone paper [5].

Lemma 5.5.4 Suppose p* € C* is on So. For sufficiently large n, there are two
balls tangent to S, at p* of radius 1/10 on opposite sides of S, such that their

interiors do not contain any center point in C*.

Proof. We will consider only one side of S, as the arguments for the other side are
symmetric. Let m be a point at unit distance from p* in the normal direction. Let
M = B(m,1—A). Since fuin = 1, the following holds: M is tangent to Sa, M is free
from intersecting the interior of Sao, and M is empty of center points in C*. Let ¢
be the tangent point between M and Sa. We consider another ball B = B(p*, eg/s),
which is empty of center points in C* by Lemma 5.5.3.
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Figure 5.5: Tllustration for the proof of Lemma 5.5.4.

Refer to Figure 5.5. Let D be the circle 0B N OM. Let t be the center of D.
Note that ¢ lies on p*m. We push M through circle D towards p* until it touches
p* to produce a smaller ball M’ = B(m/,r"). We show that M' satisfies the lemma
requirement by showing that r' > 1/10. Note that m' € p*m. So M' C BU M,

which implies that M’ does not contain any center point in C*.

Consider a point z on the circle D. Note that d(z,m') =r'. Ase= 0(6;/3), we

have
d(z,q) < d(p*,z) + d(p*,q) < e/ + 2A.

Since A = O(¢"/?) and e = Q(¢*/?), we have 2A = O((e§/2)7/2) = 0(637/4), which

is less than eg/S for sufficiently large n. So d(z,q) < 263/8.

8

v/
Let 8 = Zqgxt. Note that Zp*mx = 268. Then sin = % < 612/2 = 263/8.

Thus
. 8 4
d(q,t) = d(z,q)sinf < (263/ )2 = 453/ .
It follows that

dp',q) +d(a,t) _ 28 +4e)" _ O@e"") + 46}/
d(p*,x) - 6;7/8 N E’QY/S '

sin /p*xt =
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As 0(637/4) < eg/4 for sufficiently large n,

v/4

1513
. * 2 _=/8
sin /p*xt < Y o€y’ .
€
f_dpta)/2 €52 -
Hence r' = S Zpeat 2 ;e;/s > 1/10.

Consider a vertex p* € S, of a restricted Delaunay triangle T'. Since there are
twin big balls tangent to S, at p* by the previous lemma, and the circumradius of a
restricted Delaunay triangle is O(e7/®) by Corollary 5.5.1, we can prove the following
lemma by using almost the same argument in Lemma 7 in [2]. The details of its

proof is in the appendix.

Lemma 5.5.5 Let 7 be a restricted Delaunay triangle, and n; be the line normal

to 7. Then Z(ny,ny) = O(e?/®) for any vertez p* of .

With this lemma, by using almost the same arguments as Theorem 2 in [2], we

have the following lemma. The details of its proof is in the appendix.

Lemma 5.5.6 The union of restricted Delaunay triangles is homeomorphic to S.

5.5.5 Review of the cocone algorithm

We will first review the cocone algorithm [5] because some understanding is needed

to prove the homeomorphism.

First of all, the Delaunay triangulation of C'* is computed. For any point p* € C*,
let e = wiws be an edge in Vj-. Suppose £, be the estimated normal by previous
algorithm at p*. Let 6 = /8. We then compute Z(p*w1,£;) and Z(p*ws, £;), and
check if the range of angles between these two angles intersect [7/2—0,7/2+6]. If it
does, it actually means the Voronoi edge e intersects the complement of the double
cone with apex p* and making an angle of 7/2 — 6 with axis /;, and we mark e. A
Delaunay triangle T is put in W if its dual edge e is marked due to all three Voronoi

cells defining e. Note that in the original algorithm [5], they estimate the surface
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normal with the polar normal, which is the direction from p* to the farthest vertex
in the Voronoi cell V- at p*. Since we have already obtained good normal estimates

¢; in the POINT ESTIMATION step, we don’t need to estimate the polar normals.

After the candidate triangles are collected in W, the algorithm proceed to the
manifold extraction step. First, all triangles incident to sharp edges are deleted. An
edge is called sharp if the angle between any two consecutive triangles around the
edge is more than 37/2, or the edge is incident to only one triangle. Next, the outer
boundary N of the remained triangles is extracted by a depth-first walk along the

outer boundary of each of its connected components.

It is proved in [5] that N is a manifold homeomorphic to the surface S. In order

to establish that, they need three basic important conditions, which are:

(I) restricted Delaunay condition: W contains all restricted triangles;
(IT) small triangle condition: the circumradius of each triangle in W is O(e); and

(ITI) flat triangle condition: the normal to each triangle T' € W makes a small
angle O(e) with the surface normal at the vertex p where p is the vertex with

the largest interior angle in 7.

As in our case, all the center points in C* may not lie on S, the proofs of the
original cocone paper [5] do not automatically apply. We have to generalize them so
that they apply to samples points not on surface S as well. In the following sections,
we will first prove the three basic conditions. Note that the small value O(e) will be

replaced by O(€/'%). And then we go forward to prove the homeomorphism.

5.5.6 Restricted Delaunay condition

We show that all restricted Delaunay triangles belong to W. So W contains triangles
that form a manifold homeomorphic to S by Lemma 5.5.6. This is essential as
otherwise there is no hope that the cocone algorithm will succeed in extracting a

manifold from W.
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Lemma 5.5.7 Let v be any restricted Voronoi vertex in Vy-|s. Then Z(p*v,ny,) >

/2 — O("/?).

Proof. Let p*q*s* be the restricted Delaunay triangle dual to v. Let B be the
Delaunay ball centered at v and passing through p*, ¢* and s*. As 2d(p*,v) =
2radius(B) > d(p*,s*) > eg/s by Lemma 5.5.3, we have d(p*,v) > d(p*,s*)/2 >
eg/8/2. On the other hand, as v € Vp|g, d(p*,v) = O(€?/®) by Corollary 5.5.1.
Also as d(p*,p) = O(/rp) = O(¢"/?) by Lemma 5.4.6 and Lemma 5.3.1, we have
d(p,v) < d(p*,p) + d(p*,v) = O(e/¥).

Now we have

Zp*vp < arcsin ———~

0(67/2)

63/8/2
0(67/2)

Q(eB/2)(7/8))

= O(19),

By Lemma 4.1.2 (i), Z(pw,T,) < arcsind(p,v) = O(€7/®). So Z(pv,n,) > /2 —
O(7/®). T all, Z(p*v,ny) > Z(pv,ny) — Lp*vp > 7/2 — O(7/8) — O(£7/16) >
m/2 — O(eV/?).

Lemma 5.5.8 All restricted Delaunay triangles are in W.

Proof. Let v be the restricted Voronoi vertex dual to the restricted Delaunay triangle
p*q*s*. By Lemma 5.5.7, Z(p*v,n,) > /2 — O(7/8). Also L(ny, £y) = O(/1p) =
O(€"/?) by Lemma 5.4.6 and Lemma 5.3.1. The triangle inequality implies that
Lp*v,by) > L(p*v,np) — L(np, £,) > /2 — O(e"/8) — 0(e"/?) > /2 — O(/8) >
n/2 — /8. Similarly, both Z(¢*v,n,) and Z(s*v,ns) are greater than 7/2 — /8.
Hence p*q*s* will be included in W by the algorithm.
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5.5.7 Small triangle condition

We prove that the circumcircle of each candidate triangle 7" in W is small; more

precisely, its radius is at most €1/16,

Since there are twin big empty tangent balls tangent to S, at center point p* € S,
by Lemma 5.5.4, we have the following lemma by using the same argument as in

Lemma 5 in [2]. The details of this proof is included in the appendix.

Lemma 5.5.9 Letv be any point in Vy,« such that d(p*,v) > €16 Then /(p*v, Np*)
O(e1/19).

Lemma 5.5.10 The radius of the smallest Delaunay ball of any triangle T € W is

at most €'/1%. Hence, the circumradius of T is at most €7/16.

Proof. Let e be the dual edge of T', and p* be a vertex of T. As the algorithm selects
T, there is a point v € e so that Z(p*v,£;) > 7/2 — n/8. And by Lemma 5.4.6,
Ly np) = O(/p) = O(e7/?). Also by Lemma 5.5.1, Z(np,ny) = O(e7/?). Thus
the triangle inequality implies that Z(p*v, ny+) > Z(p*v, £3) = Z (€, 1np) =L (np, np) >
m/2 — 7/8 — O(e?/?) = w(e?/'%). Then by the contrapositive of Lemma 5.5.9,
d(p*,v) < €1/,

5.5.8 Flat triangle condition

We prove that the normal of each candidate triangle T € W makes a small angle
of O(¢7/16) radians with the surface normal at the vertex of T' that has the largest

vertex angle.

Since there are twin big empty balls tangent to S, at center point p* € S, by
Lemma 5.5.4, and the candidate triangles in W are small by Lemma 5.5.10, we have
the following theorem of triangle normal convergence by using the same argument

in Theorem 11 in [5]. The details of this proof is in the appendix.
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Lemma 5.5.11 The normal to each candidate triangle T € W makes an angle of
0(67/16) radians with ny- where p* is the vertex of T that has the largest vertex

angle.

This lemma says that the normal of triangle T' € W is close to the surface normal
at a vertex of T. As T is small by the small triangle condition, we can also show for

any point z in the interior of T', n; is close to the normal of T.

Lemma 5.5.12 Let z be any point on a triangle T € W. Then

(i) d(z,%) = O(e"/'%), and

(ii) Z(ngz,ny) = O(e'/'%), where ny is the normal line to T

Proof. Consider (i). Let p* be a vertex of T. By Lemma 5.5.10, d(z,p*) < 27/,
and by Lemma 5.4.6, d(p*,p) = O(,/rp) = 0(€7/?). So d(z, %) < d(z,p) < d(zx, p*) +
d(p*,p) = O(/'5).

Consider (ii). By Lemma 5.5.1, d(p*, p*) = O(€?/?). By Lemma 5.5.10, d(p*, z) <
26716 By part (i), d(z, %) = O(€/19). So d(p*, &) < d(p*,p*) + d(p*, ) + d(z, &) =
O(¢7/16). Thus by Lemma 4.1.2 (ii), Z(ny+,nz) < 3d(p*, &) = O(7/'6). Also by
Lemma 5.5.11, Z(nz,ny-) = O(€7/16). Hence Z(np,nz) < Z(ng,ny)+Z(ny,nz) =
O(€/19).

5.5.9 Homeomorphism

A piecewise-linear manifold N is extracted from W in the manifold extraction step.
It begins by recursively deleting any triangle in W adjacent to a sharp edge. Let W'
be the remaining set of triangles. The lemma below proves that none of the restricted

Delaunay triangles are deleted, and so W’ contains a manifold homeomorphic to S.

Lemma 5.5.13 No restricted Delaunay triangle has a sharp edge.
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Proof. First, since the restricted Delaunay triangles from a manifold homeomorphic
to S, no edge of a restricted Delaunay triangle is incident to only one triangle. It
remains to prove that no pair of restricted Delaunay triangles sharing an edge makes

an acute angle.

Let T and T” be a pair of adjacent restricted Delaunay triangles sharing a com-
mon edge e. Let p* be a vertex of e. Since T and T’ are restricted Delaunay
triangles, they have restricted Delaunay balls D, D' centered at restricted Voronoi

vertices v,v’ € S respectively.

Let H be the supporting plane of circle 9D N9dD’. Note that e lies on H and H
separates T and T". Tt is clear that Z(T,T') > Z(T, H) + Z(T', H) as H separates
T and T'. So it suffices to lower bound Z(T, H) and Z(T", H).

Let ny and ny be the normal lines to T and T', respectively. By triangle
inequality, Z(T, H) > Z(ny,,T) — Z(nyp, H). To lower bound Z(n,.T'), we need to

upper bound Z(ny,nr). By Lemmas 5.5.1 and 5.5.5,
L{npnr) € Llnge,my) + Llng,nge) = O(E7) + 0(%) = O(/%).

So Z(ny,T) > 1/2 — O(e"/?).

To upper bound Z(ny, H), we need to lower bound Z(ny,vv') as vv' — H. By
Corollary 5.5.1 and Lemma 5.5.1, d(v,p) < d(v, p*) +d(p*,p) = O()/8) + O(?/?) =
O(¢"/%). Then Lemma 4.1.2 (ii) implies that Z(n,,n,) < 3d(v,p) = O(€7/8). So if we
can lower bound Z(n,,vv') then we are done. By Corollary 5.5.1, d(v,v") < d(p*,v)+
d(p*,v') = O(€7/8). Then by Lemma 4.1.2 (i), Z(vv',T,) < arcsind(v,v') = O(€/8).
S0 Z(ny,vv') = /2 — Z(v',T,) = 7/2 — O(¢"/3). Hence

Lo ny) > Z(wv' ny) — Z(ny,ny) > /2 — 08y — O(7).

Thus Z(ny, H) = ©/2 — Z(vv',n,) = O(€"/%), i.e., H is nearly parallel to n,.

Then by triangle inequality, Z(T, H) > Z(n,,T) — Z(ny, H) > 1/2 — O(1/8).
Similarly we can prove that Z(T", H) > /2 — O(¢"/®).

Now we have Z(T,T") > (T, H) + Z(T', H) > m — O(¢"/?), which is obtuse. So
e is not sharp.
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Then in the algorithm, the outer boundary N of W' is extracted as the output
manifold. In the lemma below, we prove that two adjacent triangles in N make an

obtuse angle.

Lemma 5.5.14 Fvery pair of adjacent triangles in N meets at their common vertex

at an angle at least T — O(e"/'6) > /2.

Proof. Suppose T' and T" share a common vertex p*. As Z(np-,nr) = O(€"/'%) and

/(nye,np) = O(e7/1) by Lemma 5.5.11, we have
Z(In’j—",rLTV) S Z(np*,nT) + Z(np*”rLT/) — 0(67/16).

So L(T,T") > — L(np,np) > m — O(/'6) > 7/2.

Homeomorphism proof. Let ;1 : R? — S be the map from each point in R? to

the closest point on S. First we prove that the restriction of y to N is well-defined.
Lemma 5.5.15 p: N — S is well-defined.

Proof. Suppose to the contrary that p is not well-defined. Then there is a point
z on a triangle in W such that z has more than one closest point to S. This
means z is a point on the medial axis. So d(z,S) is at least the local feature size
of some point on S, and thus d(z,S) > 1. This contradicts Lemma 5.5.12(i) that
d(z,8) = O(/") < 1.

Then we prove that 4 : N — S is a homeomorphism. A function is called a
homeomorphism if it is continuous and bijective, and its inverse is also continuous.
The approach is to first show that p is well-behaved on center points C*, and then

extend the analysis to the interiors of the triangles in N.

Lemma 5.5.16 The function p: N — S is continuous, and so is its inverse.
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Proof. By Lemma 5.5.10, every point z € N is within distance of €7/16 from a vertex
p* € C*, and thus is within a distance of d(z, p*) + d(p*,p) = O(?/'%) from p € S

I are continuous except at the

by Lemma 5.4.6. Note that the functions p and p~
medial axis of S. So the lemma follows from the fact that N and S are continuous

and N and S avoid the medial axis.

Lemma 5.5.17 Assume p* € C* lies on S,. Let m be the center of a medial ball
M tangent to S, at p*. No candidate triangle in W intersects the interior of the

segment p*m.

Proof. Let M' = B(m',1/10) be an empty ball tangent to S, at p* in Lemma 5.5.4.
Note m' € p*m as d(p*,m) =1— A > 1/10. Suppose to the contrary that a triangle
T in W intersects the interior of p*m at some point z. Then either z € m'm\{m}
or on z € int(p*m’). Note that # = p*. By Lemma 5.5.1 and Lemma 5.5.12(i),
d(p*,z) < d(p*,p*) + d(&,z) = O(e"?) + O(e7/16) = O(e7/19).

If 2 € m'm\{m}, then d(p*,z) > 1/10 = w(e?/1%), which is a contradiction. Now
suppose that z € int(p*m'). In order to intersect int(p*m’), T has to intersect M' as
p*m/ C M', and so does the smallest Delaunay ball D of T'. Let H be the supporting
plane of the circle 9M' N dD. By adapting the proof for Lemma 16 of [5], we can

derive the contradiction that H separates int(p*m') and T.

On one side of H, M’ is contained in D, and on the other, D is contained in
M'. Let H' be the open halfspace, in which D contains M’. We first show that
p* @ HT. Since M’ is empty of center points in C*, T has to lie in H*. Since D
is Delaunay, p* cannot lie in the interior of D. But since p* lie on OM’, it therefore
cannot lie in H*. Next We show that m’' ¢ HT either. As m' € M', if m' € HT,
m’ has to liein D. Asz € T C D, zm' C D. Since 2 - radius(D) > d(z,m’) >
d(p*,m') —d(p*,z) > 1/10— O(?/16), we have radius(D) > 1/20— O(?/16) > /16,
which contradicts Lemma 5.5.10. In all, p*,m' ¢ HT, which implies H separates
int(p*m’) and T.
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Corollary 5.5.2
(i) Every center point in C* is a vertex of N.

(1) The function p is one-to-one from N to u(p*) for every p* € C*.

Our homeomorphism proof proceeds in three short steps. We show that p induces
a homeomorphism on each triangle, then on each pair of adjacent triangles, and

finally on N as a whole.

Now with Lemma 5.5.12(ii), by using the same arguments as in Lemma 18 in [5],
we thus have the following lemma, which shows that p induces a homeomorphism

on each triangle, then on union of adjacent triangles around a vertex.

Lemma 5.5.18 Let U be a region contained within one triangle T € N or in ad-
jacent triangles of N. The function p defines a homeomorphism between U and

w(U) CS.

Then by Corollary 5.5.2 and Lemma 5.5.18 and using same arguments as Theo-

rem 19 in [5], we have that y is a homeomorphism for the whole N.

Lemma 5.5.19 The mapping p defines a homeomorphism from the triangulation

N to the surface S.

Hence by the convergence lemmas (Lemmas 5.4.6, 5.5.11) , the homeomorphism
lemma above (Lemma 5.5.19) and the lemma about the running time analysis

(Lemma 5.1.2), we finally can get our main theorem for this chapter (Theorem 5.2.1).

5.6 Summary

The result in this paper successfully extends our result of curve reconstruction from
noisy samples to surface reconstruction from noisy samples with theoretical guaran-
tees. Instead of using probabilistic sampling model as in curve case, we use deter-
ministic sampling model, which makes the proofs simpler and more intuitive. The

algorithms runs in O(n?*?) time where 0 < v < 1/8 is a constant. The output
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piecewise linear manifold is homeomorphic to S, is close to S in terms of Hausdorff
distance, and has normals close to the surface normals on S. This result, together
with the recent result by Dey and Goswami [15] are the first two results to do surface

reconstruction from noisy samples with theoretical guarantees.
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5.7 Appendix

Proof of Lemma 5.1.1

First, we claim that ez = O(f/%). By this claim, since e = Q(e¥/2) by the

model, we have € = 0(63/3) = O((%)Q/g). Then the upper bound on €; follows as

€1 = O(e) by the model.

Take a maximal set K of disjoint balls with radii €/2 and centers inside S. So

all points in K are within a distance of  + €3/2 from S. A packing argument shows

that K| < W = O((0 + €2)/€3). If we double the sizes of the balls in K,
the expanded balls cover S entirely. Each expanded ball has radius €2 and contains
at most In“n samples by the model. It follows that |K| > n/In“n. Combining
the upper and lower bounds for |K|, we get n/In“n = O((J + €2)/€3). If § < ey,
replacing 0 by €9 yields es = O(\/m) If § > €9, as § < 1, replacing § + e by 2

yields e = O({/In“ n/n). This proves our first claim.

Second, we claim that e = Q(,/1/n). By this claim, since e = Q(¢*/?) by the

model, we have e; = Q(1/n3/4).

Take a maximal set L of disjoint balls with radii € and centered at points on S.
Since each ball contains at least one sample by the model, n > |L|. By Lemma 4.3.3,
the area of the intersection between S and each ball in L is O(e?). Tt follows that
|L| = Q(area(S)/e?) = Q(1/€?). Combining the upper and lower bounds for L, we
get € = Q(1/y/n). This proves our second claim.

Proof of Lemma 5.3.3

Let ¢ be the support line of n,. It suffices to show that as we translate £ on H
to a distance d from p, £ N S, traces a single curve segment inside B(p,d). By
Lemma 4.4.2, £ N S, traces a single curve segment ¢ inside B(p,2d). Assume to
the contrary that ¢ exits B(p,d) at a point z, and reenters B(p,d) at a point y.
Let &(z,y) denote the subcurve between z and y that lies outside B(p,d). By
Lemma 4.1.2(i), Z(pz,Ty) < arcsin(d) < 2d. Similarly, Z(py,T,) < 2d. Thus the
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vector n from p to the midpoint of zy makes an angle at least 7/2 — 2d with n,.
Observe that n is parallel to a curve normal of some point z € {(z,y). It follows

that Z(n,,n,) > Z(n,n,) > m/2 — 2d. But this contradicts Lemma 4.1.2(ii).

Proof of Lemma 5.4.1

Let C = L,(¢) NS, N coarse(p). It follows from Lemma 4.4.2 that C is a topological
disk, and for any line h € L,(¢), since d(p,h) < rp/4, h intersects S, N B(z,7,/2)
exactly once. Hence C C B(xz,r,/2).

We then prove Lemma 5.4.2, which bounds some distances from p to S, in terms

of Z(ny, ).

Proof of Lemma 5.4.2

Refer to Figure 5.6. Let h be the line through p; parallel to ¢. Let Y be the
infinite tube with axis A and p on its boundary. So the radius of Y is d(p, p1) sin#.
Then as in the proof of Lemma 5.4.1, d(p1,z) < radius(Y)/2, which is at most

d(p,p1)/2 - sinf < Od(p, p1)/2.

Figure 5.6: Illustration for the proof of Lemma 5.4.2.

Let 2’ be the orthogonal projection of z onto Tp,. By Lemma 4.1.2(i), d(z, z') <
d(p1,x)?, which is at most 62d(p, p1)?/4. Thus

d(p,p1) + d(=,z")

d <
(p,2) < cos f)
< dp.p1) +60%d(p,p1)*/4
- cos 0 '
Symmetrically, d(p, z) > %SZ(I’I/) gives the lower bound.
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Proof of Lemma 5.5.5

Let s* be the vertex of 7 that has the largest vertex angle (> m/3). Suppose that
s* is on the surface S,. Let C be the circumcircle of T. By Lemma 5.5.4, there
are twin empty balls B, B’ of radius 1/10 tangent to S, at s*. These balls intersect
the supporting plane of 7 in twin disks D, D’ tangent at s* such that D C B and
D' c B'. Let R be the common radius of D and D’. See Figure 5.7. Our first upper

bound R in terms of radius(C).

Figure 5.7: Illustration for the proof of Lemma 5.5.5.

Since the twin tangent balls at s* are empty, the twin disks do not contain the
vertices of 7. In order to maximize R relative to radius(C), we assume that the twin
disks pass through the vertices of 7 and that the angle at s* measures exactly /3.
Now it is not hard to show that R is maximized exactly when T is equilateral: if we
move s* away from the midpoint of the arc covered by the twin disks, keeping the
twin disks passing through the vertices of T', the radius R decreases, until s* reaches
one of the other vertices of 7 and R = radius(C). Since the worst-case configuration

is equilateral T', we can conclude that R < v/3radius(C).

Now we can bound all these radii. Let u denote the restricted Voronoi vertex
dual to T'. Since u is the minimum circumradius of 7, radius(C) < d(u,s*). By

Corollary 5.5.1, d(u, s*) = O(€/?), which implies that R = O(radius(C)) = O(?/8).

Now to find the angle between the normal to 7 and the normal to S, at s*,
we consider one of the twin tangent balls B at s*. Let m denote the center of B
and let v denote the center of D. The segment s*m is normal to S, at s* and

the segment muw is normal to T, so the angle Z(n,,ns) we would like to bound is
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Zs*mu. Observe that Zs*mv = /2, d(s*,m) = 1/10, and d(s*,v) = R = O("/®).
Hence Z(n,,ng) = Zs*mw < arcsin(O(e?/8)) = O(e?/?).

Take any vertex p* of 7 other than s*. By Corollary 5.5.1, d(u,s*) = O(€/?)
and d(u,p*) = O(¢"/8). Thus d(s*,p*) < d(u, s*) + d(u, p*) = O('/%). Then

d(s*,p*) < d(s*,p") +d(s". s*) + d(p", p¥)
= 0% +2A
= 0(*) + 0
= 0.

And by Lemma 4.1.2(i1), we have Z(ng,ny) < 3d(s*,p*) = O(€7/%). Hence
ZL(npyny) < Z(npyng) + Z(ng,ny-) = O(7/8).

To prove Lemma 5.5.6, we need Lemma 5.5.5 and two more lemmas from pa-

per [2] as stated below.

Lemma 5.7.1 For any two points p and q on S with d(p,q) < Af(p), Z(pg,np) >
7/2 — arcsin(\/2).

Lemma 5.7.2 If a ball B intersects surface S in more than one connected compo-

nent, then B contains a point of the medial axis of S.

With these lemmas, by using almost the same arguments as Theorem 2 in [2],
we can prove that the closed ball property: the closure of each k-dimensional face,
1 < k < 3, of the Voronoi diagram of C* intersects intersect .S in either the empty set
orin a closed (k—1)-dimensional topological ball. With this property, by the theorem
(Theorem 4.3) of Edelsbrunner and Shah [23], we immediately have Lemma 5.5.6.

Proof of Lemma 5.5.6

To prove the closed ball property, we will consider the intersection of a Voronoi edge,

a Voronoi face, and a Voronoi cell with the surface S respectively.

Let p* be a selected center point in C*, and let V,« be its Voronoi cell. Let the
direction of ny: be vertical.
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We begin by showing that in the vicinity of p*, the surface S is nearly horizontal.
Corollary 5.5.1 shows that V-

s is small, fitting inside a ball B centered at p* of
radius O(€?/®). Since such a small ball cannot intersect the medial axis, Lemma 5.7.2
implies that S N B is connected. Lemma 4.1.2(i7) shows that the normal to SN B

makes an angle O(¢?/#) radians with the vertical.

Consider an edge e of Vj«. If e intersects S, then since e is normal to the dual
Delaunay triangle T', Lemma 5.5.5 implies that e is within O (/%) radians from the

normal to S at p*. So e can intersect .S only once within ball B.

Next consider a face f of V,«. The face f is contained in its supporting plane
H. the perpendicular bisector of p* and another center point s*, where p*s* is an
edge of a restricted triangle T. The plane H must contain a vector h parallel to
the normal of T, so again Lemma 5.5.5 shows that the angle Z(h,n,-) is at most
O(€/®) radians. Each component of f NS is an arc of a curve, with endpoints on
the edges of f. Assume for the sake of contradiction that there are at least two
such connected components, and consider any line segment connecting a point on
one component with a point on another. Since Vj+|s is small, Lemma 5.7.1 implies
that each of these line segment is nearly horizontal, specifically within angle O(¢?/®)
radians with the horizontal. Hence we can sort the arcs of f NS from left to right
across f, as shown in Figure 5.7(a). Let g1g2 be a line segment connecting the right
endpoint of one arc with the left endpoint of the next arc. The segment ¢iqo is
nearly horizontal so it must leave f as it crosses the nearly vertical edge of V)« at

g1 and reenter f at g9, a contradiction to the fact that f is convex.

Finally consider V- itself. Let C be V-

5. Now C cannot have a handle because
S is nearly horizontal everywhere within ball B. We assume, however, that C is not
a topological disk, again aiming for a contradiction. If C' has no handles and is not
a topological disk, then either it has more than one connected component or it is a

topological disk with holes.

Consider the projection C’ of C' onto a horizontal plane. Since each pair of
points in C' are connected by a nearly horizontal segment, this projection is one-to-
one, and C' is a planar shape homeomorphic to C. If C’ has more than one connected

component, let o be the shortest segment connecting two different components, and
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Figure 5.8: Two impossible situations: (a) Face f of V,+ intersects S in two arcs.
(b) V= NS is a disk with a hole.

let ¢}, g5 be that endpoints of 0. Otherwise, C’ has a hole. Select some point z in a
hole, let o’ be the line segment connecting z to the nearest point ¢} in C’. The line
supporting ¢’ intersects C' again on the other side of z in a point ¢5. We let o be

the segment ¢}q). Please refer to Figure 5.7(b).

Segment o is perpendicular to the boundary of C' at ¢|. Let U be the vertical
plane through o, and let ¢, g2 be the points in U N C' whose vertical projections are
q1, g5 respectively. The point ¢ is either a vertex of C or an edge point, and thus

lies in either an edge or facet of V,« respectively.

Consider the case in which ¢; lies in a facet f of Vj,«. Facet f is nearly vertical,
and since U is perpendicular to C' at ¢}, it is nearly perpendicular to C at ¢1, and
f intersects U in a nearly vertical line at ¢;. In the other case, ¢; is contained in a
nearly vertical edge e of V. We consider the plane V' containing both e and the
horizontal line perpendicular to segment g1g2 at q;. V meets U in a nearly vertical
line. Note that we had to choose U carefully, since two nearly vertical planes which

are not nearly perpendicular might meet in a nearly horizontal line.

In either case, examining the situation in U, we find that in the neighborhood of
q1, the interior of ¢i¢ is separated from the interior of V- N U by a nearly vertical

line. However, both ¢; and g2 belong to V- N U, contradicting to the fact that V),

is convex.
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Proof of Lemma 5.5.9

Suppose p* is on the surface S,, where @ < A. Let B be the Voronoi ball centered
at v. Let My = B(mq,1/10), My = B(mg,1/10) be the twin empty balls tangent to
S, at p* in Lemma 5.5.4. Suppose v and m; lie on the same side of S,. Refer to

Figure 5.9.

Figure 5.9: Illustration for the proof of Lemma 5.5.9.

As mo and v lie on opposite sides of S, line segment mov must intersect S, at
a point, say q. As My and M are empty, m; and mg belong to Vp«. So mov C V),
which implies ¢ € V,-. By Corollary 5.5.1, d(q,p*) = O(€/8). Tt is clear that
d(q,p*) > d(v,p*)sin Zv > €"/16sin Zv. Thus Zv = O(?/8) /€716 = O(7/16). On
the other hand, d(q,p*) > d(v,p*)sin Zmy = (sin Zmy)/10. Thus Zmy = O(e/9).
Hence Z(p*v,ny-) = Zop*my < Zmg + Zv = O(€1/10) + O(1/8) = O(7/19).

Proof of Lemma 5.5.11

Suppose p* € S,. Consider the twin empty balls M; and Ms touching S, at p* of
radius 1/10. Let D be the ball with the circumcircle of T' as a diameter; refer to
Figure 5.10(a). The radius r of D is equal to the radius of the circumcircle of T.
Denote the circles of the intersection of D with M; and M, as C7 and Cs respectively.

The normal to S at p passes through m, the center of M;. This normal makes an
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Figure 5.10: Normal of a small triangle T" and the normal to S, at the vertex p* of
T with the largest vertex angle.

angle less than \ with the normals to the planes of C; and Csy, where

A < arcsin(r/d(p*,m))
= arcsin(10r)

O(e11%)

by Lemma 5.5.10. This angle bound also applies to the plane of Cy, which implies
that the planes of C; and Cs make a wedge, say GG, with an acute angle no more

than 2.

The other two vertices ¢* and s* of T' cannot lie inside M7 and M>. This implies
that T lies completely in the wedge G. Consider a cone at p* inside the wedge G
formed by the three planes: the plane mp supporting 7', the plane m; supporting
C1, and the plane 7o supporting Cs. A unit sphere centered around p* intersects
the cone in a spherical triangle uvw, where u, v and w are the intersection points
of the lines w1 N wo, wp N 7wy and 7 N wo with the unit sphere respectively. See
Figure 5.10(b). Without the loss of generality, assume that the angle Zuvw < Zuwv.
We have the following facts. The arc length of wv, denoted by |wv]|, is at least
7/3 since p* subtends the largest angle in 7" and T lies completely in the wedge
G. The spherical angle Zvuw is less than or equal to 2A. We are interested in
the spherical angle § = Zuvw which is also the acute dihedral angle between the

planes of T and Cy. By standard sine laws in spherical geometry, we have sin 3 =

112



sin |y |ShLvuw < sinsin\uw\Sin(2/\) If /3 < |wv| < 2r/3, we have sin7/3 > /3/2

sin [wv] sin Jwo|”
and hence § < arcsin% sin(2A). For the range 27/3 < |wv| < 7, we use the fact
that |uw| + |wv| < 7 since Zvuw < 2a < /2 for sufficiently small e. So, in this case

Ziﬁ\m < 1. Thus g8 < arcsin % sin(2)) = O(2/16).

Hence the angle between the normal of T" and n,+ is an acute angle at most

A+ 6 =0(/19).

Proof of Lemma 5.5.18

We know that p is well-defined and continuous on U, and its inverse is also contin-
uous, so it only remains to show that it is one-to-one. First, we prove that if U is in
one triangle T, y1 is one-to-one. For a point ¢ € T, the vector from ¢ to u(q) is nor-
mal to the surface at p(q). If there was some y # q on T with u(y) = u(q), then g,
w(q) and y would all be collinear and T itself would have to contain line segment qy,
contradicting Lemma 5.5.12(ii), which says that the normal of T is nearly parallel

to the normal of S at u(q).

Now, we consider the case in which U is contained in more than one triangle.
Let ¢ and y be two points U such that u(q) = pu(y) = =, and let p* be a common
vertex of the triangles that contain U. Since p is one-to-one in one triangle, ¢ and
y must lie in the two distinct triangles T, and T}, respectively. Let [ be the normal
line to S at z. Note that [ || n,. [ pieces the patch U at least twice; if y and ¢
are not adjacent intersections along [, redefine ¢ so that this is true. Now consider
the orientation of the patch U according to the estimated normal direction £; at p*.
Either [ passes from inside to outside and back to inside when crossing y and ¢, or

from outside to inside and back to outside.

The acute angles between the triangle normals of T,, T, and n, are O(¢?/'6) by
Lemma 5.5.12(ii), that is, the triangles are stabbed nearly perpendicularly by n,.
But since the orientation of U is opposite at the two intersections, the angle between
the two oriented triangle normals is greater than zero, meaning that T, and T, must
meet at p* at an acute angle. This would contradict Lemma 5.5.14, which is that

Ty and Ty meet at p* at an obtuse angle. Hence there are no two points y,q in U
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with u(q) = u(y).

Proof of Lemma 5.5.19

Let S’ C S be u(N). We first show that (N, u) is a covering space of S’. Informally,
(N, i) is a covering space for S’ if function 4 maps N smoothly onto S’, with no folds
or other singularities; see Massey [41], Chapter 5. Showing that (N, i) is a covering
space is weaker than showing that u defines a homeomorphism, since, for instance,
it does not preclude several connected components of N mapping onto the same
component of S’, or more interesting behavior, such as torus wrapping twice around

another torus wrapping twice around another torus to form a double covering.

Formally, the (N, u) is a covering space of S’ if, for every z € S’, there is a
path-connected elementary neighborhood V, around x such that each path-connected

component of ~'(V,,) is mapped homeomorphically onto V. by .

To construct such an elementary neighborhood, note that the set of points
|~ 1(x)| corresponding to a point z € S’ is non-zero and finite, since y is one-
to-one on each triangle of N and there are only a finite number of triangles. For
each point ¢ € u~!(z), we choose an open neighborhood U, of around ¢, homeo-
morphic to a disk and small enough so that U, is contained only in triangles that

contain ¢q. Refer to Figure 5.11.

Figure 5.11: Tllustration for the proof of Lemma 5.5.19.

As mo and v lie on opposite sides of S,

We claim that g maps each U, homeomorphically onto p(U,). This is because

it is continuous, it is onto p(U,) by definition, and, since any two points z and y in
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U, are in adjacent triangles, it is one-to-one by Lemma 5.5.18.

Let U'(z) = Nyep1(2)(Uy), the intersection of the maps of each of the U,. U'(x)
is the intersection of a finite number of open neighborhoods, each containing z, so
we can find an open disk V, around z. V. is path connected, and each component
of u~1(V,) is a subset of some U, and hence is mapped homeomorphically onto V;

by p. Thus (N, u) is a covering space for S’.

We show that j defines a homeomorphism between N and S’. Since N is onto
S’ by definition, we need only show that p is ono-to-one. Consider one connected
component G of S’. A theorem of algebraic topology (see eg. Massey [41], Chapter
5, Lemma 3.4) says that when (N, p) is a covering space of S’, the sets pu '(z)
for all x € G have the same cardinality. We now use Corollary 5.5.2(ii), that p is
one-to-one from N to u(p*) for every p* € C*. From the algorithm, it is clear that
each connected component of S contains a u(p*) for some center point p* € C*. So
it must be the case that u : N — S’ is everywhere one-to-one, and N and S’ are

homeomorphic.

Finally, we show that S’ = S. Since N is closed and compact, S’ must be as well.
So S’ cannot include part of a connected component of S, and hence S’ must consist
of a subset of the connected components of S. Since every connected component of
S contains a u(p*) for some center point p* € C*, all components of S belong to S’.

Hence S’ = S, and N and S are homeomorphic.

115



CHAPTER 6

CONCLUSION AND DISCUSSION

In the literature, most of the faithful reconstruction algorithms are proposed for
noiseless sample points from smooth curves / surfaces, or from curves with sharp
corners and endpoints. In this thesis, we propose provably faithful reconstruction

algorithms for noisy sample points lying close to the original curve / surface.

We first propose a probabilistic noise model for the curve reconstruction prob-
lem. Based on this model, we design a curve reconstruction algorithm for the noisy
input. The reconstruction is faithful with probability approaching 1 as the sampling
density increases. Then we extend our approach to perform surface reconstruction
from the noisy input points. We are able to make the noise model deterministic so
that the analysis of the faithfulness proof is simplified. We prove that the surface
reconstructed is faithful to the original surface if the input points satisfy the deter-
ministic noise model. Both of our curve and surface reconstruction algorithms follow
the same framework. First observe that all the sampling points inside the coarse
ball centering at any sample point p fall inside a thin slab. The normal to this thin
slab is a rough estimate to the surface normal. However, the deviated angle between
this rough normal and the real surface normal depends on the noise amplitude 9,
which is a constant by our assumption. That means the deviated angle does not
tend to zero when the sampling density increases. Therefore, the algorithms move
on to another stage to estimate a finer normal direction in the so-called refined
neighborhood. Using this refined normal, the position of the sample point p is re-
estimated to a new point (called center point), which is closer to the original curve
/ surface than p itself. A subset of these center points is then selected for the final
surface reconstruction, which can be done using any existing faithful reconstruction

algorithm for noiseless samples.

Dey & Goswami [15] recently has also proposed a provable reconstruction algo-

rithm for noisy sample points lying close to a smooth surface. But in their model,
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the noise amplitude is inversely proportional to the sampling density. That means
they assume the sample points converges to the original manifold automatically
when the sampling density increases. Instead, we assume that the noise amplitude
is a constant globally. In order to have the point convergence property, we have to
re-estimate the sample point positions to get a set of center points converging to the
original manifold. Note that one more difference is that in their noise model, they
assume the noise amplitude varies along the manifold and is proportional to the local
feature size. One advantage of this assumption is that at the area where the local
feature size is large, a large noise amplitude is allowed. One immediate future work
would be to generalize our faithful reconstruction algorithm for the sample points
satisfying a more general noise model such that the noise amplitude is a constant

fraction of the local feature size.

Currently, our assumption that the noises are close to the original manifold are
quite restrictive. We are investigating whether this approach is helpful to handle
outlier noise. Usually the far-away outlier points are much more sparse than the
sample points closer to the original manifold. That means that the majority of the
sample points cluster around the original manifold, but only a small proportion of

them scatters around. See Figure 6.1. In such case, it seems that in the coarse

Figure 6.1: Noisy sample points with outliers.

neighborhood, a thin slab still can be formed by only enclosing a large proportion

of sample points inside the whole coarse ball. Similarly in the refined neighborhood,
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we can consider the min-height cylinder which encloses a large proportion of sample
points inside the cylinder and the corresponding coarse ball. This cylinder direction

should also approximate well to the surface normal. See Figure 6.2.

1 . '
e’ e e T e e

Figure 6.2: (a) Coarse neighborhood. (b) Refined neighborhood.

We also suspect that our approach sheds some light on reconstructing curves and
surfaces with features such as corners, branchings, endpoints and noise altogether.

These problems awaits to be answered.
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