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CURVE AND SURFACERECONSTRUCTION FROM NOISYSAMPLESbySHEUNG-HUNG POONDepartment of Computer ScienceThe Hong Kong University of Science and Technology
ABSTRACTReconstructing an unknown curve or surface from sample points is an impor-tant task in geometric modeling applications. Sample points obtained fromreal applications are usually noisy. For example, when data sets are obtainedby scanning images in the plane or images in three dimensions. In computergraphics, many curve and surface reconstruction algorithms have been devel-oped. However, their common drawback is the lack of theoretical guarantees onthe quality of the reconstruction. This motivates computational geometers topropose algorithms that return provably faithful reconstructions. Algorithmsof this type are known when there is no noise in the input. This leaves theproblem of noise handling open. We propose a probabilistic noise model forthe curve reconstruction problem. Based on this model, we design a curvereconstruction algorithm for noisy input points. The reconstruction is faithfulwith probability approaching 1 as the sampling density increases. Then weextend our approach to surface reconstruction from noisy input points. Notxi



only do we improve the algorithm to make it run faster, we also make the noisemodel deterministic which extends its applicability and simpli�es the analysisof the algorithm. We show that the surface reconstructed is faithful if theinput points satisfy the deterministic noise model.
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CHAPTER 1INTRODUCTIONThe problems of reconstructing curves and surfaces from sample points has beenstudied extensively in computer graphics, geometric modeling, image processing,computer vision, and computational geometry. The input consists of sample pointsfrom the unknown smooth closed curve or surface S. The problem calls for com-puting a polygonal curve / surface that is provably faithful. That means, when thesampling density is su�ciently large, the reconstructed polygonal curve / surfaceshould be homeomorphic to S and the approximation error should approach zero.There are two types of approximation error. First, the Hausdor� distance betweenthe reconstruction and S. Second, the di�erences between the normals of the recon-struction and that of S. Both types of error should approach zero as the samplingdensity increases.Practical sample point sets may be noisy. For example, two-dimensional im-ages obtained by scanning, three-dimensional medical data, and three-dimensionalscanned data points obtained by 3D scanners. In computer graphics and computervision, a lot of reconstruction algorithms have been proposed to handle noise. How-ever, their common drawback is the lack of theoretical guarantees even when theinput samples are very dense. This motivates computational geometers to designreconstruction algorithms that guarantee faithfulness. Several algorithms have beenproposed for noiseless sample points. Less is known about the faithful surface re-construction problem from noisy samples.The noisy samples are typically classi�ed into two types. The �rst type aresamples that cluster around the curve / surface S but they generally do not lie onit. The second type are outliers that lie relatively far from the curve / surface S. Inthis thesis, we only consider the handling of noise of the �rst type with theoreticalguarantees. It is more di�cult to handle the noise of second type with theoretical1



guarantees, which is out of scope of this thesis. There are known �ltering methodsfor removing outliers [9, 27, 47, 48, 51, 52].We summarize our main contributions in this thesis here. We �rst propose aprobabilistic noise model for the curve reconstruction problem. Based on this model,we design a curve reconstruction algorithm for the noisy input. The reconstructionis faithful with probability approaching 1 as the sampling density increases. Thenwe extend our approach to perform surface reconstruction from the noisy inputpoints. We are able to make the noise model deterministic so that the analysis ofthe faithfulness proof is simpli�ed. We prove that the surface reconstructed is faithfulto the original surface if the input points satisfy the deterministic noise model. Bothof our curve and surface reconstruction algorithms follow the same framework. Ouralgorithms �rst construct a set of center points from the given noisy sample points.The center points are provably much less noisy than the input points. A subset ofthese center points is then selected for the �nal surface reconstruction. This step canbe done using any existing faithful reconstruction algorithm for noiseless samples.We choose the NN-crust algorithm [16] for reconstructing curves and the coconealgorithm [5] for reconstructing surfaces, respectively.We give a brief survey on the related work for curve and surface reconstructionin Sections 1.1 and 1.2, respectively. Then we give an outline of this thesis inSection 1.3.1.1 Related work for curve reconstructionSeveral curve reconstruction algorithms have been proposed in the geometric mod-eling and image processing literature that achieve good experimental results. Fangand Gossard [24] proposed to �t a deformable curve by minimizing some spring en-ergy function. Dedieu and Favardin [13] described a method to order and connectsample points on an unknown 2D curve. Taubin and Ronfard [50] proposed to con-struct a mesh covering the sample points and then extract a polygonal curve that�ts the sample points. Pottmann and Randrup [43] used a pixel-based techniqueto thin an input point cloud to a curve. This image thinning technique can handle2



noise, but it is di�cult to come up with an appropriate pixel size. Goshtasby [31]obtained a reconstruction by tracing points that locally maximize a certain inversedistance function involving the noisy sample points. The traced points form thereconstruction. Lee [37] proposed a variant of the moving least-squares methodby Levin [38, 39]. Using a weighted regression, a new point is computed for eachnoisy sample point such that the new points cluster around some curve. Then thenew points are decimated to produce a reconstruction. Although good experimen-tal results are obtained with the above methods, there was no guarantee on thefaithfulness of the reconstruction.Algorithms in [10, 44, 45, 46] tried to select a subset of Delaunay edges to approx-imate the original curve. Edelsbrunner, Kirkpatrick, and Seidel [21] proposed the�-shape for 2D shape reconstruction. Their algorithm tends to work well for samplepoints with uniform distribution on the domain. Amenta, Bern, and Eppstein [3]obtained the �rst result for curve reconstruction problem from noiseless sampleswith theoretical guarantees. They proposed a 2D crust algorithm whose output isprovably faithful if the input satis�es the �-sampling condition for any � < 0:252.For each point x on S, the local feature size f(x) at x is de�ned as the distance fromx to the medial axis of S. For 0 < � < 1, a set S of samples is an �-sampling of S iffor any point x 2 S, there exists a sample s 2 S such that d(s; x) � � �f(x) [3]. Notethat the de�nition for local feature size applies also to higher dimensions. The 2Dcrust algorithm invokes the computation of a Voronoi diagram or Delaunay trian-gulation twice. Gold and Snoeyink [30] presented a simpler algorithm that invokesthe computation of Delaunay triangulation only once. Later, Dey and Kumar [16]proposed an even simpler algorithm called NN-crust. They showed that the outputof their algorithm is faithful to the original curve if the input sample points satisfythe �-sampling condition for any � � 1=3 in [16].Dey, Mehlhorn, and Ramos [17] proposed an algorithm to handle curves withendpoints with guarantees. Dey and Wenger [18, 19] presented an algorithm tohandle sharp corners without guarantees; whereas Funke and Ramos [25] can dothat with guarantees. Giesen [28] discovered that the traveling salesperson tourthrough the samples is a faithful reconstruction. Althaus and Mehlhorn [1] showed3



that such a traveling salesperson tour can be constructed in polynomial time.1.2 Related work for surface reconstructionThe surface reconstruction problem has been studied extensively in computer graph-ics and computer vision. The �rst and widely known reconstruction algorithm incomputer graphics is the work of Hoppe et al. [34, 36, 35]. Their work performs quitewell in practice, and allows the presence of noise. Later, Curless and Levoy [12]presented a volumetric method to reconstruct surface from range images. Medioniand Tang [40, 49] applied a technique called tensor voting to infer the surface andfeatures on it. All these algorithms can also handle noise in the input, and appearto be quite successful in practice. However, they do not have theoretical guarantees.Some faithful reconstruction algorithms were proposed in computational geome-try for the simple case that sample points are noiseless. Edelsbrunner and Mucke [22]used the �-shape to construct the surface, and Edelsbrunner [20] proposed anothersurface reconstruction algorithm by wrapping the sample points. The main draw-back is that they perform well only for uniform sample set. Amenta and Bern [2, 4]extended the approach of Voronoi �ltering to do surface reconstruction. Later,Amenta, Choi, Dey, and Leekha [5] presented a simpler algorithm with a proof thatthe reconstruction is homeomorphic to the original surface. Amenta et al. [6, 7]gave another faithful reconstruction algorithm, which is called power crust. Onemerit of the power crust algorithm is that it always output a water-tight surfaceregardless of the sampling density of the input data set. Another algorithm givenby Boissonnat and Cazals [8] reconstructs a smooth implicit surface interpolatingthe sample points. One can then mesh the implicit surface to obtain a mesh of thedesired resolution.As we mentioned before, noise often arises in practical sample point set. Re-cently, Mitra and Nguyen [42] presented methods to estimate surface normals frompoint clouds, but did not proceed to �nally reconstruct the surface for the samplepoints. Very recently and independently, Dey and Goswami [15] proposed a surfacereconstruction algorithm from noisy samples. There are several major di�erences4



between their work and ours in this thesis. In their noise model, the noise amplitudeis proportional to the local feature size and inversely proportional to the samplingdensity; whereas in our model, it is an independent constant. Their algorithm selectsa set of \boundary" noisy sample points for reconstruction; whereas our algorithmtries to estimate some center points close to the original surface for reconstruction.Finally, they gave an implementation for their algorithm and had some promisingresults, but we havn't implemented our algorithm.1.3 Thesis outlineWe gave an introduction for the curve and surface reconstruction problem in thecurrent chapter (Chapter 1).In Chapter 2, we propose a particular probabilistic model for noisy samples forsmooth curves on the plane. And in Chapter 3, provided that the input samplepoints follows the probabilistic noise model, we prove that our reconstructed curveis faithful to the original curve with probability approaching 1 as the number ofsamples increases. The novelty of our algorithm is a method to cluster samples sothat each cluster comes from a relatively at portion of S. This allows us to furtherestimate points that lie close to S.In Chapter 4, we propose a deterministic noise model for noisy samples forsmooth surfaces in three dimensions, and justify it. Making use of this deterministicmodel, we can have a simpler and cleaner analysis for the faithfulness proof of oursurface reconstruction algorithm in Chapter 5. Our surface reconstruction algorithmis a generalized version of the algorithm in Chapter 3.And �nally in Chapter 6, we conclude this thesis and propose some future re-search problems.
5



CHAPTER 2PROBABILISTIC NOISE MODEL FORCURVESIn this and next chapters, we only consider the given sample points are drawn froman unknown closed smooth curve S on the plane. Suppose P is the given set of nnoisy sample points from S. As we mentioned in the introduction chapter, we onlyconsider noise of the �rst type, which are sample points cluster around and close toS. We denote the maximum noise amplitude away from S by �. We assume thatminx2S f(x) = 1 for convenience. So for any x 2 S, f(x) � 1.In this chapter, we present a probabilistic noise model for a curve (Section 2.1).We then introduce the basic notations and some basic geometric lemmas in Sec-tion 2.2. Finally in Section 2.3, we will look at some consequent technical lemmasdue to this model, which are needed later in the analysis of our curve reconstructionalgorithm in Chapter 3. Note that the proofs of some technial lemmas are given inthe appendix.2.1 Sampling and noise modelWe use probabilistic sampling to model the noise. A sample is generated by drawinga point from S followed by randomly perturbing the point in the normal direction.In a sense, it models the location of points on the curve by an input device, followedby perturbation due to noise. Let L = RS 1f(x)dx. The drawing of points from Sfollows the probability density function 1L�f(x) . That is, the probability of drawinga point from a curve segment � is equal to R� 1f(x)dx divided by L. This is known asthe locally uniform distribution. The distribution of each sample is independentlyidentical.A point p drawn from S is perturbed in the normal direction. The perturbationis uniformly distributed within an interval that has p as the midpoint, width 2�, and6



aligns with the normal direction at p. Note that the noise amplitude � remains �xedregardless of the number of points drawn from S. Although the noise perturbation isrestrictive, it isolates the e�ect of noise from the sampling distribution which allowsan initial study of noise handling. It seems necessary that � is less than 1. Otherwise,as the minimum local feature size is 1, the perturbed points from di�erent parts of Swill mix up at some place and it seems very di�cult to estimate the unknown curveS around that neighborhood. For our analysis to work, we assume that � � 1=(25�2)where � � 5 is a constant chosen a priori by our algorithm. We emphasize that thevalue of � is unknown to our algorithm.One may consider other sampling distributions. A more restrictive model isthe uniform distribution, in which the probability of drawing a point from a curvesegment � is equal to length(�)length(S) . This model is attractive because it is natural tosample in a uniform fashion in the absence of any information about the local featuresizes. Despite the apparent di�erence, the locally uniform distribution is stronglyrelated to the uniform distribution which can be seen as follows. When � is short, theLipschitz property of the local feature sizes implies that the probability of drawinga point from � in the locally uniform model is �( R� dxL�f(c) ) for any point c 2 �. Thisis equivalent to �( length(�)L�f(c) ). If we treat L and length(S) as intrinsic constants forS, the probabilities of sampling in the locally uniform distribution and the uniformdistribution di�er only by a factor of local feature size. Thus our analysis for thelocally uniform distribution can be adapted easily for the uniform distribution case,basically by slashing o� a factor of local feature size. In particular, the reconstructionis faithful with probability at least 1�O(n�
(ln! n�1)) instead of 1�O(n�
( ln! nfmax�1)).Our algorithm and analysis do not make use of any estimation of local featuresizes. This is demonstrated by the fact that our analysis can be adapted to theuniform distribution case as briey explained above. Our algorithm constructs asmall neighborhood around each noisy sample, and from this small neighborhood,one can extract upper and lower bounds on the local feature size. However, the twobounds di�er by a factor that tends to in�nity as the sampling density increases.So the small neighborhood does not o�er any reliable estimation of the local featuresize. (We will elaborate on this point when we describe our algorithm.) In fact,7



we do not know how to obtain such estimation in the presence of noise, withoute�ectively solving the reconstruction problem �rst. After solving the reconstructionproblem, one may possibly estimate the local feature sizes using the Voronoi diagramof the reconstruction as an approximation of the medial axis. This is beyond thescope of this paper though.2.2 PreliminariesWe call the bounded region enclosed by S the inside of S and the unbounded regionthe outside of S. For 0 < � � �, S+� (resp., S�� ) is the curve that passes throughthe points q outside (resp., inside) S such that d(q; ~q) = �. We use S� to mean S+�or S�� when it is unimportant to distinguish between inside and outside. S can bevisualized as the boundary of the union of the medial disks enclosed by S. If weincrease the radii of all such medial disks by �, S+� is the boundary of the union ofthe expanded disks. S�� has a similar interpretation after decreasing the radii of allsuch medial disks by �. It follows that S and S� have the same medial axis.The normal segment at a point p 2 S is the line segment consisting of the pointsq on the normal of S at p such that d(p; q) � �. Given two points x and y onS, we use S(x; y) to denote the curved segment traversed from x to y in clockwisedirection. We use jS(x; y)j to denote the length of S(x; y).The following are some technical lemmas on some geometric properties of S�.Their proofs can be found in the appendix. Lemma 2.2.1 lower bounds the radius ofthe tangent disk at any point on S�. Lemma 2.2.2 shows that a small neighborhoodof a point p on S� is at enough to �t inside a double cone at p with small aperture.Lemma 2.2.3 proves the small normal variation between two nearby points on S�.Lemma 2.2.1 Any point p on S� has two tangent disks with radii f(~p)� � whoseinterior do not intersect S�.For each point p on S�, take the double cone of points q such that pq makesan angle (� � �)=2 or less with the support line of the normal at p. We denote the8



complement of this double cone by cocone(p; �). Note that cocone(p; �) is a doublecone with apex p and angle �.Lemma 2.2.2 Let p be a point on S�. Let D be a disk centered at p with radiusless than 2(1� �)f(~p).(i) For any point q 2 S� \D, the distance of q from the tangent at p is at mostd(p;q)22(1��)f(~p) .(ii) S� \D � cocone(p; 2 sin�1 radius(D)2(1��)f(~p) ).Lemma 2.2.3 Let p be a point on S�. Let D be a disk centered at p with radius atmost (1��)f(~p)4 . For any point u 2 S� \D, the acute angle between the normals at pand u is at most 2 sin�1 d(p;u)(1��)f(~p) � 2 sin�1 radius(D)(1��)f(~p) .2.3 DecompositionsWe will use two types of decompositions, �-partition and �-grid. Let 0 < � < 1 bea parameter. We identify a set of cut-points on S as follows. We pick an arbitrarypoint c0 on S as the �rst cut-point. Then for i � 1, we �nd the point ci such that cilies in the interior of S(ci�1; c0), jS(ci�1; ci)j = �2f(ci�1), and jS(ci; c0)j � �2f(ci).If ci exists, it is the next cut-point and we continue. Otherwise, we have computedall the cut-points and we stop. The �-partition is the arrangement of S+� , S�� , andthe normal segments at the cut-points. Figure 2.1 shows an example. We call eachface of the �-partition a �-slab. The �-partition consists of a row of slabs stabbedby S.The cut-points for a �-grid are picked di�erently. We pick an arbitrary point c0on S as the �rst cut-point. Then for i � 1, we �nd the point ci such that ci liesin the interior of S(ci�1; c0), jS(ci�1; ci)j = �f(ci�1), and jS(ci; c0)j � �f(ci). If ciexists, it is the next cut-point and we continue. Otherwise, we have computed allthe cut-points and we stop. The �-grid is the arrangement of the following:� The normal segments at the cut-points.9
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bound the width of a �-slab. In Section 2.3.3, we analyze the probabilities of some�-slabs and �-cells containing certain numbers of samples.2.3.1 Diameter of a �-cellWe need a technical lemma before proving an upper bound on the diameter of a�-cell.Lemma 2.3.1 Assume that � � 1=12. Let p and q be two points on S� such thatjS(~p; ~q)j � 3�f(~p). Then d(p; q) � d(~p; ~q) + 7��.Proof. Refer to Figure 2.3. Let r be the point q� ~q+ ~p. Without loss of generality,assume that \~ppr � \~prp. Lemma 2.2.3 implies that \p~pr � 2 sin�1 3�. Therefore,
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C. Note that ~p = ~s and ~q = ~t. The triangle inequality and Lemma 2.3.1 imply thatd(s; t) � d(p; q) + d(p; s) + d(q; t)� d(~p; ~q) + 7�� + d(p; s) + d(q; t):Since d(~p; ~q) = d(~s; ~t) � 3�f(ci) and both d(p; s) and d(q; t) are at most 2��, thediameter of C is at most 3�f(ci) + 11�� � 14�f(ci).2.3.2 Slab widthThe next lemma lower bounds the width of slab in a �-partition.Lemma 2.3.3 Assume that � � 1=8 and � � 1=6. Let ci and ci+1 be two consecutivecut-points of a �-partition. For any point on the normal segment at ci+1 (resp., ci),its distance from the support line of the normal segment at ci (resp., ci+1) is at leastjS(ci; ci+1)j=6.Proof. Assume that the normal at ci is vertical. Take any two points p; q 2 S� suchthat ~p = ci and ~q = ci+1. We �rst bound the distance from q to the support line ofthe normal segment at ci. The same approach also works for the distance from p tothe support line of the normal segment at ci+1.Let r be the orthogonal projection of q onto the tangent to S� at p. Observethat the distance of q from the support line of the normal segment at ci is d(p; r).We are to prove that d(p; r) � jS(ci; ci+1)j=6. For any point x 2 S�(p; q), we use�x to denote the angle between the normals at ~x and ci. By Lemma 2.2.3, we have�x � 2 sin�1 d(ci;~x)f(ci) . Since ~x 2 S(ci; ci+1), we have d(ci; ~x) � jS(ci; ~x)j � jS(ci; ci+1)j.Thus �x � 2 sin�1 jS(ci;ci+1)jf(ci) . By our assumption on �, jS(ci;ci+1)jf(ci) � 3�2 � 1=12. Itfollows that sin�1 jS(ci;ci+1)jf(ci) < 2jS(ci;ci+1)jf(ci) . Therefore,�x � 4jS(ci; ci+1)jf(ci) (2.1)� 12�2: (2.2)12



This implies that S�(p; q) is monotone along the tangent to S� at p; otherwise, thereis a point x 2 S�(p; q) such that �x = �=2 > 12�2, a contradiction. It follows thatS(ci; ci+1) is also monotone along the tangent to S at ci. Refer to Figure 2.4. Assume
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Figure 2.4: Illustration for Lemma 2.3.3.that p lies below ci, and q lies to the right of p. Let r0 be the orthogonal projectionof ci+1 onto the tangent to S at ci. The monotonicity of S(ci; ci+1) implies thatd(ci; r0) = ZS(ci;ci+1) cos �x dx (2:2)� jS(ci; ci+1)j � cos(12�2) > 0:8jS(ci; ci+1)j;as cos(12�2) > cos(0:5) > 0:8. Let d be the horizontal distance between r and r0.Observe that d = d(ci+1; q) � sin �q � ��q, which is at most 4�jS(ci; ci+1)j by (2.1).We conclude that d(p; r) � d(ci; r0)� d� (0:8 � 4�)jS(ci; ci+1)j��1=8> jS(ci; ci+1)j4 :This lower bounds the distance from q to the support line of the normal segment atci. Let dp be the distance from p to the support line of the normal segment at ci+1.We can use the same approach to lower bound dp. The only di�erence is that forany point x 2 S�(p; q), the angle �x between the normals at ~x and ci+1 satis�es�x � 2 sin�1 jS(ci; ci+1)jf(ci+1) :13



Note that the denominator is f(ci+1) instead of f(ci) in (2.1). Nevertheless, bythe Lipschitz condition, f(ci+1) � f(ci) � d(ci; ci+1) � f(ci) � jS(ci; ci+1)j � (1 �3�2)f(ci), which is at least 11f(ci)=12 as 3�2 � 1=12. Therefore,�x � 2 sin�1 12jS(ci; ci+1)j11f(ci) � 2 � 24jS(ci; ci+1)j11f(ci) < 5jS(ci; ci+1)jf(ci) � 15�2:Observe that �x � 15�2 < �=2. So S�(p; q) and S(ci; ci+1) are monotone alongthe tangents to S� at q and S at ci+1, respectively. Also, cos�x � cos(15�2) �cos(0:5) > 0:8. Hence, by imitating the previous derivation of the lower bound ofd(p; r), we obtain dp � (0:8 � 5�)jS(ci; ci+1)j��1=8> jS(ci; ci+1)j6 :
2.3.3 Number of samples in cells and slabsWe �rst need a lemma that estimates the probability of a sample point lying insidecertain �-cells and �-slabs.Lemma 2.3.4 Let �k = qk2 ln1+! nn for some positive constant k. Let r � 1 be aparameter. Let C be a (�k=r)-slab or (�k=r)-cell. Let s be a sample. There existconstants �1 and �2 such that if n is so large that �k � 1=6, then �2�2k=r2 � Pr(s 2C) � �1�2k=r2.Proof. Recall that L = RS 1f(x)dx. Assume that C lies between the normal segmentsat the cut-points ci and ci+1. We use � to denote S(ci; ci+1) as a short hand.By our assumption on �k, for any point x 2 �, if C is a �k-cell, then d(x; ci) �3�kf(ci)=r � f(ci)=2; if C is a �k-slab, then d(x; ci) � 3�2kf(ci)=r2 � f(ci)=12. TheLipschitz condition implies that f(ci)=2 � f(x) � 3f(ci)=2. If C is a �k-slab, thenPr(s 2 C) = Pr(~s lies on �), which is 1L � R� 1f(x)dx 2 [ 2�2k3Lr2 ; 6�2kLr2 ]. If C is �k-cell,14



then Pr(~s lies on �) = 1L � R� 1f(x)dx 2 [ 2�k3Lr ; 6�kLr ]. Since Pr(s 2 C j ~s lies on �) 2[�k�2�r ; 2�k�2�r ] = [�k2r ; �kr ], Pr(s 2 C) 2 [ �2k3Lr2 ; 6�2kLr2 ].The following Cherno� bound [32] will be needed.Lemma 2.3.5 Let the random variables X1;X2; : : : ;Xn be independent, with 0 �Xi � 1 for each i. Let Sn = Pni=1Xi, and let E(Sn) be the expected value ofSn. Then for any � > 0, Pr(Sn � (1 � �)E(Sn)) � exp(��2E(Sn)2 ), and Pr(Sn �(1 + �)E(Sn)) � exp(� �2E(Sn)2(1+�=3) ).We are ready to analyze the probabilities of some �-slabs and �-cells containingcertain numbers of samples.Lemma 2.3.6 Let �k = qk2 ln1+! nn for some positive constant k. Let r � 1 be aparameter. Let C be a (�k=r)-slab or (�k=r)-cell. Let �1 and �2 be the constants inLemma 2.3.4. Whenever n is so large that �k � 1=6, the following hold.(i) C is non-empty with probability at least 1� n�
(ln! n=r2).(ii) Assume that r = 1. For any constant � > �1k2, the number of samples in Cis at most � ln1+! n with probability at least 1� n�
(ln! n).(iii) Assume that r = 1. For any constant � < �2k2, the number of samples in Cis at least � ln1+! n with probability at least 1� n�
(ln! n).Proof. Let Xi(i = 1; : : : ; n) be a random binomial variable taking value 1 if thesample point si is inside C, and value 0 otherwise. Let Sn = Pni=1Xi. ThenE(Sn) =Pni=1E(Xi) = n � Pr(si 2 C). This implies thatE(Sn) � �1n�2kr2 = �1k2 ln1+! nr2 ; E(Sn) � �2n�2kr2 = �2k2 ln1+! nr2 :By Lemma 2.3.5, Pr(Sn � 0) = Pr(Sn � (1� 1)E(Sn))� exp(�E(Sn)2 )� exp(�
(ln1+! nr2 )):15



Consider (ii). Let � = ��1k2 � 1 > 0. Since r = 1, we have� ln1+! n = �1n�2k(1 + �) � (1 + �)E(Sn):By Lemma 2.3.5, Pr(Sn > � ln1+! n) � Pr(Sn > (1 + �)E(Sn))� exp(��2E(Sn)2 + 2�=3 )= exp(�
(ln1+! n)):Consider (iii). Let � = 1� ��2k2 > 0. Since r = 1, we have� ln1+! n = �2n�2k(1� �) � (1� �)E(Sn):By Lemma 2.3.5, Pr(Sn < � ln1+! n) � Pr(Sn < (1� �)E(Sn))� exp(��2E(Sn)2 )= exp(�
(ln1+! n)):
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2.4 AppendixProof of Lemma 2.2.1Let M� be the medial disk of S� touching a point p 2 S�. By the de�nition of S�,there is a medial diskM of S touching ~p such that M andM� have the same center.Moreover, radius(M�) = radius(M)� � � f(~p)� �.Proof of Lemma 2.2.2Assume that the tangent at p is horizontal. Consider (i). Refer to Figure 2.5(a). LetB be the tangent disk at p that lies above p and has center x and radius (1��)f(~p).Let C be the circle centered at p with radius d(p; q). Since d(p; q) < 2(1��)f(~p), Ccrosses B. Let r be a point in C \ @B. Let d be the distance of r from the tangentat p. By Lemma 2.2.1, d bounds the distance from q to the tangent at p. Observethat d(p; q) = d(p; r) = 2(1 � �)f(~p) sin(\pxr2 ) and d = d(p; r) � sin(\pxr2 ). Thus,d = 2(1� �)f(~p) sin2(\pxr2 ) = d(p;q)22(1��)f(~p) .
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(a) (b)Figure 2.5: Illustration for Lemma 2.2.2.Consider (ii). Refer to Figure 2.5(b). By (i), the distance between any point inF�\D and the tangent at p is bounded by radius(D)22(1��)f(~p) . Let � be the smallest angle suchthat cocone(p; �) contains S� \D. Then sin �2 � radius(D)22(1��)f(~p) � 1radius(D) = radius(D)2(1��)f(~p) .17



Proof of Lemma 2.2.3Take any point u on S�\D. Let ` be the tangent to S� at u. Let `0 be the line thatis perpendicular to ` and passes through u. Let C be the circle centered at p withradius d(p; u). Let A and B be the two tangent circles at p with radius (1��)f(~p)2 .Let x be the center of A. Without loss of generality, we assume that the tangentto S� at p is horizontal, A is below B, u lies to the left of p, and the slope of `is positive or in�nite. (We ignore the case where the slope of ` is zero as there isnothing to prove then.) It follows that the slope of `0 is zero or negative. Refer toFigure 2.6.
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x(a) (b) (c)Figure 2.6: Illustration for Lemma 2.2.3.By Lemma 2.2.1, u lies outside A and B. Let q be the intersection point betweenC and A on the left of p. Since d(p; q) = d(p; u) � (1��)f(~p)4 = radius(A)=2, q liesabove x. Also, \pxq = 2 sin�1 d(p;u)(1��)f(~p) .Suppose that `0 does not lie above x, see Figure 2.6(a). Since u lies above thesupport line of qx, the angle between `0 and the vertical is less than or equal to\pxq = 2 sin�1 d(p;u)(1��)f(~p) .Suppose that `0 lies above x but not above p, see Figure 2.6(b). We showthat this case is impossible. Let w the intersection point between A and `0 onthe right of p. Note that p lies between u and w and \upw > �=2. If we grow18



a disk that lies below l and remains tangent to l at u, the disk will hit S� atsome point di�erent from u when the disk passes through p or earlier. It followsthat there is a medial disk Mu of S� that touches u and lies below l. Observethat the center of Mu lies on the half of `0 on the right of u. Furthermore, thecenter of Mu lies on the line segment uw; otherwise, since \upw > �=2, Mu wouldcontain p, a contradiction. Thus, the distance from ~p to the center of Mu is lessthan maxfd(p; u); d(p;w)g + d(p; ~p) � 2 � radius(A) + � = (1 � �)f(~p) + � � f(~p).However, since the center of Mu is also a point on the medial axis of S, its distancefrom ~p should be at least f(~p), a contradiction.The remaining case is that `0 lies above p, see Figure 2.6(c). Since u lies outsideB and the slope of `0 is zero or negative, `0 lies between p and the center of B. Thesituation is similar to the previous case where `0 lies between p and x. So a similarargument shows that this case is also impossible.
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CHAPTER 3CURVE RECONSTRUCTIONIn this chapter, we will present an algorithm to reconstruct polygonal closed curvesfrom noisy samples drawn from a set of smooth closed curves. We assume eachinput sample point in P follows locally uniform distribution, and the distribution ofeach sample point is independently identical. We show that the output polygonalreconstruction by our algorithm is faithful to the original curve S with probabilityapproaching to 1 as n increases.In Section 3.1, we �rst present our algorithm. Then we states the main theoremof this chapter and give an overview of the analysis of the faithfulness proof inSection 3.2. The details of the analysis appear from Section 3.3 to Section 3.6.Finally we summarize in Section 3.7. Note that the proofs of some technical lemmasare given in the appendix.3.1 AlgorithmOur algorithm consists of three main steps, Point Estimation, Pruning, andOutput. In the Point Estimation step, the algorithm �lters out the noise andcomputes new points that are provably much less noisy than the input samples. Sincethe sampling density is high, the distances of these new points from S can still bemuch larger than the distances among them. Thus a direct reconstruction using all ofthe new points would produce a highly jagged polygonal curve. As a remedy, in thePruning step, the algorithm decimates the points so that the interpoint distancesin the pruned subset is large relative to their distances from S. See Figure 3.1.Finally, in the Output step, we can run any provably good combinatorial curvereconstruction algorithm. We choose to run NN-crust [16]. As it is quite simple,we will then briey describe its details here. In NN-crust algorithm, each sample sin the given sample points P is connected to two edges. First s is connected to its20



Figure 3.1: The left �gure shows the noisy samples. The middle �gure shows thenew points computed. The right �gure shows the remaining points after pruning.nearest neighbor in P the obtain one edge say e. Then s is connected to the closestsample among all samples u such that su makes an obtuse angle with e.The following pseudocode gives a high level description of the above three stepsand more details of the pruning step. For each point x 2 R2 that does not lie on themedial axis of S, we use ~x to denote the point on S closest to x. That is, ~x is theprojection of x onto S. (We are not interested in points on the medial axis.)Point Estimation: For each sample s, we construct a thin rectanglere�ned (s). The long axis of re�ned(s) passes through s and itsorientation approximates the normal at ~s. The center of re�ned (s)is the new point s� desired. The distance d(s�; ~s) approaches zeroas n!1.Pruning: We sort the points s� in decreasing order of width(re�ned (s)).Then we scan the sorted list and select a subset of center points:when we select a center point s�, we delete all center points u�from the sorted list such that d(s�; u�) � width(re�ned (s))1=3.Output: We run the NN-crust algorithm on the selected center pointsand return the output curve.The main objective of Point Estimation is to align the long axis of re�ned (s)with the normal at ~s. This is instrumental to proving that d(s�; ~s) approaches zeroas n!1. The construction of re�ned (s) is done in three steps. We give a highlight�rst before providing the details.First, we compute a small disk initial(s) centered at s. We prove upper andlower bounds on the radius of initial(s), but their ratio is �( n1=4ln(1+!)=4 n) which tendsto in�nity as n ! 1. So initial(s) does not provide a reliable estimate of f(~s).21



Second, we grow the disk neighborhood around s until the samples inside the disk�t inside a strip whose width is small relative to the radius of the disk. The �naldisk is the coarse neighborhood of s and it is denoted by coarse(s). The radiusof coarse(s) is in the order of � + radius(initial(s)). The orientation of the stripapproximates the tangent at ~s. Since S can bend quite a lot within coarse(s), theapproximation error may be in the order of sin�1 �. Thus an improved estimate isneeded. Third, we shrink coarse(s) to a smaller disk. We take a slab perpendicularto strip(s) bounded by two parallel tangent lines of the shrunken disk. We rotatethe slab around s to minimize the spread of the samples inside along the direction ofthe slab. Because of the minimization of the spread of samples inside, we can showthat the orientation of the �nal slab approximates the normal at ~s well.We provide the details of the three steps in Point Estimation below. Let! > 0 and � � 5 be two prede�ned constants.Initial disk: We compute a disk D centered at s that contains ln1+! nsamples. Then we set initial(s) to be the disk centered at s withradiuspradius(D). For su�ciently large n, the radius of D is lessthan 1, which implies that initial(s) contains D. Figure 3.2 showsan illustration.Coarse neighborhood: We initialize coarse(s) = initial(s) and com-pute an in�nite strip strip(s) of minimum width that contains allsamples inside coarse(s). We grow coarse(s) and maintain strip(s)until radius(coarse(s))width(strip(s)) � �. The �nal disk coarse(s) is the coarseneighborhood of s. Figure 3.2 illustrates the growth process.Re�ned neighborhood: Let Ns be the upward direction perpendic-ular to strip(s). The candidate neighborhood candidate(s; �) isthe slab that contains s in the middle and makes a signed acuteangle � with Ns. The width of candidate(s; �) is equal to the min-imum of pradius(initial(s)) and radius(coarse(s))=3. The angle� is positive (resp., negative) if it is on right (resp., left) of Ns.Figure 3.3 shows the initial candidate neighborhood that is per-pendicular to strip(s). We enclose the samples in candidate(s; �)\22



coarse(s) by two parallel lines that are orthogonal to the directionof candidate(s; �). These two lines form a rectangle rectangle(s; �)with the boundary lines of candidate(s; �). The width of the rect-angle rectangle(s; �) is the width of candidate(s; �). The height ofrectangle(s; �) is its length along the direction of candidate(s; �).We vary � within the range [��=10; �=10] to �nd an orientationthat minimizes the height of rectangle(s; �). Figure 3.3 illustratesthe rotation and the bounding rectangle. Let �� be the minimiz-ing angle. The re�ned neighborhood of s is rectangle(s; ��) and isdenoted by re�ned (s). We return the center point s� of re�ned (s).

Figure 3.2: On the left, the white dot is the sample s, the inner disk is D, and theouter disk is initial (s). On the right, we grow initial(s) until strip(s) has a relativelylarge aspect ratio. The �nal disk is coarse(s).

Figure 3.3: On the left, the initial candidate neighborhood is the one perpendicularto strip(s). On the right, as we rotate the candidate neighborhood, we maintain thesmallest bounding rectangle of all samples inside.A few remarks are in order. Recall that minx2S f(x) is assumed to be 1. Forsu�ciently large n (i.e., when the sampling is dense enough), the radius of initial(s)is less than 1. So in the Refined Neighborhood step, pradius(initial(s)) >23



radius(initial(s)). Clearly, coarse(s) contains initial(s). So both of the widthsof candidate(s; �) and re�ned (s) are at most pradius(initial(s)) < 1 and at leastradius(initial(s))=3.3.2 Overview of analysisOur goal is to prove the following result:Main Theorem Assume that � � 1=(25�2) and � � 5. Let n be the number ofnoisy samples from a smooth closed curve. For su�ciently large n, our algorithmcomputes a polygonal closed curve that has the following properties with probabilityat least 1�O(n�
( ln! nfmax�1)).� For each output vertex s�, d(s�; ~s) = O(( ln1+! nn )1=8f(~s)1=4).� For each output edge r�s�, the angle between r�s� and the tangent at ~s isO(( ln1+! nn )1=48f(~s)25=24).� The output curve is homeomorphic to the smooth closed curve.We �rst give an overview of the proof strategies here before diving into detailslater. The hardest part is to argue that the point s� that we estimate for the samples indeed lies very closely to the curve. To illustrate the intuition, we assume thatthe curve is a at horizontal segment locally at ~s. See Figure 3.4(a). So the noisysamples in the local neighborhood lie within a band B of width 2�. Thus the �nalcoarse(s) must have radius �(�� + radius(initial (s))) in order to meet the stoppingcriterion of growing coarse(s). Next, we would like to argue that the slope of strip(s)approximates the slope of the tangent at ~s. We prove this by contradiction andassume that strip(s) is tilted a lot. So a signi�cant area of B lies outside strip(s) asshown in Figure 3.4(b). Our goal is to show that this area contains a noisy samplewith high probability. Therefore, with high probability, strip(s) cannot be muchtilted from the horizontal. The details are in Section 3.3.Directly discussing the emptiness of an arbitrary area (whether it contains a noisysample or not) is quite hard given the continuous distributions. We get around this24
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(b) (c)Figure 3.4: The left �gure shows coarse(s), the noise band B, and S. In the middle�gure, the bold strip is strip(s) and the shaded area is the signi�cant area of Boutside strip(s). The shaded area should be non-empty with high probability. Inthe right �gure, the shaded rectangle is the candidate rectangle.by decomposing the space around S into small cells by making use of the propertiesin Chapter 2. Since the cells have more regular shape, we can show that each cellis non-empty with high probability and we can also bound the diameters of thecells. The cell diameter approaches zero as the sampling density increases. Thebound on the cell diameter enables us to show that the area of B outside strip(s)in Figure 3.4(b) contains a cell. So the area contains a noisy sample with highprobability.The next step is to construct the re�ned neighborhood of s so as to obtain animproved estimate of the normal at ~s. This is done by rotating a candidate rectangleto minimize its height. See Figure 3.4(c). The width of the candidate rectangle isset to be the minimum of pradius(initial(s)) and radius(coarse(s))=3. Clearly, wewant the width to be small in order to generate a large variation in the height evenwhen we have a small angular deviation from the normal at ~s. In fact, we wantto show that radius(initial (s)) approaches zero as the sampling density increases.Recall that initial(s) is generated by identifying the ln1+! n nearest samples to s.We are to show that the number of samples inside a cell is at least ln1+! n withhigh probability. Thus radius(initial(s)) is no more than the cell diameter. InFigure 3.4(c), when we rotate the candidate rectangle, its upper and lower sidesmay invade the interior of the band B. This is because there may not be any noisysample on the band boundary. Still, we want to keep the upper and lower sides of25



the candidate rectangle near the band boundary, otherwise we would not have a bigincrease in height despite the angular deviation from the normal at ~s. Fortunately,as the cells are non-empty with high probability, the gaps between the upper andlower sides and the band boundary must be too narrow for a single cell to �t in.The details are in Section 3.4.We have not discussed one important phenomenon so far. Since � is unknown,it may be arbitrarily small. In this case, radius(coarse(s)) is only lower bounded byradius(initial(s)) as we grow coarse(s) from initial(s). Thus we need to establisha lower bound on radius(initial (s)), and hence radius(coarse(s)). We constructanother decomposition of the space around S into slabs. Then by upper boundingthe number of samples in each slab, we can lower bound radius(initial (s)) by theslab \width". The corresponding details are in the following section, in which theradii of initial(s) and coarse(s) for each sample s will be bounded from above andbelow.In Section 3.5, we obtain the homeomorphism result by extending the NN-crustanalysis. In Section 3.6, we put everything together to prove the main theorem ofthis chapter.3.3 Coarse neighborhoodIn this section, we bound the radii of initial(s) and coarse(s) for each sample s.Then we show that strip(s) provides a rough estimate of the slope of the tangent toS at ~s. Recall that �k =qk2 ln1+! nn .3.3.1 Radius of initial(s)Lemma 3.3.1 Let h be a constant less than q 13�1 and let m be a constant greaterthan q 2�2 , where �1 and �2 are the constants in Lemma 2.3.4. Let  h = �h=3 and m = p14�m. Let s be a sample. If � � 1=8, �h � 1=12, and �m � 1=12, then hpf(~s) � radius(initial(s)) �  mpf(~s)26



with probability at least 1�O(n�
(ln! n)).Proof. Let D be the disk centered at s that contains ln1+! samples. We �rstprove the upper bound. Take a �m-grid such that s lies on the normal segmentat the cut-point c0. Let C be the �m-cell between the normal segments at c0 andc1 that contains s. By Lemma 2.3.6(iii), C contains at least 2 ln1+! n samples withprobability at least 1�n�
(ln! n). SinceD contains ln1+! n samples, radius(D) is lessthan the diameter of C with probability at least 1 � n�
(ln! n). By Lemma 2.3.2,radius(D) � 14�mf(c0) = 14�mf(~s). Hence radius(initial (s)) = pradius(D) �p14�mf(~s).Next, we prove the lower bound. Take a �h-partition such that s lies on thenormal segment at the cut-point c0. Consider the cut-points cj for �1 � j � 1. (Weuse c�1 to denote the last cut-point picked.) We have d(c�1; c0) � jS(c�1; c0)j �3�2hf(c�1) < 0:03f(c�1) as �h � 1=12. The Lipschitz condition implies thatf(c�1) � f(c0)=1:03 > 0:8f(c0): (3.1)Let d�1 and d1 be the distances from s to the support lines of the normal segmentsat c�1 and c1, respectively. By Lemma 2.3.3,d�1 � jS(c�1; c0)j6 � �2hf(c�1)6 (3:1)> �2hf(c0)8 ;d1 � jS(c0; c1)j6 � �2hf(c0)6 :By Lemma 2.3.6(ii), the �h-slabs between c�1 and c0 and between c0 and c1 containat most ln1+! n=3 points with probability at least 1�O(n�
(ln! n)). Hence, for D tocontain ln1+! n points, radius(D) > maxfd�1; d1g � �2hf(c0)=6. Note that f(~s) =f(c0) as ~s = c0 by construction. It follows that radius(initial (s)) = pradius(D) >�hpf(~s)=3.3.3.2 Radius of coarse(s)In this section, we prove an upper bound and a lower bound on the radius ofcoarse(s). 27



Lemma 3.3.2 Assume � � 4 and � � 1=(25�2). Let m be the constant and  m bethe parameter in Lemma 3.3.1. Let s be a sample. If �m � 1=(504�2), thenradius(coarse(s)) � 5�� +  mpf(~s)with probability at least 1�O(n�
(ln! n)).Proof. Let s1 and s2 be points on S+� and S�� such that ~s1 = ~s2 = ~s. Let D bethe disk centered at s with radius 5�� +  mpf(~s). By Lemma 3.3.1,  mpf(~s) �radius(initial(s)), so D contains initial(s) with probability at least 1�O(n
(ln! n)).We are to show that coarse(s) cannot grow beyond D. First, since �m � 1=(504�2), m =p14�m � 1=(6�) � 1=24:Observe that both s1 and s2 lie insideD. Since 5�� � 1=(5�) � 1=20 and  m � 1=24,radius(D) < (1 � �)f(~s). Thus, the distance between any two points in D \ S+� isless than 2(1� �)f(~s). By Lemma 2.2.2(i), the maximum distance between D \ S+�and the tangent to S+� at s1 is at most (5��+ mpf(~s))22(1��)f(~s) � (5��pf(~s)+ mpf(~s))22(1��)f(~s) asf(~s) � 1. Thus, this distance is upper bounded by (5��+ m)22(1��) which is less than0:51(5�� +  m)2 as � � 1=(25�2). The same is also true for D \ S�� . It followsthat the samples inside D lie inside a strip of width at most 2� + 1:1(5�� +  m)2 =2�+1:1(5�)2�2+2:2(5�) m�+1:1 2m. Since � � 1=(25�2) and  m � 1=(6�), we have1:1(5�)2�2 � 1:1�, 2:2(5�) m� < 1:84�, and 1:1 2m <  m=�. We conclude that thestrip width is no more than 2� + 1:1� + 1:84� +  m=� < 5� +  m=� � radius(D)=�.This shows that coarse(s) cannot grow beyond D.Next, we bound radius(coarse(s)) from below. We use fmax to denote maxx2S f(x).Lemma 3.3.3 Assume that � � 1=8 and � � 4. Let h be the constant in Lemma 3.3.1.Let s be a sample. If �h � 1=32, thenradius(coarse(s)) � maxf2p��; radius(initial(s))gwith probability at least 1�O(n�
(ln! n=fmax)).28



Proof. Since coarse(s) is grown from initial(s), radius(coarse(s)) � radius(initial(s)).We are to prove that radius(coarse(s)) � 2p��. Let D be the disk that has centers and radius radius(coarse(s))=p�. Let X be the disk centered at ~s with radius �.Note that s 2 X and X is tangent to S+� and S�� . Since � � 1=8 and f(~s) � 1,f(~s)�� > � and so Lemma 2.2.1 implies that X lies inside the �nite region boundedby S+� and S�� .Suppose that radius(coarse(s)) < 2p��. Then radius(D) < 2�. If D containsX, X is a disk inside D\X with radius at least radius(D)=2. If D does not containX, then since s 2 X, D \ X contains a disk with radius radius(D)=2. The widthof strip(s) is less than or equal to radius(coarse(s))=� = radius(D)=p�. Thus,(D \X)� strip(s) contains a disk Y such thatradius(Y ) � (14 � 14p�) � radius(D) � radius(D)8 :Note that Y is empty and Y lies inside the �nite region bounded by S+� andS�� . Take a point p 2 Y . Since p 2 Y � D and radius(D) < 2�, d(~p; ~s) �d(p; ~p) + d(s; ~s) + d(p; s) � 4� � 1=2 as � � 1=8. The Lipschitz condition im-plies that f(~p) � 3f(~s)=2. Observe that radius(D) = radius(coarse(s))=p� �radius(initial(s))=p�. Thus, Lemma 3.3.1 implies that radius(Y ) � radius(D)=8 ��hpf(~s)=(24p�) > �hpf(~p)=(30p�) with probability at least 1 � O(n�
(ln! n)).Let � = �h=(420p�fmax). Then radius(Y ) > 14�f(~p). By Lemma 2.3.2, Y con-tains a �-cell. By Lemma 2.3.6(i), this �-cell is empty with probability at mostn�
(ln! n=fmax). This implies that radius(coarse(s)) < 2p�� occurs with probabilityat most O(n�
(ln! n=fmax)).3.3.3 Rough tangent estimate: strip(s)In this section, we prove that the slope of strip(s) is a rough estimate of the slope ofthe tangent at ~s. We need the following technical lemma about various propertiesof coarse(s) and S� inside coarse(s). Its proof can be found in the appendix.29



Lemma 3.3.4 Assume � � 5 and � � 1=(25�2). Let m be the constant and  m bethe parameter in Lemma 3.3.1. Let s be a sample. If 2p�� � radius(coarse(s)) �5�� +  mpf(~s) and  m � 1=100, then for any S� and for any point x 2 S� \coarse(s), the following hold:(i) 5�� +  m � 0:05, 5��+ m2(1��) � 0:03, and 5��+ m+2�2(1��) � 0:03,(ii) S� \ coarse(s) consists of one connected component,(iii) the angle between the normals at s and x is at most 2 sin�1 5��+ m+2�(1��) �2 sin�1(0:06),(iv) x 2 cocone(s1; 2 sin�1 5��+ m+2�2(1��) ) � cocone(s1; 2 sin�1(0:03)) where s1 is thepoint on S� such that ~s1 = ~s.(v) 0:9f(~s) < f(~x) < 1:1f(~s),(vi) if x lies on the boundary of coarse(s), the distance between s and the orthogonalprojection of x onto the tangent at s is at least 0:8 � radius(coarse(s)), and(vii) for any y 2 S� \ coarse(s), the acute angle between xy and the tangent at xis at most sin�1(6�� + 1:2 m)) � sin�1(0:06).We highlight the key ideas before giving the proof of Lemma 3.3.5. Let B be theregion between S+� and S�� inside coarse(s). If strip(s) makes a large angle with thetangent at ~s, strip(s) would cut through B in the middle. In this case, if B\ strip(s)is narrow, there would be a lot of areas in B outside strip(s). But these areas mustbe empty. Such areas occur with low probability. Otherwise, if B \ strip(s) is wide,we show that strip(s) can be rotated to reduce its width further, a contradiction.We give the detailed proof below.Lemma 3.3.5 Assume that � � 5 and � � 1=(25�2). Let m be the constant and m be the parameter in Lemma 3.3.1. Let s be a sample. For su�ciently large n,the acute angle between the tangent at ~s and the direction of strip(s) is at most3 sin�1 5��+ m+2�(1��) + sin�1(6�� + 1:2 m) � 4 sin�1(0:06) with probability at least 1�O(n�
(ln! n=fmax)). 30



Proof. Let `1 and `2 be the lower and upper bounding lines of strip(s). Withoutloss of generality, we assume that the normal at ~s is vertical, the slope of strip(s)is non-negative, S�� \ coarse(s) lies below S+� \ coarse(s), and  m � 1=100 forsu�ciently large n. Let h and m be the constants and  h and  m be the parametersin Lemma 3.3.1. We �rst assume that maxf2p��;  hpf(~s)g � radius(coarse(s)) �5�� +  mpf(~s) and take the probability of its occurrence into consideration later.As a short hand, we use �1 to denote 5��+ m+2�(1��) and �2 to denote 6�� + 1:2 m.Observe that both `1 and `2 must intersect the space that lies between S+� andS�� inside coarse(s). Otherwise, we can squeeze strip(s) and reduce its width, acontradiction. If `1 intersects S� \ coarse(s) twice for some �, then `1 is parallelto the tangent at some point on S� \ coarse(s). By Lemma 3.3.4(iii), the directionof strip(s) makes an angle at most 2 sin�1 �1 with the horizontal and we are done.Similarly, we are done if `2 intersects S�\coarse(s) twice for some �. The remainingcase is that both `1 and `2 intersect S� \ coarse(s) for any � at most once. Supposethat the acute angle between the direction of strip(s) and the horizontal is more than3 sin�1 �1 + sin�1 �2. We show that this occurs with probability O(n�
(ln! n=fmax)).
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(a) (b)Figure 3.5: Figure (a) illustrates that S�� (p; q) lies below `1. Figure (b) illustratesour choice of a cell C that lies below `1.Let q be the right intersection point between S�� and the boundary of coarse(s).If `1 intersects S�� \ coarse(s), let p denote the intersection point; otherwise, let pdenote the leftmost intersection point between S�� and the boundary of coarse(s).Refer to Sigure 3.5(a). We claim that S�� (p; q) lies below `1. If `1 does not intersect31



S�� \ coarse(s), then this is clearly true. Otherwise, by Lemma 3.3.4(iii), the mag-nitude of the slope of the tangent at p is at most 2 sin�1 �1. Since the slope of `1 ismore than 3 sin�1 �1+sin�1 �2, S�� crosses `1 at p from above to below. So S�� (p; q)lies below `1.We show that d(p; q) �  hpf(~s)=2 with probability at least 1� n�
(ln! n=fmax).Notice that pq is parallel to the tangent to S�� at some point on S�� (p; q). ByLemma 3.3.4(iii), the tangent to S�� (p; q) turns by an angle at most 4 sin�1(0:06) <�=2 from p to q. This implies that S�� (p; q) is monotone with respect to the directionperpendicular to pq. We divide pq into three equal segments. Let u and v be theintersection points between S�� (p; q) and the perpendiculars of pq at the dividingpoints. Assume that v follows u along S�� (p; q). Refer to Figure 3.5(b). Supposethat d(p; q) >  hpf(~s)=2. ThenjS�� (u; v)j � d(p; q)3 �  hpf(~s)6 : (3.2)Since f(~u) < 1:1f(~s) by Lemma 3.3.4(v), jS�� (u; v)j >  hpf(~u)=7. Consider a(�k=pfmax)-grid where k = h=294 and ~u is a cut-point. (Note that �k =  h=98.)Let C be the (�k=pfmax)-cell that touches S�� (u; v) and the normal segment throughu. By Lemma 2.3.2, the diameter of C is at most 14�kpf(~u) =  hpf(~u)=7 <jS�� (u; v)j. So the bottom side of C lies within S�� (u; v). Let R be the region insidecoarse(s) that lies below `1 and above S�� (p; q). From any point x 2 S�� (u; v)\C, ifwe shoot a ray along the normal at x into R, either the ray will leave C �rst or theray will hit `1 or the boundary of coarse(s) in R. We are to prove that the distancesfrom x to `1 and the boundary of coarse(s) in R are more than 2�k� � 2�k�=pfmax.This shows that the ray always leaves C �rst, so C lies completely insideR. Then theupper bound on d(p; q) follows as C is empty with probability at most n�
(ln! n=fmax)by Lemma 2.3.6(i).Consider the distance from any point x 2 S�� (u; v) to `1. By Lemma 3.3.4(iii),the angle between `1 and the tangent at p (measured by rotating `1 in the clockwisedirection) is at least 3 sin�1 �1 + sin�1 �2 � 2 sin�1 �1 = sin�1 �1 + sin�1 �2 and atmost �=2 + 2 sin�1 �1. By Lemma 3.3.4(vii), the acute angle between px and thetangent at p is at most sin�1 �2. So the angle between px and `1 is at least sin�1 �132



and at most �=2 + 2 sin�1 �1 + sin�1 �2. This implies that the distance from xto `1 is at least d(p; x) � minf�1 ; cos(2 sin�1 �1 + sin�1 �2)g. By Lemma 3.3.4(i),�1 � 0:06 < cos(3 sin�1(0:06)) � cos(2 sin�1 �1 + sin�1 �2). Therefore, the distancefrom x to `1 is at least d(p; x) � �1 > 5�� � d(p; x) � 25� � (d(p; q)=3) (3:2)> 4� hpf(~s).Since �k =  h=98, this distance is greater than 2�k�.
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In all, C lies inside R. So C must be empty which occurs with probability atmost n�
(ln! n=fmax) by Lemma 2.3.6(i). It follows that d(p; q) �  hpf(~s)=2 withprobability at least 1�n�
(ln! n=fmax). By Lemma 3.3.4(vi), the horizontal distancebetween q and the left intersection point between S�� and the boundary of coarse(s)is at least 1:6 � radius(coarse(s)) � 1:6 hpf(~s) > d(p; q). We conclude that `1intersects S�� \ coarse(s) exactly once at p.Refer to Figure 3.7. Let y be the leftmost intersection point between S+� andthe boundary of coarse(s). Symmetrically, we can also show that `2 intersectsS+� \ coarse(s) exactly once at some point z, S+� (y; z) lies above `2, and d(y; z) � hpf(~s)=2 with probability at least 1� n�
(ln! n=fmax).
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Figure 3.7: Rotating `1 and `2 slightly in the clockwise direction decreases thewidth of strip(s).Consider the projections of S+� (y; z) and S�� (p; q) onto the horizontal diameterof coarse(s) through s. By Lemma 3.3.4(vi), the projections of y and q are at dis-tance at least 0:8 � radius(coarse(s)) from s. Thus, the distance between the projec-tions of S+� (y; z) and S�� (p; q) is at least 1:6 � radius(coarse(s)) � d(p; q)� d(y; z) �1:6 � radius(coarse(s)) �  hpf(~s) � 1:6 � radius(coarse(s)) � radius(coarse(s)) >radius(coarse(s))=�. That is, this distance is greater than the width of strip(s).But then we can rotate `1 and `2 around p and z, respectively, in the clock-wise direction to reduce the width of strip(s) while not losing any sample insidecoarse(s). See Figure 3.7. This is impossible. It follows that, under the conditionthat maxf2p��;  hpf(~s)g � radius(coarse(s)) � 5�� +  mpf(~s), the acute anglebetween the direction of strip(s) and the tangent at ~s is at most 3 sin�1 �1+sin�1 �2with probability at least 1 � O(n
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the inequalities maxf2p��;  hpf(~s)g � radius(coarse(s)) � 5�� +  mpf(~s) holdwith probability at least 1�O(n
(ln! n)=fmax). So the lemma follows.3.4 Re�ned neighborhoodThe results in Section 3.3 show that after the step Coarse Neighborhood, thealgorithm already has a normal estimate at each noisy sample with an error in theorder of � +  m. However, this error bound does not tend to zero as the samplingdensity increases. This explains the need for the step Refined Neighborhood inthe algorithm. This step will improve the normal estimate so that the error tendsto zero as the sampling density increases. This will allow us to prove the pointwiseconvergence.We introduce some notations. In the step Refined Neighborhood, we aligncandidate(s; �) with the normal at ~s by varying � within [��=10; �=10]. Recall that� is the signed acute angle between the upward direction of candidate(s; �) andNs, where Ns is the upward direction perpendicular to strip(s). Let angle(strip(s))denote the signed acute angle between Ns and the upward normal at ~s. If Nspoints to the right of the upward normal at ~s, angle(strip(s)) is positive. Otherwise,angle(strip(s)) is negative. We de�ne �s = � + angle(strip(s)). That is, �s is thesigned acute angle between the upward direction of candidate(s; �) and the upwardnormal at ~s. The sign of �s is determined in the same way as angle(strip(s)). Forany S� and for any point p 2 S� \ candidate(s; �), let p be the signed acute anglebetween the upward direction of candidate(s; �) and the upward normal at ~p. Thesign of p is determined in the same way as angle(strip(s)).We need the following two technical lemmas. Their proofs can be found in theappendix. There are two main results in Lemma 3.4.1. First, we show that therange of rotation [��=10; �=10] of candidate(s; �) covers the normal direction at ~s.Second, we relate p to �s. This is useful because we will see that for a proper choiceof p, the height of candidate(s; �) is directly related to p (and hence to �s). Wewill need to focus on a smaller area inside candidate(s; �). Lemma 3.4.2 boundsdistances and angles involving points on S� inside this smaller area.35



Lemma 3.4.1 Assume that � � 1=(25�2) and � � 5. Let s be a sample. Let Ws bethe width of candidate(s; �). For su�ciently large n, the following hold with probabil-ity at least 1�O(n�
(ln! n=fmax)) throughout the variation of � within [��=10; �=10].(i) Ws � 0:1f(~s).(ii) �s 2 [��=5; �=5] and �s = 0 for some � 2 [��=10; �=10].(iii) Any line, which is parallel to candidate(s; �) and inside candidate(s; �), inter-sects S� \ coarse(s) for any � exactly once.(iv) For any S� and for any point p 2 S�\candidate(s; �), �s�0:2j�sj�3Ws=f(~s) �p � �s + 0:2j�sj+ 3Ws=f(~s).Lemma 3.4.2 Assume that � � 1=(25�2) and � � 5. Let s be a sample. Let Hbe a strip that is parallel to candidate(s; �) and lies inside candidate(s; �). Whenn is su�ciently large, for any S� and for any two points u and v on S� \ H, thefollowing hold with probability at least 1�O(n�
(ln! n=fmax)).(i) d(u; v) < 3width(H).(ii) The angle between the normals at u and v is at most 9width(H).(iii) The acute angle between uv and the tangent to S� at u is at most 5width(H).3.4.1 Normal approximationWe show that our algorithm aligns re�ned (s) approximately well with the normalat ~s. Our algorithm varies � so as to minimize the height of rectangle(s; �). Let�� denote the minimizing angle. Recall that re�ned (s) = rectangle(s; ��). Let ��sdenote �� + angle(strip(s)). We apply Lemmas 3.4.1 and 3.4.2 to show that ��s isvery small.Lemma 3.4.3 Assume that � � 1=(25�2) and � � 5. Let s be a sample. Let Ws bethe width of re�ned (s). For su�ciently large n, j��s j � 23Ws with probability at least1�O(n
(ln! n=fmax)). 36



Proof. We rotate the plane such that candidate(s; ��) is vertical. Suppose thatj��s j > 23Ws. We �rst assume that Lemmas 3.3.1, 3.3.2, 3.3.3, 3.4.1, and 3.4.2hold deterministically and show that a contradiction arises with probability at least1�O(n
(ln! n=fmax)). The contradiction is that we can rotate candidate(s; ��) slightlyto reduce its height further. Since these lemmas hold with probability at least1�O(n
(ln! n=fmax)), we can then conclude that j��s j > 23Ws occurs with probabilityat most O(n
(ln! n=fmax)).Without loss of generality, we assume that ��s > 0. That is, the upward normalat s points to the left. Also, we assume that S�� \coarse(s) lies below S+� \coarse(s).Let L be the left boundary line of candidate(s; ��). By Lemma 3.4.1(iii), L intersectsS�� \ coarse(s) exactly once. We use p to denote the point L \ S�� \ coarse(s). We�rst prove a general claim which will be useful later.Claim 1 Orient space such that candidate(s; �) is vertical. If �s >23Ws, then for any �, S� \ candidate(s; �) increases strictly from leftto right.Proof. Take any point z 2 S� \ candidate(s; �). By Lemma 3.4.1(iv),z � 0:8�s�3Ws, which is positive as �s � 23Ws by assumption. There-fore, the upward normal at z points to the left, so the slope of the tangentto S� at z is positive.We highlight the proof strategy before giving the details. If �s > 23Ws, byClaim 1, both S�� and S+� increase from left to right inside candidate(s; �). Then wedivide candidate(s; ��) into three smaller slabs of equal width in left to right order,and show that the lower side of rectangle(s; ��) intersects S�� at a point a inside theleftmost slab. Similarly, the upper side of rectangle(s; ��) intersects S+� at a pointb inside the rightmost slab. Since both S�� and S+� increase from left to right, thisallows us to rotate rectangle(s; ��) around a and b in the anti-clockwise direction toreduce its height. This contradicts the minimality of the height of rectangle(s; ��).We give the details in the following.We �rst prove that the lower side of rectangle(s; ��) intersects S�� within theleftmost slab. Let h and m be the constants in Lemma 3.3.1. Let k = h=3240. Let37



H1 be the slab inside candidate(s; ��) such that H1 is bounded by L on the left andwidth(H1) =Ws=3. Let H be the slab inside candidate(s; ��) that is bounded by Lon the left and has width 30�kpf(~s). Refer to Figure 3.8. Since radius(initial (s)) �
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angle between pu and the horizontal line through p. Since � is at most the sumof p and the angle between pu and the tangent at p, by Lemma 3.4.2(iii), wehave � � p + 5width(H). By Lemma 3.4.2(i), d(p; u) � 3width(H). Observethat dv � d(p; u) � sin� + d(u; v). So dv < 3�width(H) + 2�k� < 3pwidth(H) +15width(H)2 + 2�k�. By (3.3), we get dv < Wsp=4 + 5W 2s =48 + 2�k�. We bound2�k� as follows. Recall that Ws = minfpradius(initial(s)); radius(coarse(s))=3g.If Ws = pradius(initial(s)), by Lemma 3.3.1, Ws � p�h=3f(~s)1=4 � p�h=3. So2�k� < 2�k = �h=1620 < 0:002W 2s . If Ws = radius(coarse(s))=3, by Lemmas 3.3.1and 3.3.3, Ws � 2p��=3 and Ws � �hpf(~s)=9 � �h=9. We get �k = �h=3240 �Ws=360 and 2� � 3Ws=p� � 3Ws=p5, so 2�k� < 0:004W 2s . We conclude thatdv < Wsp4 + 0:2W 2s :We observe that px is parallel to the tangent at some point z on S�� (p; x). Then byLemma 3.4.2 (ii), z � p�9width(H1) = p�3Ws. Since dx = width(H1) �tan z =(Ws=3) � tan z, we get dx � Wsz3 � Wsp3 �W 2s :Since ��s > 23Ws by our assumption, Lemma 3.4.1(iv) implies that p � 0:8��s �3Ws > 15Ws. Therefore, dx � dv > Wsp=12 � 1:2W 2s > 0. It follows that x liesabove C.Since C is a (�k=pfmax)-cell, by Lemma 2.3.6(i), C contains some sample withprobability at least 1 � n
(ln! n=fmax). Thus, the lower side of rectangle(s; ��) liesbelow x with probability at least 1�n
(ln! n=fmax). On the other hand, the lower sideof rectangle(s; ��) cannot lie below S�� \H1, otherwise it could be raised to reducethe height of rectangle(s; ��), a contradiction. So the lower side of rectangle(s; ��)intersects S�� \H1 at some point a. See the left �gure in Figure 3.9.Let H2 be the slab inside candidate(s; ��) such that H2 is bounded by the rightboundary line of candidate(s; ��) on the right and width(H2) =Ws=3. By a symmet-ric argument, we can prove that the upper side of rectangle(s; ��) intersects S+� \H2at a point b. 39
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Figure 3.9: In the right �gure, the middle bold rectangle is the obtained by aslight anti-clockwise rotation. Its height is smaller than that of the middle dashedrectangle.Consider an angle � that is slightly less than ��. As shown in the right �gurein Figure 3.9, this is equivalent to rotating the candidate neighborhood in the anti-clockwise direction. By Lemma 3.4.1(ii), �s can reach zero during the variation of�. Thus, as ��s > 0, decreasing � from �� is legal. Moreover, as ��s > 23Ws, the smallrotation keeps �s greater than 23Ws. Correspondingly, we rotate the lower andupper sides of rectangle(s; ��) around a and b, respectively, to obtain a rectangle R.Orient the plane such that the new candidate neighborhood becomes vertical. ByClaim 1, S�� increases strictly from left to right, so S�� crosses the lower side of Rat most once at a from below to above. Similarly, S+� crosses the upper side of R atmost once at b from below to above. This implies that R contains all the samplesinside the new candidate neighborhood . Since a is on the left of b and below b,the anti-clockwise rotation makes the height of R strictly less than the height ofrectangle(s; ��). This contradicts the assumption that the height of rectangle(s; ��)is already the minimum possible.3.4.2 Pointwise convergenceOnce re�ned (s) is aligned well with the normal at ~s, it is intuitively true that thecenter point of re�ned (s) should lie very close to ~s. The following lemma proves thisformally.
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Lemma 3.4.4 Assume that � � 1=(25�2) and � � 5. Let s be a sample. LetWs be the width of re�ned (s). For su�ciently large n, the distance between thecenter point s� of re�ned (s) and ~s is at most (138� + 3)Ws with probability at least1�O(n�
(ln! n=fmax)).Proof. We �rst assume that Lemmas 3.3.1, 3.3.2, 3.3.3, 3.4.1, 3.4.2, and 3.4.3 holddeterministically and show that the lemma is true with probability at least 1 �O(n
(ln! n=fmax)). As these lemmas hold with probability at least 1�O(n
(ln! n=fmax)),the lemma follows.Assume that s lies on S+� , the normal at ~s is vertical, and S+� \coarse(s) is aboveS�� \ coarse(s). Let rd (resp., ru) be the ray that shoots downward (resp., upward)from s and makes an angle ��s with the vertical. Let x and y be the points on S+�and S hit by ru and rd respectively. Let z be the point on S�� hit by rd. Let s1be the point on S�� such that ~s1 = ~s. Without loss of generality, we assume that��s � 0. Refer to Figure 3.10.
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Figure 3.10: Illustration for Lemma 3.4.4.Our strategy for bounding d(~s; s�) is as follows. By triangle inequality, d(~s; s�) �d(s�; y) + d(~s; y). Thus it su�ces to bound d(s�; y) and d(~s; y). While d(~s; y) canbe bounded directly, a few intermediate steps are needed to bound d(s�; y). If theupper and lower sides of re�ned (s) pass through x and z, respectively, then d(s�; y)is just the distance between the midpoint of xz and y. Then we consider the casesthat the upper and lower sides of re�ned (s) do not pass through x and z, and bound41



the maximum displacement of s� from the midpoint of xz. This yields the boundon d(s�; y). We give the details in the following.We �rst bound the distance between y and the midpoint of xz. By Lemma 3.3.4(iv),the acute angle between s1z and the tangent at s1 (the horizontal) is at mostsin�1(0:03). It follows that \ss1z � �=2+sin�1(0:03). So \szs1 = ����s�\ss1z ��=2 � ��s � sin�1(0:03), which is greater than 0:9 as ��s � �=5 by Lemma 3.4.1(ii).By applying sine law to the shaded triangle in Figure 3.10, we getd(s1; z) = d(s; s1) � sin ��ssin\szs1 � (� + �)��ssin(0:9) < 2(� + �)��s : (3.4)Similarly, we get d(~s; y) = d(s; ~s) � sin ��ssin\sy~s � ���ssin(0:9) < 2���s : (3.5)By triangle inequality, d(s; s1) � d(s1; z) � d(s; z) � d(s; s1) + d(s1; z). Then (3.4)yields (� + �)� 2(� + �)��s � d(s; z) � (� + �) + 2(� + �)��s : (3.6)We can use a similar argument to show that(� � �)� 2(� � �)��s � d(s; x) � (� � �) + 2(� � �)��s ; (3.7)�� 2���s � d(s; y) � �+ 2���s : (3.8)Let dx and dy be the distances from the midpoint of xz to x and y, respectively. Sinced(x; z) = d(s; x)+d(s; z), by (3.6) and (3.7), we get 2�� 4���s � d(x; z) � 2�+4���s .Therefore, � � 2���s � dx � � + 2���s . Since d(x; y) = d(s; x) + d(s; y), by (3.7) and(3.8), we get � � 2���s � d(x; y) � � + 2���s . We conclude thatdy = jdx � d(x; y)j � 4���s : (3.9)Second, we bound the displacement of s� from the midpoint of xz. There aretwo cases.Case 1: the upper side of re�ned (s) lies above x. The upper side of re�ned (s) mustintersect S+� \ candidate(s; ��) at some point v, otherwise we could lower itto reduce the height of re�ned (s), a contradiction. Since d(x; v) � 3Ws byLemma 3.4.2(i), the distance between x and the upper side of re�ned (s) is atmost 3Ws. 42



Case 2: the upper side of re�ned (s) lies below x. Let h be the constant in Lemma 3.3.1.Let k = h=270. Take the (�k=pfmax)-grid in which ~x is the �rst cut point. LetC be the cell such that C contains x and C lies between the normal segmentsat ~x and the second cut point.We claim that C lies inside candidate(s; ��). Since radius(initial (s)) � mpf(~s), we have radius(initial (s)) < 1 for su�ciently large n. Thus we getpradius(initial (s)) > radius(initial(s)). SoWs = minfpradius(initial (s)); radius(coarse(s))=3g� radius(initial (s))=3;which is at least �hpf(~s)=9. By Lemma 2.3.2, the diameter of C is at most14�kf(~x)=pfmax � 14�kpf(~x). Since f(~x) � 1:1f(~s) by Lemma 3.3.4(v), thediameter of C is less than 15�kpf(~s). Since Ws � �hpf(~s)=9 = 30�kpf(~s),C must lie inside candidate(s; ��).Since C is a (�k=pfmax)-cell, by Lemma 2.3.6(i), C contains some samplewith probability at least 1�n�
(ln! n=fmax). Thus, the upper side of re�ned (s)cannot lie below C. It follows that the distance between x and the upper sideof re�ned (s) is at most the diameter of C, which has been shown to be lessthan Ws=2.Hence, the position of the upper side of re�ned (s) may cause s� to be displacedfrom the midpoint of xz by a distance of at most 3Ws=2. The position of thelower side of re�ned (s) has the same e�ect. So the distance between s� and themidpoint of xz is at most 3Ws. It follows that d(s�; y) � dy+3Ws. By (3.9), we getd(s�; y) � 4���s + 3Ws. Starting with triangle inequality, we obtaind(~s; s�) � d(s�; y) + d(~s; y)� 4���s + 3Ws + d(~s; y)(3:5)� 6���s + 3Ws:Since ��s � 23Ws by Lemma 3.4.3, we conclude that d(~s; s�) � (138� + 3)Ws.43



3.5 HomeomorphismIn this section, we prove more convergence properties which lead to the proof thatthe output curve of the NN-crust algorithm is homeomorphic to S. For each samples, we use s� to denote the center point of re�ned (s). We briey review the processingof the center points. We �rst sort the center points in decreasing order of the widthsof their corresponding re�ned neighborhoods. Then we scan the sorted list to selecta subset of center points. When the current center point s� is selected, we delete allcenter points p� from the sorted list such that d(p�; s�) � width(re�ned (s))1=3.In the end, we call two selected center points s� and t� adjacent if S(~s; ~t) orS(~t; ~s) does not contain ~u for any other selected center point u�. We use G todenote the polygonal curve that connects adjacent selected center points. Note thatthe degree of every vertex in G is exactly two. Clearly, if we connect ~s and ~t forevery pair of adjacent selected center points s� and t�, we obtain a polygonal curveG0 that is homeomorphic to S. Our goal is to show that the output curve of theNN-crust algorithm is exactly G. Since there is a bijection between G and G0, thehomeomorphism result follows.Throughout this section, we assume that width(initial (s)) < 1 for any sample s,which is true for su�ciently large n. There are a few consequences. First, it impliesthat pradius(initial (s)) � radius(initial(s)). Second, sincewidth(re�ned (s)) = minfpradius(initial(s)); radius(coarse(s))=3g;we get width(re�ned (s)) � pradius(initial(s)) < 1: This implies for any constantsa > b > 0, width(re�ned (s))a < width(re�ned (s))b. Lastly, width(re�ned (s)) �radius(initial(s))=3.We need the technical results Lemmas 3.5.1{3.5.6. The proofs of Lemmas 3.5.1,3.5.3, 3.5.4, and 3.5.5 are given in the appendix.Lemma 3.5.1 There exists a constant �1 > 0 such that when n is su�ciently large,for any two center points p� and q�, if d(~p; ~q) � f(~p)=2, then Wq � �1f(~p)pWp withprobability at least 1�O(n�
(ln! n=fmax)).44



Lemma 3.5.2 Let p� and q� be two selected center points. Thend(p�; q�) > maxfW 1=3p ;W 1=3q g:Proof. Assume without loss of generality that p� was selected before q�. Sinceq� was selected subsequently, q� was not eliminated by the selection of p�. Thus,d(p�; q�) > W 1=3p �W 1=3q .Lemma 3.5.3 When n is su�ciently large, for any two center points x� and y�such that d(~x; ~y) � f(~y)=2 and d(x�; y�) � W 1=3y , the acute angle between x�y� and~x~y is O(f(~y)W 1=6y ) with probability at least 1�O(n�
(ln! n=fmax)).Lemma 3.5.4 When n is su�ciently large, for any three center points x�, y�,and z� such that ~y 2 S(~x; ~z), d(~x; ~z) � maxff(~x)=5; f(~z)=5g, d(x�; y�) � W 1=3y ,and d(y�; z�) � W 1=3y , the angle \x�y�z� is obtuse with probability at least 1 �O(n�
(ln! n=fmax)).Lemma 3.5.5 There exists a constant �2 > 0 such that when n is su�cientlylarge, for any edge e in G connecting two center points p� and q�, length(e) ��2f(~p)W 1=3p + �2f(~q)W 1=3q with probability at least 1�O(n�
(ln! n=fmax)).Lemma 3.5.6 When n is su�ciently large, for any two selected center points p�and q� such that p� and q� are not adjacent in G and d(p�; q�) � f(~p)=5, there isan edge e in G incident to p� such that the angle between e and p�q� is acute andlength(e) < d(p�; q�) with probability at least 1�O(n�
(ln! n=fmax)).Proof. Since p� and q� are not adjacent in G, there is some selected center point u�adjacent to p� such that ~u lies on S(~p; ~q) or S(~q; ~p), say S(~p; ~q). By Lemma 3.5.2,d(p�; u�) > W 1=3u and d(q�; u�) > W 1=3u . By Lemma 3.5.4, the angle \p�u�q� isobtuse with probability at least 1 � O(n�
(ln! n=fmax)). It follows that \u�p�q� isacute and d(p�; u�) < d(p�; q�). 45



We apply the above technical lemmas to show that the output curve of the NN-crust algorithm is exactly G. Then this allows us to show that the output curve ishomeomorphic to the underlying smooth closed curve.Lemma 3.5.7 For su�ciently large n, the output curve obtained by running theNN-crust algorithm on the selected center points is exactly G with probability atleast 1�O(n�
( ln! nfmax�1)).Proof. We �rst prove the lemma assuming that Lemmas 3.4.4, 3.5.4, 3.5.5, and 3.5.6hold deterministically. We will discuss the probability bound later.Let p� be a selected center point. Let p�u� and p�v� be the edges of G incidentto p�. Without loss of generality, we assume that ~p lies on S(~u; ~v). By Lemma 3.5.2,d(p�; u�) > W 1=3p and d(p�; v�) > W 1=3p .Let k = 138� + 3. By Lemmas 3.4.4 and 3.5.5, d(~p; ~u) � d(~p; p�) + d(~u; u�) +d(p�; u�) � kWp + kWu + �2f(~p)W 1=3p + �2f(~u)W 1=3u , which is less than (f(~p) +f(~u))=30 for su�ciently large n. The Lipschitz condition implies that0:9f(~p) < f(~u) < 1:1f(~p):So we getd(~p; ~u) � f(~p) + f(~u)30 < 0:07f(~p); d(p�; u�) � f(~p) + f(~u)30 < 0:07f(~p):Similarly, we can show thatd(~p; ~v) < 0:07f(~p); d(p�; v�) < 0:07f(~p):Let p�q� be an edge computed by the NN-crust algorithm when it processesthe vertex p�. Assume to the contrary that p�q� is not an edge in G. If p�q� iscomputed in step 1 of the NN-crust algorithm, then q� is the nearest neighbor ofp�. So d(p�; q�) � d(p�; u�) < 0:07f(~p). By Lemma 3.5.6, there is another edge e inG such that length(e) < d(p�; q�), a contradiction. Suppose that p�q� is computedin step 2 of the NN-crust algorithm. As we have just shown, the step 1 of theNN-crust algorithm already outputs an edge, say p�u�, of G where u� is the nearest46



neighbor of p�. Observe that d(~u; ~v) � d(~p; ~u) + d(~p; ~v) < 0:14f(~p) < 0:2f(~u). ByLemma 3.5.4, \u�p�v� is obtuse. By the NN-crust algorithm, \u�p�q� is also obtuse.Since the NN-crust algorithm prefers p�q� to p�v�, d(p�; q�) � d(p�; v�) < 0:07f(~p).By Lemma 3.5.6, G has an edge e incident to p� that is shorter than p�q� (p�v� too)and makes an acute angle with p�q�. The edge e is not p�v� as e is shorter thanp�v�. The edge e is not p�u� as \u�p�q� is obtuse. But then the degree of p in G isat least three, a contradiction.We have shown that each output edge belongs to G. Since the NN-crust algo-rithm guarantees that each vertex in the output curve has degree at least two, theoutput curve and G have the same number of edges. So the output curve is exactlyG. Since Lemmas 3.4.4, 3.5.4, 3.5.5, and 3.5.6 hold with probability at least 1 �O(n�
(ln! n=fmax)), the output edges incident to p� are edges of G with probabilityat least 1�O(n�
(ln! n=fmax)). Since there are O(n) output vertices, the probabilitythat this holds for all vertices is at least 1�O(n�
( ln! nfmax�1)).Corollary 3.5.1 For su�ciently large n, the output curve obtained by running theNN-crust algorithm on the selected center points is homeomorphic to the underlyingsmooth closed curve with probability at least 1�O(n�
( ln! nfmax�1)).Proof. We have shown that the output curve is G. Let G0 be the curve obtained byconnecting ~p and ~q for each edge p�q� of G. G0 is homeomorphic to the underlyingsmooth closed curve as p� and q� are adjacent in G. Clearly, G is homeomorphic toG0 as there is a bijection between the edges of G and G0.3.6 FinaleWe make use of the lemmas in the previous subsections to prove the key result ofthis paper, stated as the Main Theorem in Section 3.2.47



Proof of the Main Theorem. First of all, for any sample s, let Ws denote thewidth of re�ned(s). By construction, Ws � pradius(initial (s)). By Lemma 3.3.1,radius(initial(s)) = O(( ln1+! nn )1=4f(~s)1=2). Thus Ws = O(( ln1+! nn )1=8f(~s)1=4).By Lemma 3.4.4, as n tends to 1, for each output vertex s�, d(s�; ~s) = O(Ws)with probability at least 1�O(n�
(ln! n=fmax)). Since there are O(n) output vertices,the distance bounds hold simultaneously with probability at least 1�O(n�
( ln! nfmax�1)).Next, we analyze the angular di�erences between the tangents of the smooth closedcurve and the output curve.Let r�s� be an output edge. By Lemma 3.5.5, with probability at least 1 �O(n�
(ln! n=fmax)), we haved(r�; s�) � �2f(~r)W 1=3r + �2f(~s)W 1=3s : (3.10)Let k = 138�+3. Using the above, the triangle inequality, and Lemma 3.4.4, we getd(~r; ~s) � d(~r; r�) + d(~s; s�) + d(r�; s�) (3.11)� kWr + kWs + �2f(~r)W 1=3r + �2f(~s)W 1=3s : (3.12)By (3.10), d(r�; s�) < f(~r)=5+f(~s)=5 for su�ciently large n. The Lipschitz conditionimplies that f(~r) < 1:5f(~s). So d(r�; s�) < f(~s)=2. Thus, Lemma 3.5.1 applies andyieldsWr � �1f(~s)pWs with probability at least 1�O(n�
(ln! n=fmax)). Substitutinginto (3.12), we conclude that d(~r; ~s) � �3f(~s)4=3W 1=6s ; (3.13)for some constant �3 > 0.Let � be the angle between ~r~s and the tangent at ~s. By Lemma 2.2.2(ii), we have� � sin�1 �3f(~s)1=3W 1=6s2 . Let �0 be the acute angle between r�s� and ~r~s. By (3.13),d(~r; ~s) � f(~s)=2 for su�ciently large n. Thus, by Lemma 3.5.3, �0 = O(f(~s)W 1=6s )with probability at least 1�O(n�
(ln! n=fmax)) for su�ciently large n. We concludethat the angle between r�s� and the tangent at ~s, which is upper bounded by �+ �0,is O(f(~s)W 1=6s ). Since there are O(n) output edges, the angular di�erence boundshold simultaneously with probability at least 1�O(n�
( ln! nfmax�1)).48



The output curve is homeomorphic to the smooth closed curve by Corollary 3.5.1.
3.7 SummaryWe have presented an algorithm to reconstruct polygonal closed curves from noisysamples drawn from a set of smooth closed curves. The output polygonal recon-struction converges to the original curve with probability approaching to 1 as nincreases. Although we have assumed that there is only one smooth closed curve inour analysis for notational simplicity, the analysis can be carried over to the generalcase. A straightforward implementation of our algorithm takes O(n3) time. Weview the analysis as our major contribution as it is the �rst result that deals withfaithful curve reconstruction from noisy samples. Since the analysis is already quiteinvolved, we did not spend much e�ort in looking for a faster algorithm.
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3.8 AppendixProof of Lemma 3.3.4A straightforward calculation shows (i).If S� \ coarse(s) consists of more than one connected component, the medialaxis of S� intersects the interior of coarse(s). Since S and S� have the same medialaxis, the distance from ~s to the medial axis is at most 2 radius(coarse(s)) � 2(5��+ mpf(~s)) � 2(5�� +  m)f(~s) < f(~s) by (i), a contradiction. This proves (ii).Let s1 be the point on S� such that ~s1 = ~s. The distance d(s1; x) � d(s; x) +d(s; s1) � 5�� +  mpf(~s) + 2� � (5�� +  m + 2�)f(~s). By Lemma 2.2.3, the anglebetween the normals at s1 and x is at most 2 sin�1 d(s1;x)(1��)f(~s) � 2 sin�1 5��+ m+2�(1��) �2 sin�1(0:06) by (i). This proves (iii).By Lemma 2.2.2(ii), x 2 cocone(s1; 2 sin�1 d(s1;x)2(1��)f(~s) ) � cocone(s1; 2 sin�1(0:03)).This proves (iv).The distance d(~s; ~x) � d(s; ~s) + d(s; x) + d(x; ~x) � 5�� +  mpf(~s) + 2� �(5�� +  m + 2�)f(~s) < 0:1f(~s). Then the Lipschitz condition implies (v).
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Consider (vii). Since y 2 S� \ coarse(s), d(x; y) � 2 radius(coarse(s)) � 2(5��+ mpf(~s)) which is at most 0:1f(~s) by (i). So Lemma 2.2.2(ii) applies and the acuteangle between xy and the tangent at x is at most sin�1 d(x;y)2(1��)f(~x) � sin�1 (5��+ m)f(~s)(1��)f(~x) .Since f(~x) � 0:9f(~s) by (v) and � � 1=(25�2), the acute angle is less than sin�1(1:2(5��+ m)), which is less than sin�1(0:06) by (i).Proof of Lemma 3.4.1We �rst assume that maxf2p��;  hpf(~s)g � radius(coarse(s)) � 5�� +  mpf(~s)and radius(initial(s)) �  mpf(~s). We will take the probabilities of their occur-rences later into consideration.Since Ws � pradius(initial(s)) � p mf(~s)1=4 and  m � 0:01 for su�cientlylarge n, Ws � 0:1f(~s). This proves (i).By Lemma 3.3.5, for su�ciently large n, jangle(strip(s))j � 4 sin�1(0:06) < �=10.Since � 2 [��=10; �=10], �s = �+ angle(strip(s)) 2 [��=5; �=5] and �s = 0 for some�. This proves (ii).Consider (iii). Let ` be a line that is parallel to candidate(s; �) and insidecandidate(s; �). We �rst prove that ` intersects S�. Refer to Figure 3.12. Withoutloss of generality, assume that the normal at ~s is vertical, the slope of candidate(s; �)is positive, and ` is below s. Let s1 and s2 be the points on S+� and S�� , respectively,such that ~s1 = ~s2 = ~s. Shoot two rays upward from s1 with slopes � sin�1(0:03).Also, shoot two rays downward from s2 with slopes � sin�1(0:03). Let R be the re-gion inside coarse(s) bounded by these four rays. By Lemma 3.3.4(iv), S�\coarse(s)lies inside R. Let x be the upper right vertex of R. Let y be the right endpoint of ahorizontal chord through s1. Let L be the line that passes through x and is parallelto `. Let L0 be the line that passes through s and is parallel to `. Let z be the pointon L such that s1z is perpendicular to L.We claim that L0 is above L and L and L0 intersect both the upper and lowerboundaries ofR. By Lemma 3.3.4(iv), \xs1y � sin�1(0:03), so \xsy � 2 sin�1(0:03).Observe that cos\s1sy = d(s;s1)d(s;y) � 2�radius(coarse(s)) . Since radius(coarse(s)) � 2p��,cos\s1sy � 1=p� � 1=p5 which implies that \s1sy > �=3. Since \s1sx =51
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Let 0 be the acute angle between the normals at b and s1. By Lemma 2.2.3,0 � 2 sin�1 d(b;s1)(1��)f(~s) � 2 sin�1 2:2p��j�sj1�� � 2 sin�1 2:2p��j�sj1�� . By (3.15) and (3.16), weconclude that 0 < 4:84p��j�sj1�� < 0:2j�sj. It follows that�s � 0:2j�sj � �s � 0 � b � �s + 0 � �s + 0:2j�sj:Next, we prove the upper and lower bounds for p for any point p 2 S� \candidate(s; �). Let � be the acute angle between bp and the line that passes throughb and is perpendicular to candidate(s; �). See Figure 3.13(b). By Lemma 3.3.4(vii),the acute angle between bp and the tangent at b is at most sin�1(0:06). It followsthat � � b+sin�1(0:06) � �s+0:2j�sj+sin�1(0:06) � 1:2(�=5)+sin�1(0:06) < 0:9.Thus, d(b; p) � Ws2 cos � < 0:9Ws:Note that Ws � radius(coarse(s))=3 � (5��+ m)f(~s)=3, which is less than 0:02f(~s)by Lemma 3.3.4(i). Also, by Lemma 3.3.4(v), f(~p) � 0:9f(~s). It follows thatd(b; p) < 0:9Ws � 0:02f(~p): (3.17)So we can invoke Lemma 2.2.3 to bound the angle 00 between the normals at b andp: 00 � 2 sin�1 d(b; p)(1� �)f(~p) � 2 sin�1 0:9Ws(1� �)f(~p) � 2 sin�1 Wsf(~p) :By (3.17), Ws=f(~p) < 0:03. So by (3.16), we get 00 � 2:2Ws=f(~p). Since f(~p) �0:9f(~s), we conclude that 00 < 3Ws=f(~s). This implies that�s � 0:2j�sj � 3Ws=f(~s) � b � 00 � p � b + 00 � �s + 0:2j�sj+ 3Ws=f(~s):Finally, we have proved the lemma under the conditions that maxf2p��;  hpf(~s)g �radius(coarse(s)) � 5�� +  mpf(~s) and radius(initial(s)) �  mpf(~s). These con-ditions hold with probabilities at least 1�O(n�
(ln! n=fmax)) by Lemmas 3.3.1, 3.3.2,and 3.3.3. So the lemma follows. 54



Proof of Lemma 3.4.2Let � be the acute angle between uv and the tangent to S� at u. Let � be the acuteangle between uv and the direction of candidate(s; �). By Lemma 3.3.4(vii), � �sin�1(0:06). So � � �=2�u�� � �=2�u�sin�1(0:06). By Lemma 3.4.1(i), (ii), and (iv),� � �=2�1:2(�=5)�3(0:1)�sin�1(0:06) > 0:4. Thus, d(u; v) � width(H)sin � � width(H)sin(0:4) <3width(H). This proves (i).Consider (ii). Note that Ws � radius(coarse(s))=3 � (5�� +  m)f(~s)=3. So by(i), d(u; v) � 3Ws � (5�� +  m)f(~s). By Lemma 3.3.4(i) and (v), 5�� +  m � 0:05and f(~u) � 0:9f(~s). It follows thatd(u; v) < 0:06f(~u): (3.18)Thus, we can invoke Lemma 2.2.3 to bound the angle � between the normals at uand v:� � 2 sin�1 d(u; v)(1� �)f(~u) � 2 sin�1 3width(H)0:9(1 � �)f(~s) < 2 sin�1 4width(H)f(~s) :Since 4width(H)=f(~s) � 4Ws=f(~s) which is at most 0.4 by Lemma 3.4.1(i), we canapply (3.16) to conclude that � < 9width(H)=f(~s) � 9width(H). This proves (ii).Finally, by (3.18), we can invoke Lemma 2.2.2(ii) to bound the acute anglebetween uv and the tangent at u. This angle is at most sin�1 d(u;v)2(1��)f(~u) which is lessthan �=2.Proof of Lemma 3.5.1We prove the lemma by assuming that Lemma 3.3.1, 3.3.2, and 3.3.3 hold determin-istically. The probability bound then follows from the probability bounds in theselemmas. For i = p or q, let Ri = radius(coarse(i)) and let ri = radius(initial (i)).The Lipschitz condition implies that f(~p)=2 � f(~q) � 3f(~p)=2. Let h and m be theconstants in Lemma 3.3.1.Suppose that Wp = prp. By Lemma 3.3.1, we haveWp = prp �s�hpf(~p)3 =sh�mpf(~p)3m :55



Note that Wq � prq and rq �p14�mf(~q) by Lemma 3.3.1. So we getWp �s hpf(~p)42mf(~q) � rq �s h63mpf(~p) �W 2q �r h63m � W 2qf(~p) :Suppose that Wp = Rp=3. First, since Rp � 2p�� by Lemma 3.3.3, we get �� �3p�Wp=2. Second,Wp = Rp=3 � rp=3 which is at least �hpf(~p)=9 by Lemma 3.3.1.So we get p�mf(~p) = pm�hf(~p)=h � 3pmWp=h � f(~p)1=4 � 3pmWp=h � f(~p).Finally, since Wq � Rq=3, by Lemma 3.3.2, we getWq � 5��3 + p14�mf(~q)3� 5��3 +r7�mf(~p)3� 5p�Wp2 +r21mWph � f(~p):
Proof of Lemma 3.5.3We prove the lemma by assuming that Lemmas 3.4.4 and 3.5.1 hold deterministically.The probability bound then follows from the probability bounds in these lemmas.We translate x�y� to align y� with ~y. Let z denote the point x� + ~y � y�. Letk = 138�+3. By triangle inequality and Lemma 3.4.4, d(~x; z) � d(x�; ~x)+d(y�; ~y) �kWx + kWy. Since d(~x; ~y) � f(~y)=2, by Lemma 3.5.1, Wx � �1f(~y)pWy. Sod(~x; z) � k�1f(~y)pWy+kWy, which is smaller thanW 1=3y � d(x�; y�) for su�cientlylarge n. Thus, ~xz is not the longest side of the triangle ~x~yz. It follows that \~x~yzis acute. Since d(~x; z) is an upper bound on the height of z from ~x~y, we have\~x~yz � sin�1 d(~x;z)d(~y;z) = sin�1 d(~x;z)d(x�;y�) � sin�1(k�1f(~y)W 1=6y + kW 2=3y ). We concludethat \~x~yz is O(f(~y)W 1=6y ) as n tends to 1.
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Proof of Lemma 3.5.4We �rst show that d(~x; ~z) � minff(~x)=4; f(~z)=4g. Assume that d(~x; ~z) � f(~x)=5.By the Lipschitz condition, we have f(~z) � 4f(~x)=5. Therefore, d(~x; ~z) � f(~x)=5 �f(~z)=4.Let D be the disk centered at ~x with radius f(~x)=4. Observe that S(~x; ~z) liescompletely inside D. Otherwise, the medial axis of S intersects the interior of Dwhich implies that f(~x) � f(~x)=4, a contradiction. So d(~x; ~y) � f(~x)=4. TheLipschitz condition implies that f(~y) � 3f(~x)=4.We claim that the angle \~x~y~z is obtuse. The line segments ~x~y and ~y~z are parallelto the tangents at some points on S(~x; ~y) and S(~y; ~z), respectively. Lemma 2.2.3implies that \~x~y~z � � � 4 sin�1 radius(D)f(~x) = � � 4 sin�1(1=4) > �=2.Since d(~x; ~y) � f(~x)=4 � f(~y)=3, by Lemma 3.5.3, the angle between x�y� and~x~y is negligible with probability at least 1 �O(n�
(ln! n=fmax)) as n tends to 1. Asymmetric argument shows that the angle between y�z� and ~y~z is negligible withprobability at least 1�O(n�
(ln! n=fmax)) as n tends to1. Thus, \x�y�z� convergesto \~x~y~z which is obtuse.Proof of Lemma 3.5.5Note that p� and q� are adjacent and they are selected by the algorithm. Letk = 138� + 3. Let Dp be the disk centered at p� with radius (1 + k�1f(~p))W 1=3p .Let Dq be the disk centered at q� with radius (1 + k�1f(~q))W 1=3q . By Lemma 3.4.4,d(~p; p�) � kWp which is less than W 1=3p for su�ciently large n. So ~p lies inside Dp.Similarly, ~q lies inside Dq.If Dp intersects Dq, then d(p�; q�) � (1 + �1f(~p))W 1=3p + (1 + �1f(~q))W 1=3q andwe are done. Suppose that Dp does not intersect Dq. We claim that S(~p; ~q) \Dpis connected. Otherwise, the medial axis of S intersects the interior of Dp whichimplies that f(~p) � radius(Dp) which is less than f(~p) for su�ciently large n, acontradiction. Similarly, S(~p; ~q)\Dq is connected. It follows that S(~p; ~q)�(Dp[Dq)is also connected. There are two cases. 57



Case 1: S(~p; ~q) � (Dp [ Dq) does not contain ~u for any sample u. Let y be theendpoint of S(~p; ~q) � (Dp [ Dq) that lies on Dp. Let h be the constant inLemma 3.3.1. Take a �h-partition such that y is the �rst cut-point. SinceS(~p; ~q)� (Dp [Dq) does not contain ~u for any sample u, by Lemma 2.3.6(i),S(~p; ~q)� (Dp[Dq) does not contain S(y; c1), where c1 is the second cut-point,with probability at least 1�O(n�
(ln! n)). It follows thatjS(~p; ~q)� (Dp [Dq)j < �2hf(y): (3.19)Since d(~p; y) � 2 radius(Dp) = 2(1 + k�1f(~p))W 1=3p , d(~p; y) � f(~p)=2 forsu�ciently large n. Thus, f(y) � 3f(~p)=2, so �2hf(y) < 3�2hf(~p)=2. SinceWp � radius(initial (p))=3 which is at least �hpf(~p)=9 by Lemma 3.3.1, wehave �2hf(~y) � 243W 2p =2. Substituting into (3.19), we getjS(~p; ~q)j � 243W 2p =2 + 2 radius(Dp) + 2 radius(Dq):By Lemma 3.4.4, d(~p; p�) � kWp and d(~q; q�) � kWq. We conclude thatd(p�; q�) � d(~p; p�)+ jS(~p; ~q)j+ d(~q; q�) � �2f(~p)W 1=3p +�2f(~q)W 1=3q for someconstant �2 > 0.Case 2: S(~p; ~q)� (Dp [Dq) contains ~u for some sample u. We show that this caseis impossible if Lemmas 3.5.1 and 3.5.4 hold deterministically. It follows thatcase 2 occurs with probability at most O(n�
(ln! n=fmax)). We �rst claim thatd(p�; u�) > W 1=3p . If not, Lemma 3.5.1 implies that Wu � �1f(~p)pWp forsu�ciently large n. But then d(p�; ~u) � d(p�; u�) + d(~u; u�) �W 1=3p + kWu �W 1=3p + k�1f(~p)pWp. This is a contradiction as ~u lies outside Dp. Similarly,d(q�; u�) > W 1=3q . So u� is not eliminated by the selection of p� and q�.Next, take any selected center point z� di�erent from p� and q� such that~q 2 S(~u; ~z). We show that u� is not eliminated by the selection of z�. Assumeto the contrary that this is false. So d(u�; z�) � W 1=3z . By Lemma 3.5.1,Wu � �1f(~z)pWz for su�ciently large n. Let k0 = 1 + k + k�1. Thend(~u; ~z) � d(u�; z�)+d(z�; ~z)+d(u�; ~u) �W 1=3z +kWz+kWu �W 1=3z +kWz+k�1f(~z)pWz � k0f(~z)W 1=3z . For su�ciently large n, k0f(~z)W 1=3z � f(~z)=5.58



By Lemma 3.5.4, the angle \u�q�z� is obtuse. It follows that d(q�; z�) <d(u�; z�) �W 1=3z , contradicting Lemma 3.5.2.Symmetrically, we can show that u� is not eliminated by any selected centerpoint z� di�erent from p� and q� such that ~p 2 S(~z; ~u). In all, our algorithmshould select another center point u� such that ~u 2 S(~p; ~q)� (Dp [Dq). Thiscontradicts the assumption that p� and q� are adjacent in G.
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CHAPTER 4DETERMINISTIC NOISE MODEL FORSURFACESIn this chapter, we extend and improve the noise model in Chapter 2 to surfaces inthree dimensions. We use S to denote the smooth closed surface and P to denotethe set of noisy sample points from S. The noise amplitude of P is the maximumof the distances from P to the surface S. We denote the noise amplitude of P to Sby �.First, we introduce some basic notations and some basic geometric lemmas inSection 4.1. In Section 4.2, we present a deterministic noise model for surfaces. InSection 4.3, we justify this deterministic model using a variant of the probabilisticnoise model de�ned in Chapter 2. Note that the proofs of some technical lemmasare given in the appendix of this chapter.4.1 PreliminariesRecall that the medial axis of S is the set of centers of empty balls that touch Sat more than one point, and for any pint x 2 S, the local feature size f(x) is theminimum distance from x to the medial axis of S. We assume that minx2S f(x) = 1for convenience. So for any x 2 S, f(x) � 1. We suppose the noise amplitude � < 1as we only consider noise of �rst type.For any � 2 [��; �], S+� (resp., S�� ) is the collection of points in R3 that lieoutside (resp., inside) S and their distances from S are exactly �. We use S� whenit is unimportant to distinguish between inside and outside. Note that S� and Shave the same medial axis. We use S to denote the set of points sandwiched betweenS+� and S�� .Given two objects A and B, we use d(A;B) to denote the minimum distancebetween A and B. Given two coplanar vectors/lines in 3D, the plane spanned by60



them is the plane that contains them. Given two vectors, lines, or planes A and Bin 3D, we use \(A;B) to denote the smallest angle between them. If A and B aredisjoint, we translate one of them to measure \(A;B).For each point p 2 S�, we use np to denote the outward unit normal of S� at p,and Tp to denote the tangent plane of S� at p. We use ~p to denote the point on Ssuch that d(p; ~p) = �. Note that np and n~p have the same support line, and Tp andT~p are parallel. We use B(p; d) to denote a ball centered at p with radius d.We state three geometric lemmas that will be useful later. Their proofs can befound in the appendix.Lemma 4.1.1 Any point p on S� has two tangent balls with radii f(~p) � � whoseinterior do not intersect S�.The next lemma follows from results in [2, 29]. It basically says that the neigh-borhood of any point on S� is fairly at, and the normal varies slowly.Lemma 4.1.2 Assume that � � 1=6. Let p; q 2 S� be two points.(i) If d(p; q) = �(f(~p)��) for some � < 1, then d(q; Tp) � d(p; q)2 and \(pq; Tp) �arcsin(d(p; q)).(ii) If d(p; q) = �minff(~p) � �; f(~q) � �g for some � � 1=5, then \(np; nq) �3d(p; q).The following lemma shows that the distance between nearby points on S arepreserved in S� up to a constant factor.Lemma 4.1.3 Assume � � 1=10. Let p; q 2 S� be two points such that d(~p; ~q) = dfor some d � 1=5. Then d=2 � d(p; q) � 3d=2.4.2 Sampling and noise modelLet ! be a �xed positive constant (we think of it as very small). We assume thatthe set P of noisy samples satis�es the following conditions.61



There exists parameters 0 < �2 � � � �1 < 1 depending on n such that(i) �1 ! 0 as n!1,(ii) �1 = O(�), �2 = 
(�c) for some constant c � 1.and for any point p 2 S, we have(i) jB(p; �) \ P j � 1,(ii) jB(p; �1) \ P j � 2 ln! n,(iii) jB(p; �2) \ P j � 12 ln! n.In Theorem 4.3.1, speci�cally, we can prove that for � = �( 3q ln! nn ), �1 = �( 3q ln! nn )and �2 = �(q ln! nn ), our deterministic model is satis�ed with high probability bya set of sample points generated according to a uniform distribution. In a sense,the parameters �; �1; �2 measure the \sampling density". It would be nice that thethree parameters collapse to a single one (with some appropriate adjustment in theconditions), but our analysis in the justi�cation is not strong enough to do so. Itis also more natural that �2 = 
(�), but we can only justify our model for c � 3=2.Therefore, we will assume throughout this paper that �2 = 
(�3=2). We remark thatour algorithm does not know the values of �, �1, �2, and the noise amplitude �.4.3 Justi�cationConsider generating the noisy samples using the following random process. First,points are drawn from S according to a uniform distribution. That is, the probabilityof drawing a point from a region A is equal to area(A)area(S) . Second, each point x drawn isperturbed uniformly within a line segment with width 2�, centered at x, and alignedwith nx. Moreover, the distribution of each sample point is independently identical.A similar model was used in the curve case in Chapter 2. Our goal is to prove thatthe samples generated by the above random process satisfy our deterministic modelwith probability at least 1� exp(�
(ln! n)).62



For any constant k > 0, let �k denote 3qk ln! nn . Note that 0 < �k < 1 forsu�ciently large n. Let s be a point on S�. Let R1 � S� denote the patch fp 2S� : d(p; s) � �kg. Let R2 � S� denote the patch fp 2 S� : d(p; s) � �3=2k g. The�k-cell at s is the union of line segments with midpoints on R1, normal to R1, andwith length 2�k�. Note that the �k-cell may not lie completely inside S, but at leasthalf of it on one side of R1 does. The �k-rod at s is the union of line segments withlength 2�, inside S, and normal to some point in R2. The following two lemmasbound the sizes of a �k-cell and a �-rod.Lemma 4.3.1 The �k-cell at a point s lies inside B(s; 2�k).Proof. Assume that s 2 S�. Let C denote the �k-cell at s. Let p be any point in C.Let q be the projection of p along the normal to S�, i.e., ~p = ~q. Then d(p; q) � �k�and d(q; s) � �k. Thus d(p; s) � d(p; q) + d(q; s) � �k� + �k � 2�k.Lemma 4.3.2 The �k-rod at a point s contains B(s; �3=2k =4) \ S.Proof. Let C denote the �k-rod at s. Let p be a point in B(s; �3=2k =4) \ S. Assumethat p 2 S�. Let s0 denote the projection of s onto S� along the normal direction.Clearly d(s0; s) � d(s; p) � �3=2k =4. Thus d(s0; p) � d(s0; s) + d(s; p) � �3=2k =2.Assume that s 2 S�. Let p0 denote the projection of p onto S� along the normaldirection. By Lemma 4.1.3, d(s; p0) � 2d(s0; p) � �3=2k . Thus p0 2 C \ S�, whichimplies that p 2 C \ S�.We give a highlight of our proof. We �rst upper and lower bound the probabilitiesof a sample appearing in the �k-cell and �k-rod at s. Based on these probabilitybounds, we can show that the number of samples inside the �k-cell at s is essentially�(ln! n) with high probability. The same holds for the �k-rod at s. By setting �1and �2 appropriately, we then show that the �k-cell lies inside the ball B(s; �1) andthe ball B(s; �2) lies inside the �k-rod. Hence the conditions in our deterministicnoise model are satis�ed. We give the details of the proof below.63



The next technical lemma follows from the fact that a small neighborhood ofany point on S� is fairly at.Lemma 4.3.3 Assume that r � (1 � �)=20. Let p be a point on S�. Let Y bethe in�nite cylinder with radius r and axis aligned with np. Then the area of theconnected component in Y \ S� containing p is �(r2).Next, we bound the probability of a sample appearing in the �k-cell and �k-rod.Lemma 4.3.4 Let C be the �k-cell or �k-rod at a point s 2 S. Assume that n isso large that �k � 1=4. Then for any sample p, �2�3k � Pr(p 2 C) � �1�3k for someconstants �1 and �2.Proof. Consider the case that C is a �k-cell. Assume that s lies on S�. Let R � Sdenote the patch f~x : x 2 C\S�g. Project R orthogonally onto the region R0 on thetangent plane T~s at ~s. Take a point q in the boundary of C \ S�. Let q0 denote theorthogonal projection of ~q onto T~s. By de�nition, d(s; q) = �k. Then Lemma 4.1.3implies that �k=2 � d(~s; ~q) � 2�k.Clearly, d(~s; q0) � d(~s; ~q) � 2�k. Thus R0 lies within the disk on T~s centered at~s with radius 2�k. Then by Lemma 4.3.3, area(R) = O(�2k). On the other hand,d(~s; q0) = d(~s; ~q) cos\(~q~s; T~s) � �k=2 � cos\(~q~s; T~s). By Lemma 4.1.2(i), \(~q~s; T~s) �arcsin(d(~s; ~q)) � 2d(~s; ~q) � 4�k. Since �k � 1=4 by assumption, \(~q~s; T~s) � 1. Socos\(~q~s; T~s) � cos(1) � 1=2. This implies that d(~s; q0) � �k=4. Thus R0 containsa disk on T~s centered at ~s with radius �k=4. Combining with the previous upperbound, we conclude that area(R) = �(�2k).The probability of drawing a point from R is thus �(�2k)=area(S). The probabil-ity that the perturbation throws the point drawn from R into C is at least �k�2� = �k2 ,and at most 2�k�2� = �k. It follows that for any sample p, Pr(p 2 C) = �(�3k), as-suming that area(S) is an intrinsic constant for S.Now consider the case that C is a �k-rod. We also let R � S denote the patchf~x : x 2 C \ S�g. By the de�nition of a �k-rod and an argument similar to theone in the above, we can show that area(R) = �(�3k). Then the probability of a64



sample falling inside C is same as the probability of drawing a point from R, whichis area(R)=area(S) = �(�3k).Next, we bound the number of samples inside the �k-cell and �k-rod in Lemma 4.3.6.The following Cherno� bound [32] stated in Lemma 4.3.5 will be needed for doingthat.Lemma 4.3.5 Let the random variables X1;X2; : : : ;Xn be independent, with 0 �Xi � 1 for each i. Let Sn = Pni=1Xi, and let E(Sn) be the expected value ofSn. Then for any � > 0, Pr(Sn � (1 � �)E(Sn)) � exp(��2E(Sn)2 ), and Pr(Sn �(1 + �)E(Sn)) � exp(� �2E(Sn)2(1+�=3) ).Lemma 4.3.6 Assume that n is so large that �k � 1=4. Let C be a �k-rod or �k-cellat a point s 2 S. Let �1 and �2 be the constants in Lemma 4.3.4.(i) C is non-empty with probability at least 1� exp(�
(ln! n)).(ii) For any constant � > �1k, the number of samples in C is at most � ln! n withprobability at least 1� exp(�
(ln! n)).(iii) For any constant � < �2k, the number of samples in C is at least � ln! n withprobability at least 1� exp(�
(ln! n)).Proof. Let Xi(i = 1; : : : ; n) be a random binomial variable taking value 1 if thesample point si is inside C, and value 0 otherwise. Let Sn = Pni=1Xi. ThenE(Sn) =Pni=1E(Xi) = n � Pr(si 2 C). This implies thatE(Sn) � �1n�3k = �1k ln! n; andE(Sn) � �2n�3k = �2k ln! nBy Lemma 4.3.5, Pr(Sn � 0) = Pr(Sn � (1� 1)E(Sn))� exp(�E(Sn)2 )� exp(�
(ln! n)):65



Consider (ii). Let � = ��1k � 1 > 0. We have� ln! n = �1n�3k(1 + �) � (1 + �)E(Sn):By Lemma 4.3.5, Pr(Sn > � ln! n) � Pr(Sn > (1 + �)E(Sn))� exp(��2E(Sn)2 + 2�=3 )= exp(�
(ln! n)):Consider (iii). Let � = 1� ��2k > 0. We have� ln! n = �2n�3k(1� �) � (1� �)E(Sn):By Lemma 4.3.5, Pr(Sn < � ln! n) � Pr(Sn < (1� �)E(Sn))� exp(��2E(Sn)2 )= exp(�
(ln! n)):
We are ready to prove that the random process produces samples that satisfyour deterministic model with high probability.Theorem 4.3.1 Let X be n points on S that are drawn uniformly. For each x 2 X,de�ne px = x+ �xnx, where �x is drawn uniformly and independently from [��; �].There exists �; �1; �2 such that fpx : x 2 Xg satisfy our deterministic model withprobability at least 1� exp(�
(ln! n)).Proof. Choose two constants a and b such that 2 < �2a and 12 > �1b. We provethe theorem for � = 2�1, �1 = 2�a, and �2 = �3=2b =4. First of all, it is clear that�1 = O(�) and �2 = 
(�3=2). For convenience, we use \with high probability" tomean \with probability at least 1� exp(�
(ln! n))".66



Let p be a point in S. Let C be the �1-cell at p. By Lemma 4.3.6(i), C containsa sample with high probability. By Lemma 4.3.1, C lies inside the ball B(p; 2�1) =B(p; �). Thus jB(p; �) \ P j � 1 with high probability.Let C1 be the �a-cell at p. By Lemma 4.3.6(iii), C1 contains at least 2 ln! nsamples with high probability. By Lemma 4.3.1, C1 lies inside the ball B(p; 2�a) =B(p; �1). Thus jB(p; �1) \ P j � 2 ln! n with high probability.Let C2 be the �b-rod at p. By Lemma 4.3.6(ii), C2 contains at most 12 ln! nsamples with high probability. By Lemma 4.3.2, the ballB(p; �3=2b =4)\S = B(p; �2)\S lies inside C2. Thus jB(p; �2) \ P j � 12 ln! n with high probability.
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4.4 AppendixProof of Lemma 4.1.1Let M� be the medial ball of S� touching a point p 2 S�. By the de�nition of S�,there is a medial ballM of S touching ~p such that M and M� have the same centerand radius(M�) = radius(M)�� � f(~p)��. Let B be a ball of radius f(~p)�� thattouches S� at p. If S� intersects the interior of B, the medial axis of S� intersectsthe interior of B. But then radius(M�) < radius(B) = f(~p)��, a contradiction.The next lemma consists of a lemma by Giesen and Wagner [29] and a lemmaby Amenta and Bern [2].Lemma 4.4.1 Let p; q 2 S be two points.(i) If d(p; q) = �f(p) for some � < 1, then d(q; Tp) � �22 f(p) and \(pq; Tp) �arcsin(�2 ).(ii) If d(p; q) = �minff(p); f(q)g for some � � 1=3, then \(np; nq) � �1�3� .We are ready to prove Lemmas 4.1.2 and 4.1.3.Proof of Lemma 4.1.2Let f� denote the local feature size function for any point on S�. As S and S� sharethe same medial axis, f�(p) � f(~p)� � � 1=2 for any point p 2 S�.Consider (i). We have d(p; q) = �f�(p) for some � � �. Lemma 4.4.1(i) impliesthat d(q; Tp) � �2f�(p)=2= d(p; q)2=(2f�(p))� d(p; q)2:And \(np; nq) � arcsin(�2 ) � arcsin( d(p;q)2f�(p) ), which is at most arcsin(d(p; q)).68



Consider (ii). Let g denote minff(~p)� �; f(~q)� �g. We then haved(p; q) = �minff�(p); f�(q)gfor some � � � � 1=5. Lemma 4.4.1(ii) implies that\(np; nq) � �=(1� 3�)� d(p; q)=((1 � 3�)g):Note that g � 1 � � � 5=6 and 1 � 3� � 2=5. So (1 � 3�)g � 1=3, which impliesthat \(np; nq) � 3d(p; q).Proof of Lemma 4.1.3Let r be the point ~p+(q� ~q). W.l.o.g., assume that \~ppr � \~prp. By Lemma 4.1.2,\p~pr � 3d. Therefore, \~prp � �=2 � 3d=2. By sine law, d(p; r) = d(p;~p)�sin\p~prsin\~prp �3�dcos(3d=2) . Since � � 1=10 and cos(3d=2) � cos(3=10) > 0:9, we have d(p; r) � d=2.By triangle inequality, d(p; q) � d(q; r) + d(p; r)= d(~p; ~q) + d(p; r)� 3d=2:Similarly, d(p; q) � d(q; r)� d(p; r) � d=2.We need the Lemmas 4.4.2, 4.4.3, and 4.4.4, to prove Lemma 4.3.3.Lemma 4.4.2 Let p 2 S� be a point. Let k and d be constants such that k � 2and kd � 1=20. Let ` be a line such that d(p; `) � d and \(np; `) � �=4. Then `intersects S� \B(p; kd) at exactly one point.Proof. Let C = S� \ B(p; kd). We �rst show that ` intersects C. Suppose not.Translate ` towards p until ` touches C at some point q. We claim that q 2 int(C).By this claim, ` is tangent to S� at q. Observe that nq lies on the plane throughq and orthogonal to `. This implies that \(np; nq) � �=2 � \(np; `) � �=4, whichcontradicts Lemma 4.1.2(ii). We now prove the claim. Suppose that q 2 @C. Then69



q lies on the boundary of B(p; kd) and between the medial balls at p. Refer toFigure 4.1. Let `p be the support line of np. Let `0 be the projection of ` ontothe plane containing `p and q. Starting with Lemma 4.1.2(i), we have \(pq; Tp) �arcsin(kd) � 1=10 as kd � 1=20. Also, \(`p; `0) � \(`p; `) � �=4. Thus\(pq; `0) = �=2� \(`p; `0)� \(pq; Tp)� �=4� 1=10:But then d(p; `) � d(p; `0) = kd sin\(pq; `0) > d as k � 2 and sin(�=4�1=10) > 1=2,a contradiction.
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Figure 4.1: Illustration for the proof of Lemma 4.4.2.Next, we show that ` intersects C at exactly one point. Suppose that there aretwo points x; y 2 ` \ C. Note that d(x; y) � 2kd. By Lemma 4.1.2(i), \(xy; Tx) �arcsin(2kd) < 1=5 as kd � 1=20. So \(nx; `) � �=2 � 1=5, which implies that\(nx; np) � �=4� 1=5 > 3kd as kd � 1=20. This contradicts Lemma 4.1.2(ii).Lemma 4.4.3 Assume that � � 1=2. Let p 2 S� be a point. Let d � 1=20. Let Y bethe in�nite cylinder with radius d and axis aligned with np. Let C be the connectedcomponent of Y \S� containing p. Let H be a plane passing p and np. Then C \His a curve segment, and C is a topological disk.Proof. First, we show that C � S� \B(p; 2d). Consider any point q on C. Observethat the two balls of radius 1� � tangent to S� at p do not intersect S�nfpg. As dis less than the radius 1� � of the two balls, it is clear that \(pq; Tp) < �=4, whichimplies d(p; q) < 2d. 70



By Lemma 4.4.2, ` intersects S� \ B(p; 2d) at exactly one point. Since C �S�\B(p; 2d), ` intersects C with at most one point. Suppose ` does not intersect C.Then we can translate ` toward np. At some point, ` will be tangent to some pointz on C, which means nz ? np. However, we can prove that nz and np make an acuteangle, which then leads to a contradiction. As d(p; z) � 2d and by Lemma 4.1.2(ii),\(np; nz) � 3d(p; z) � 6d < �=2. So ` \ C is exactly one point. Therefore C \H isa curve segment, and C is a topological disk.Lemma 4.4.4 Let p be a point on S�. Let H be a plane passing through p makingan acute angle with np. Let curve F� = S� \H. Then the radius of curvature of F�at p is at least (f(~p)� �) cos\(np;H).Proof. By Lemma 4.1.1, there are two tangent balls B1; B2 of S� at p of radiusf(~p) � � that do not intersect S�nfpg. We show that there are two tangent disksD1;D2 of F� at p of radius (f(~p)� �) cos\(np;H) that do not intersect F�nfpg.Consider the plane H 0 containing np and the normal to H. Consider the cross-section of everything on H 0 in Figure 4.2. Let D1 = B1 \ H. As B1 does not
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B1Figure 4.2: Illustration for the proof of Lemma 4.4.4.intersect S�nfpg, D1 does not intersect F�nfpg. Let x and y be the centers of B1and D1, respectively. As xy ? py, radius(D1) � d(p; y) = (f(~p) � �) cos\xpy =(f(~p)� �) cos\(np;H).Now we can do the proof for Lemma 4.3.3.71



Proof of Lemma 4.3.3First we establish the lower bound. Let H be a plane that contains the normal toS� at p. Consider any point q 2 S� \ Y \H. Let C be the connected componentof S� \ Y containing p. Let D be the projection area of C onto Tp. As C is atopological disk by Lemma 4.4.3, D is a disk. Thus area(C) � area(D) � �r2.Then we will establish the upper bound. The radius of curvature at any pointq on C is at least 1� �. Consider the projection of C onto Tp. Let J be the curvesegment H \C according to Lemma 4.4.3. Refer to Figure 4.3: H \Tp is the x-axis,
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Figure 4.3: Illustration for the proof of Lemma 4.3.3.and np is the y-axis. Let q be any point on J , and let t be its projection onto Tp.By Lemma 4.1.1, there are two tangent disks of J at p on H of radius R = 1 � �at p. As r � R, it is clear that \(pq; Tp) � �=4, which implies d(q; t) � d(p; t) � r.Thus d(p; q) � p2r < 3r=2. Then by Lemma 4.1.3, d(~p; ~q) � 2d(p; q) � 3r. ByLemma 4.1.2(ii), \(np; nq) � 9r � 9=20 < �=6, which implies \(nq;H) < �=6as np lies on H. By Lemma 4.4.4, the radius of curvature of J at q is at least(1 � �) cos\(nq;H) > (1 � �) cos �=6 = p3(1��)2 , which means the curvature k(q)of any point on J is at most 2p3(1��) . Let  be the angle between the tangent ofJ at q and the horizontal. Let s be the arc length along J from p to q. Then asds = ( 1k(q) )d, d = k(q)ds = k(q) sec dx � 2p3(1� �) sec dx:So p3(1��)2 cos d = dx. Thus by doing integration on both sides, p3(1��)2 sin � x,72



which implies sin � 2xp3(1��) � 2rp3(1��) and cos  � q23 as r � 1��20 . Therefore,ds = sec dx �q32dx.Suppose H 0 is the plane obtained by rotating H through an angle d� around np(i.e. the y-axis in Figure 4.3 and Figure 4.4). Let J 0 be the curve segment H 0 \ C.Suppose Y 0 be a smaller cylinder concentric to Y and passing through a point q onJ . Let q0 be the intersection point J 0 \ Y 0. Refer to Figure 4.4. The arc length dtfrom q to q0 along the boundary of Y 0 \ C is approximately d(q; q0).
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Figure 4.4: Illustration for the proof of Lemma 4.3.3.Consider another plane Q passing through q and q0 and perpendicular to Tp. Let`0 be the line through q0 perpendicular to Tp. Let q00 be the projection of q onto `0.Now dt � d(q; q0) = d(q; q00) sec\q0qq00 = xd� sec\q0qq00. By Lemma 4.1.2 (i) andsince dt is very small, \q0qq00 = \(qq0; Tp)� \(qq0; Tq) + \(Tq; Tp)� arcsin(d(q; q0)) + \(np; nq)� 2dt+\(np; nq)< �=6:Thus dt � xd� sec �6 = 2p3xd�.Refer to Figure 4.5. The surface area of C is R R dsdt � R R (q32dx)( 2p3xd�) �R r0 R 2�0 p2xd�dx = R r0 2p2�xdx = [p2�x2]r0 = p2�r2.73
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CHAPTER 5SURFACE RECONSTRUCTIONIn this chapter, we will present an algorithm to reconstruct polygonal closed surfacesfrom noisy samples P obtained from a set of smooth closed surfaces. We assume Psatis�es the conditions of the deterministic noise model as de�ned in the previouschapter. We show that the output polygonal reconstruction by our algorithm isfaithful to the original surface S when n = jP j is large enough.Our surface reconstruction algorithm is described in section 5.1. Then we givean overview on the analysis of our faithfulness proof in Section 5.2, and we give thedetails of the analysis in Section 5.3, 5.4 and 5.5. We summarize in Section 5.6.Note that the proofs of some technical lemmas are given in the appendix.5.1 AlgorithmSimilar to the framework for the curve reconstruction algorithm in Chapter 3, our al-gorithm for surface consists of three main steps called Point estimation, Pruningand Surface reconstruction. Our algorithm �rst �lters noise and then appliescocone to obtain a triangulated surface. The noise �ltering procedure consists oftwo steps, Point estimation and Pruning. In the �rst step, which is the Pointestimation step, new points are computed that are provably close to S. However,the distances of these new points from S can be much larger than the distancesamong them. Using all the new points to form a reconstruction would produce ahighly rugged surface. In the second step, which is the Pruning step, some of thenew points are pruned so that the interpoint distances in the remaining subset ofnew points are large relative to their distances from S. Now we can apply the coconealgorithm (or any faithful surface reconstruction algorithm for noiseless samples) toproduce a provably good surface in the �nal Surface reconstruction step. We75



remark that our algorithm does not estimate the model parameters �; �1; �2. It maybe possible to do so, but we do not rely on any such estimate.We further highlight the Point estimation step. At each sample p 2 P ,we grow a ball neighborhood called coarse neighborhood until the noisy samplesinside the neighborhood �t inside a su�ciently thin slab. This thin slab is anapproximation of the tangent plane at ~p, i.e., the direction normal to the thin slabapproximates np. However, due to noise, the size of the ball neighborhood is in theorder of the noise amplitude �. As the surface can bend quite a lot inside this ballneighborhood, the approximation error of the estimated normal is also in the orderof �. Thus we have a second phase to improve the estimate in a smaller neighborhoodcalled re�ned neighborhood around p. We take some directions slightly di�erent fromthe normal estimate due to the coarse neighborhood. We construct a narrow tubeoriented in each direction. We trim each tube to the shortest cylinder containingall samples inside. Among all cylinders, the orientation of the shortest one provablyapproximates np well. We provide the algorithmic details below. Recall that ! > 0,� � 20, and 0 <  � 1=8 are constants chosen in advance.Point estimation. For each noisy sample p 2 P , we compute a point p� thatapproximates ~p as follows.Initial ball. We compute a ball initial(p) centered at p with ln! n sam-ples inside.Coarse neighborhood. We initialize coarse(p) to be the ball centeredat p with radius rp = radius(initial (p)) . We compute an in�niteslab candidate(p) that contains all samples inside coarse(p). A slabof minimum width would be nice, but a 2-approximation su�ceswhich can be computed in linear time [33]. We repeatedly doublethe size of coarse(p) and maintain candidate(p) until the radius ofcoarse(p) is not less than � � width(candidate(p)).Re�ned neighborhood. Let D be the unit sphere of directions centeredat p. We cover D by a set of caps as follows. Grid the boundary of76



the bounding box of D into square cells of width prp. Project thegrid vertices onto D towards the center of D and put a cap withangular radius prp centered at each projected grid vertex. Lethp be the line through p orthogonal to candidate(p). We examineall caps on D. Let ` be the line through p and the center of acap. If \(hp; `) > �=10, examine the next cap. Otherwise, letLp(`) denote the in�nite tube with axis ` and radius rp=4. Wetrim Lp(`) to obtain the shortest cylinder Cp(`) that contains allnoisy samples inside Lp(`) \ coarse(p). After going through allcaps, we pick the shortest cylinder Cp(`�p) generated. The line `�papproximates np and the center p� of Cp(`�p) approximates ~p.Pruning. We scan the cylinder centers in an arbitrary order and select a subset C�:when we select the center p�, we delete all centers q� not yet selected that satisfyd(p�; q�) � 8prp=4.Surface construction. We run the cocone algorithm [5] on the centers in C�and return the output surface, say N . One modi�cation is that instead of usingpolar normals, we use the estimated normal `�p for each p� 2 C�. The details areprovided in section 5.5.5.We analyze the running time of the algorithm. Pruning clearly takes O(n2)time. In Surface construction, the most time-consuming step is the constructionof the 3D Voronoi diagram which takes O(n2) time. Initial ball takes O(n) timefor each sample. It remains to show that Coarse neighborhood and Refinedneighborhood take O(n1+) time for each sample. We need a technical lemma onthe relations among n; �; �1; �2, whose proof is given in the appendix. Recall thatwe are working with the deterministic noise model, so these relations are derivedbased on it.Lemma 5.1.1 �; �1 = O(( ln! nn )2=9) and �2 = 
(( 1n)3=4).Lemma 5.1.2 The algorithm runs in O(n2+) time.77



Proof. In growing coarse(p), we spend O(n) time to compute candidate(p) aftereach doubling. So the total time needed is O(n log(Rp=rp)), where Rp is the radiusof the �nal coarse(p). By the model, radius(initial(p)) � �2 which is 
(1=n3=4)by Lemma 5.1.1. Thus, rp = radius(initial(p)) = 
(1=n3=4). We will show inLemma 5.3.2 that Rp � 20��+2rp, which is O(1+rp). Thus log(Rp=rp) = O(log n),implying that Coarse neighborhood takes O(n logn) time per sample. Thus ittakes O(n2 logn) total time.InRefined neighborhood, for each Lp(`), collecting the samples inside Lp(`)\coarse(p) and computing Cp(`) takes O(n) time. Let K be the set of caps onD considered in the algorithm for sample point p. Since the angular radius ofeach cap is prp, the area of each cap is O(rp). Thus the number of caps jKjconsidered for sample point p is O(1=rp). So the total time to compute all Cp(`)for the corresponding directions in K is O(n=rp). As rp = 
(1=n3=4), we haven=rp = O(n1+3=4) = O(n1+). Thus Refined neighborhood takes O(n1+) timeper sample. Thus it takes O(n2+) total time.On the other hand, as Pruning and Surface reconstruction takes O(n2)time. Hence the total running time is O(n2+).5.2 Overview of analysisIn the consequent sections, we will prove the theoretical guarantees ensured by ouralgorithm, that are summarized in the following theorem.Theorem 5.2.1 Assume � > 1 and � � 1=(1600�2). Let 0 <  � 1=8 be a constantparameter. Given a noisy sampling P of S that satis�es our deterministic noisemodel, our algorithm constructs a a triangulated surface N in O(n2+) time suchthat as n increases,(i) each vertex p� of N converges to ~p,(ii) the normal of each triangle T in N converges to the normal at ~p for somevertex p� of T , and 78



(iii) N is homeomorphic to S.Not surprisingly, the framework of our proofs for faithfulness for the recon-structed surface is similar to the curve case in Chapter 3. We need to go throughthe analysis for the coarse neighborhood, the re�ned neighborhood, and the home-omorphism proof.Consider the �nal coarse neighborhood coarse(p) at a sample point p. Due to thecriterion to sustain the growing of coarse(p), coarse(s) must have radius �(��+ rp),where rp is the radius of initial coarse ball at p. Next, we would like to argue thatthe normal of candidate(s) approximates the surface normal at ~s. We claim thatthe deviation is actually O(�� + rp). We prove this by contradiction and assumethat candidate(s) is tilted a lot. Then a signi�cant volume of S \ coarse(p) liesoutside candidate(s). Our goal is to show that this particular volume contains anoisy sample so that a contradiction is established. The details are in Section 5.3.As the normal estimation in the coarse neighborhood depends on the noise am-plitude, and thus does not converge to zero when n increases. So we need to proceedto have a better estimate in the re�ned neighborhood. In the re�ned neighborhoodat p, we rotate a thin cylinder of width �(rp) centered at p. In the algorithm,the both bases of a cylinder are set to tightly bound all the sample points insidethe cylinder. Our target cylinder axis direction `�p is a direction so that the cylinderheight is minimum. For e�ciency, in our algorithm, we only seek for an approximateminimum height. The proof intuition is that when `�p is close to the surface normal,the corresponding cylinder height will be quite small; otherwise the correspondingcylinder height will be large. Thus we can eliminate the latter option, and we canprove that `�p is close to the surface normal. From this, we can then prove the centerp� of this cylinder of small height is close to the original surface S. The details arein Section 5.4.Finally, to prove that the normals of the output triangles approximate well thesurface normals and the reconstructed surface is homeomorphic to the original sur-face S, we adapts the proof technique in the cocone paper [5] for noiseless samplepoints. The main problem we need to get through is that in their original proof they79



assume that all the sample points must be on the original surface S, which is nottrue in our case. The details are in Section 5.5.5.3 Coarse neighborhoodWe �rst bound the size of coarse(p) which allows us to bound the approximationerror of the initial estimate of np.5.3.1 Radii of initial(p) and coarse(p)The next two lemmas bound the radii of initial(p) and coarse(p).Lemma 5.3.1 Then 
(�3=2) = �2 � radius(initial (p)) � �1 = O(�). Also, r2p � �and rp = O(�) for su�ciently large n.Proof. By our deterministic model, as initial(p) contains ln! n samples, the ra-dius of initial(p) is less than �1 = O(�) and at least �2 = 
(�3=2). Then rp =(radius(initial(p))) = O(�).Since rp � radius(initial(p)) � �2 and �2 = 
(1=n3=4) by Lemma 5.1.1, we haverp = 
(1=n3=4) = 
(1=n3=32) as  � 1=8. By Lemma 5.1.1, � = O(( ln! nn )2=9). Thusfor su�ciently large n, r2p � �.Lemma 5.3.2 Assume � > 1 and � � 1=(1600�2). Thenmaxf2p��; rpg � radius(coarse(p)) � 10�� + 2rpfor su�ciently large n.Proof. Let Rp = radius(coarse(p)). We �rst upper bound Rp. Suppose to thecontrary that Rp > 10�� + 2rp. Since the �nal coarse(p) is obtained by repeateddoubling B(p; rp). The algorithm must come across a ball B such that 5�� + rp �radius(B) � 10�� + 2rp. Before reaching the �nal coarse(p), we show that the80



algorithm should have stopped and reported B as the �nal coarse ball, which wouldlead to contradiction.Let x and y be points on S+� and S�� , respectively, such that ~x = ~y = ~p. Asrp = O(�) by Lemma 5.3.1, rp ! 0 as n ! 1. As � < 1=(1600�2) and forsu�ciently large n, radius(B) � 10�� + 2rp < (f(~p)� �)=2:Thus for any points a; b 2 B \ S+� , d(a; b) � 2 radius(B) < f(~p) � �. Let dx bethe maximum distance between B \ S+� and Tx. As rp < 1=(320�) for large n byLemma 5.3.1 and 40� � 1=p�, Lemma 4.1.2(i) implies thatdx � (2 radius(B))2� (20�� + 4 rp)2� (p�=2 + 4 rp)2� �=4 + (4p� + 16 rp)rp� �=4 + ( 840� + 120� )rp� �=4 + rp4�:Similarly, the maximum distance dy between B \ S�� and Ty is at most � + rp4� .Therefore, if we enclose the noisy samples in B \ S using a slab L parallel to Tp,then width(L) � dx + dy + 2� � 4� + rp2� � radius(B)=(2�): Since we compute a2-approximation of the thinnest slab, the slab width computed by the algorithmfor B is at most radius(()B)=�. But then, the algorithm should have stopped andreported B. This is a contradiction.Next, we lower bound Rp. Clearly, Rp � rp by construction. We show thatRp � 2p��. Let B = B(p;Rp=p�) and let X = B(~p; �). Note that p 2 X and X istangent to S+� and S�� . Lemma 4.1.1 implies that X is sandwiched between S+� andS�� as f(~p)� � > �.Assume to the contrary that Rp < 2p��. Then radius(B) < 2�. Since p 2 X,B\X contains a ball with radius radius(B)=4. The width of candidate(p) is at most81



Rp=� = radius(B)=p�. Thus, (B \ X) � candidate(s) contains a ball Y such thatY is empty, Y is sandwiched between S+� and S�� , andradius(Y ) � (18 � 18p�) � radius(B)� Rp=(16p�):Since Rp � rp by construction, radius(Y ) � rp=(16p�) � r2p for su�ciently largen. By Lemma 5.3.1, r2p � �. But then Y contains a noisy sample, a contradiction.Hence Rp � minf2p��; rpg.5.3.2 Rough normal estimateWe remark that the following analysis of the approximation error assumes thatrp < 1. Since rp = radius(initial(p)) � O(�) and � = O(( ln! nn )2=9), the smaller is, the larger n needs to be so that rp < 1. This is a tradeo� between the runningtime and the number of samples needed to achieve a small approximation error. Ofcourse, as  is a constant with respect to n,  does not a�ect the asymptotic behaviorof the algorithm. Next, we show that candidate(p) is a rough approximation of Tp inLemma 5.3.4. To do this, we need one more technical lemma (Lemma 5.3.3), whichproof is deferred to appendix.Lemma 5.3.3 Assume that � � 1=2. Let p 2 S� be a point. Let d � 1=20. LetH be a plane passing p and np. Then S� \ B(p; d) \ H is a curve segment, andS� \B(p; d) is a topological disk.Lemma 5.3.4 Assume � > 1 and � � 1=(1600�2). For su�ciently large n, theangle between Tp and candidate(p) is at most 20�� + 4rp + 4=�.Proof. Let p 2 S�. If Tp and candidate(p) are parallel, we are done. Suppose not. LetH be the plane spanned by np and the line perpendicular to candidate(p). Figure 5.1shows the cross-section on H. Let L denote the strip candidate(p) \H. Note thatwidth(L) = width(candidate(p)). Let ` be the line on H through p parallel to L. By82
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Figure 5.1: Illustration for the proof of Lemma 5.3.4.Lemma 5.3.3, the boundary of B(p;Rp � �) intersects the curve S� \H \ coarse(p)at exactly two points. Let q be one of them.Since B(q; �) contains some noisy sample, B(q; �) must intersect candidate(p)as candidate(p) contains all noisy samples inside coarse(p). Thus B(q; �) \H mustintersect L.Assume to the contrary that \(Tp; `) > 20�� + 4rp + 4=�. Since Rp < f(~p)� �,Lemma 4.1.2(i) implies that \(pq; Tp) � arcsin(Rp��) � arcsinRp, which is at mostarcsin(10��+2rp) by Lemma 5.3.2. Then \(pq; `) � \(Tp; `)� arcsin(10��+2rp) >20�� + 4rp + 4=� � 20�� � 4rp = 4=�. It follows thatd(q; `) � d(p; q) � sin\(pq; `) > (Rp � �) � 2� = Rp� + �+ Rp � 2�� ��� :As r2p � � by Lemma 5.3.1 and p� � 1=(�+2) for large n by Lemma 5.1.1, we haveRp � rp � p� � (�+2)�. This implies that d(q; `) > Rp=�+� � width(L)+�, whichcontradicts the fact that B(q; �) \H intersects L.5.4 Re�ned neighborhood and point conver-genceBy Lemma 5.3.4, since 10�� � �=12 as � � 1=(1600�2), the angle between Tp andcandidate(p) is at most �=12 for su�ciently large n. Since our algorithm enforces83



the angle between a tube axis ` and the direction orthogonal to candidate(p) is atmost �=10, \(np; `) � �=12 + �=10 < �=5. Recall that the radii of the tubes Lp(`)and cylinders Cp(`) are set to rp=4. We want to show that Refined neighbor-hood gives a provably good estimate of np. We need the following several technicallemmas, whose proofs are given in the appendix.Lemma 5.4.1 Let ` be an arbitrary line through a sample point p such that \(np; `) ��=5. For any � 2 [��; �], Lp(`)\coarse(p)\S� is a topological disk inside B(x; rp=2),where x = ` \ coarse(p) \ S�.The following lemma bounds some distances from p to S� in terms of \(np; `).Lemma 5.4.2 Let ` be an arbitrary line through a sample point p such that � =\(np; `) � �=5. For any �, let p1 2 S� with ~p1 = ~p. Let x = ` \ coarse(p) \ S�.Then (i) d(p1; x) � �d(p; p1)=2, (ii) d(p; x) � d(p;p1)+�2d(p;p1)2=4cos � , and (iii) d(p; x) �d(p;p1)��2d(p;p1)2=4cos � .The following lemma is for proving the point convergence later.Lemma 5.4.3 Let ` be a line through a sample point p such that � = \(np; `) � �=5.Let e be the segment ` \ S \ coarse(p). Let q be the point e \ S. Then d(q;m) �2�2�2= cos �, where m is the midpoint of e.Proof. Suppose e = q1q2 where q1 2 S+� ; q2 2 S�� . Let p1p2 denote the normalsegment passing through p, where p1 2 S+� ; p2 2 S�� . Let t1 = `\Tp1 and t2 = `\Tp2.And let t = ` \ T~p. Refer to Figure 5.2. Note that t is the midpoint of the segmentt1t2. By Lemma 5.4.2 (ii) & (iii) and the fact that d(p; t1) = d(p; p1)= cos �, we getjd(p; q1)� d(p; t1)j � �2d(p; p1)24 cos � ;which is at most �2�2cos � as d(p; p1) � 2�. Since p; q1; t are collinear, we conclude thatd(t1; q1) � jd(p; q1)� d(p; t1)j � �2�2cos � :84
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Similarly, we also haved(p; b2) � d(p; p2) + �2d(p; p2)2=4cos � + rpprp:Hence the height of Cp(`) is d(b1; b2) � 2�+�2�2cos � + 2rpprp.Next, we upper bound d(p�; q). Let m be the midpoint of e. As p� is themidpoint of b1b2, we have d(p�;m) � rpprp. On the other hand, by Lemma 5.4.3(i), d(q;m) � 2�2�2= cos �. Thus by triangle inequality, we haved(p�; q) � d(q;m) + d(p�;m)� 2�2�2= cos � + rpprp:
Lemma 5.4.5 Let � = \(np; `) � �=5. Assume that � > 32prp. Then the heightof Cp(`) is at least 2���2�2cos � + 2rpprp.Proof. Assume that ` is vertical. Let H be the plane spanned by ` and np. Let p1be the point on S� such that ~p1 = ~p. Let � denote S� \Lp(`)\H. By Lemma 5.3.3,� is a curve segment. Let a and b be the endpoints of �.We �rst analyze the directions of the normals of � on H. Consider any pointz 2 �. Let n0z be the projection of nz onto H. Note that n0z is the normal of � at z onH. Observe that \(np; n0z) � \(np; nz) = \(np1 ; n2). By Lemmas 5.4.1 and 5.4.2(i),d(p1; z) � �� + rp=2. Lemma 4.1.2 (i) implies \(np1 ; nz) � arcsin(�� + rp=2) �2�� + rp. So \(np; n0z) � 2�� + rp.Assume that � > 32prp. We argue that � strictly increases or decreases from ato b. If np points to the left of `, then n0z also points to the left of `, making an angle(1 � 2�)� � rp > 0 as � > 32prp. So � strictly increases from a to b. Conversely, ifnp points to the right of `, then � strictly decreases from a to b.W.l.o.g., assume that � strictly increases from a to b. Refer to Figure 5.4. Letq1 be the point `\S�. Let g be the horizontal line through q1. Let h be the vertical87
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Proof. Consider the cylinder Cp(`1) computed by the algorithm. Let h be its heightand let � = \(np; `�p). Consider the caps covering the sphere of directions centeredat p in Refined neighborhood. np projects to a point inside some cap. Let `0be the line through the center of this cap and p. So Cp(`0) is the correspondingcylinder. Let h0 be its height and let �0 = \(np; `0). Note that �0 � prp.Assume to the contrary that � > 32prp. By Lemmas 5.4.4 and 5.4.5, h � h0 �C � C 0, where C = 2�cos � cos �0 (cos �0 � cos �); andC 0 = �2cos � cos �0 (�2 cos �0 + �02 cos �) � 2�2�2cos � cos �0 :Since � � 32�0, cos �0 � cos � = 2 sin �0 + �2 sin � � �02� 2 sin �2 sin �4� 2 � �4 � �8� �2=16:Thus, C � C 0 � ��28 cos � cos �0 � 2�2�2cos � cos �0� ��28 cos � cos �0 (1� 16�)> 0as � � 1=(1600�2). So h � h0 > 0. This contradicts the fact that Cp(`�p) has theminimum height. Hence � � 32prp.Let q be the point `�p \ S. By Lemma 5.4.2 (i), d(~p; q) � �d(p; ~p)=2, whichis at most �� as d(p; ~p) � 2�. By Lemma 5.4.4, d(p�; q) � 2�2�2cos � + rpprp. Thusd(~p; p�) � d(~p; q) + d(p�; q) = rpprp +O(�) = O(prp) as � � 32prp.89



5.5 Triangle normal and homeomorphismSince the selected center points in C� are not on the surface S, we cannot directly usethe proofs in the cocone paper [5] for noiseless sample points. Instead we adapts theirtechnique for our homeomorphism proof. We �rst need a concept called RestrictedDelaunay triangulation on S, which was de�ned in say [23]. We will describe it �rstin the subsection below.5.5.1 Restricted Delaunay triangulationThe Voronoi diagram VC� of C� contains the Voronoi cells Vp� for all points p� 2 C�,where Vp� is de�ned to befx 2 R3 : d(x; p�) � d(x; q�) for any q� 2 C� and q� 6= p�g:The Delaunay triangulation DC� of C� has a edge p�q� if Vp� \ Vq� is a face, hasa triangle p�q�r� if Vp� \ Vq� \ Vr� is an edge, and has tetrahedron p�q�r�s� ifVp� \ Vq� \ Vr� \ Vs� is a point.The restriction of VC� to the surface S is called the restricted Voronoi diagramof C� on S, denoted as VC� jS . It contains all the restricted Voronoi cells Vp�jS =Vp� \ S. The dual of these restricted Voronoi cells de�nes the restricted Delaunaytriangulation DC� jS . Speci�cally, DC� jS has an edge p�q� if and only if Vp�jS \Vq� jS 6= ;, and a triangle p�q�r� if and only if Vp� jS \ Vq� jS \ Vr� jS 6= ;. Assumingthat S does not pass through a Voronoi vertex in general position, there is notetrahedron in DC� jS .Edelsbrunner and Shah [23] showed that the underlying space of DC� jS is home-omorphic to S if the following closed ball property holds: each Vp� jS is a topologicaldisk, each nonempty pairwise intersection Vp� jS \Vq�jS is a curve segment, and eachnonempty triple intersection Vp� jS \ Vq� jS \ Vr� jS is a single point.5.5.2 Overview for homeomorphismNow let's have an overview on how we proceed to prove the homeomorphism.90



In the algorithm, all the center points are scanned to select a subset C� of centerpoints: when a center point p� is selected, we delete all unselected center pointsu� such that d(p�; u�) � r1=8p . We prove that the output manifold by running thecocone algorithm on C� is a faithful reconstruction of S. We assume the points inC� are in general position. In practice most Delaunay triangulation codes simulategeneral position, so this is not an unreasonable assumption.In the noiseless case, Amenta, Choi, Dey, and Leekha [5] prove that the coconealgorithm returns a faithful reconstruction. The key step is proving that the normalof each triangle converges to the normal at some triangle vertex. Based on thisresult, one can then show that the restricted Delaunay triangles are not removedduring the manifold extraction. This is important as it guarantees that there issome underlying manifold to be extracted. Furthermore, the convergence of trianglenormals implies that the output surface is locally at, which is instrumental toproving the homeomorphism.The main tool in proving the homeomorphism and the convergence of normals oftriangles is that there are two large tangent balls on opposite sides of S that touchS at each noiseless sample. The radii of these tangent balls are at least the localfeature size of the sample, and these tangent balls do not contain other noiselesssamples. We claim that an analogous result holds in the noisy case. So the proofsin [5] can be adapted here.Speci�cally, let p� be the center point computed for a noisy sample, and letp� 2 S�. We claim that there are two large tangent balls B1 and B2 on oppositesides of S� that touch S� at p�. The radii of B1 and B2 are at least c for someconstant 0 < c < 1. Note that c is very large compared to the inter-center distanceswhich is O(r1=8p ) after pruning. We do not need the radii of B1 and B2 to beproportional to the local feature size because we use uniform sampling.By the point convergence lemma, the selected center points C� lie inside a thinshell. We will look at this and some basic properties of the selected centers pointsC� in Section 5.5.3. Then in Section 5.5.4, we will prove that there are two largeempty tangent balls at each center point p�. With this lemma, we prove that theunion of all restricted Delaunay triangles is homeomorphic to S in Section 5.5.6.91



In Section 5.5.5, we review the cocone reconstruction algorithm. Finally in Sec-tions 5.5.7, 5.5.8 and 5.5.9, we prove the properties on the sizes and normals of thereconstructed triangles and the homeomorphism between the reconstruction and theoriginal surface S.5.5.3 Thin shellThe point convergence lemma (Lemma 5.4.6) immediately implies the followinglemma, which says that the center points are close to the surface S, and the es-timated normals are close to the surface normals.Lemma 5.5.1 For any center point p�, d( ~p�; ~p) = O(�=2) and \(np�; np) = O(�=2).Moreover, d(p�; ~p�) = O(�=2).Proof. By Lemma 5.4.6 and Lemma 5.3.1, d(p�; ~p) = O(prp) = O(�=2). As ~p�is the closest point on S to p�, d(p�; ~p�) � d(p�; ~p) = O(�=2). Thus d( ~p�; ~p) �d(p�; ~p�)+d(p�; ~p) = O(�=2). By Lemma 4.1.2 (ii), \(np�; np) � 3d( ~p�; ~p) = O(�=2).Moreover, d(p�; ~p�) � d(p�; ~p) = O(�=2).By this lemma, we have d(p�; ~p�) = O(�=2) for any p� 2 C�. Let � =maxfp�2C�g d(p�; ~p�), which is O(�=2). Let S� be the volume between S+� andS��. Then all center points in C� lie inside S�. The following lemma says that thecenter points C� in S� are dense.Lemma 5.5.2 For each point q 2 S�, there is a center point p� 2 C� such thatd(p�; q) = O(�=8).Proof. The ball B(q; �) contains a sample point s 2 P by our deterministic noisemodel. Then d(q; s�) � d(q; s)+d(s; ~s)+d(~s; s�) � �+(�+ �)+d(~s; s�) � O(�=2)+d(~s; s�). Since d(~s; s�) � d(~s; ~s�) + d( ~s�; s�) = O(�=2) by Lemma 5.5.1, we haved(q; s�) = O(�=2). 92



If s� 2 C�, then we are done. Otherwise s� is decimated when a center pointp� is selected. This means d(s�; p�) � 8prp = O(�=8). Thus d(q; p�) � d(q; s�) +d(s�; p�) = O(�=8).Corollary 5.5.1 For any p� 2 C�, Vp� jSalpha is contained in a ball of radius O(�=8)centered at p�, where � � �.Next, we prove that after pruning, the distance between the selected centerpoints is large when compared with �.Lemma 5.5.3 Let p�; q� 2 C�. Then d(p�; q�) � �=82 .Proof. Assume that, in the algorithm, p� is selected before q�. So d(p�; q�) > r1=8p .Recall that rp = radius(initial(p)) and radius(initial (p)) � �2 by Lemma 5.3.1. Sod(p�; q�) � �=82 .5.5.4 Twin empty tangent ballsWe then prove that for any center point p� 2 S�, where � � �, there are twin ballstangent to S� at p� and empty of the center points in C�. This lemma allows us toadapt many proofs from the cocone paper [5].Lemma 5.5.4 Suppose p� 2 C� is on S�. For su�ciently large n, there are twoballs tangent to S� at p� of radius 1=10 on opposite sides of S� such that theirinteriors do not contain any center point in C�.Proof. We will consider only one side of S� as the arguments for the other side aresymmetric. Let m be a point at unit distance from ~p� in the normal direction. LetM = B(m; 1��). Since fmin = 1, the following holds: M is tangent to S�,M is freefrom intersecting the interior of S�, and M is empty of center points in C�. Let qbe the tangent point between M and S�. We consider another ball B = B(p�; �=82 ),which is empty of center points in C� by Lemma 5.5.3.93
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(�2=3), we have 2� = O((�3=22 )=2) = O(�3=42 ), whichis less than �=82 for su�ciently large n. So d(x; q) � 2�=82 .Let � = \qxt. Note that \p�mx = 2�. Then sin� = d(x;q)=21�� � �=821=2 = 2�=82 .Thus d(q; t) = d(x; q) sin� � (2�=82 )2 = 4�=42 :It follows thatsin\p�xt = d(p�; q) + d(q; t)d(p�; x) � 2� + 4�=42�=82 = O(�3=42 ) + 4�=42�=82 :94



As O(�3=42 ) � �=42 for su�ciently large n,sin\p�xt � 5�=42�=82 = 5�=82 :Hence r0 = d(p�;x)=2sin\p�xt � �=82 =25�=82 � 1=10.Consider a vertex p� 2 S� of a restricted Delaunay triangle T . Since there aretwin big balls tangent to S� at p� by the previous lemma, and the circumradius of arestricted Delaunay triangle is O(�=8) by Corollary 5.5.1, we can prove the followinglemma by using almost the same argument in Lemma 7 in [2]. The details of itsproof is in the appendix.Lemma 5.5.5 Let � be a restricted Delaunay triangle, and n� be the line normalto � . Then \(n� ; np�) = O(�=8) for any vertex p� of � .With this lemma, by using almost the same arguments as Theorem 2 in [2], wehave the following lemma. The details of its proof is in the appendix.Lemma 5.5.6 The union of restricted Delaunay triangles is homeomorphic to S.5.5.5 Review of the cocone algorithmWe will �rst review the cocone algorithm [5] because some understanding is neededto prove the homeomorphism.First of all, the Delaunay triangulation of C� is computed. For any point p� 2 C�,let e = w1w2 be an edge in Vp� . Suppose `�p be the estimated normal by previousalgorithm at p�. Let � = �=8. We then compute \(p�w1; `�p) and \(p�w2; `�p), andcheck if the range of angles between these two angles intersect [�=2��; �=2+�]. If itdoes, it actually means the Voronoi edge e intersects the complement of the doublecone with apex p� and making an angle of �=2 � � with axis `�p, and we mark e. ADelaunay triangle T is put inW if its dual edge e is marked due to all three Voronoicells de�ning e. Note that in the original algorithm [5], they estimate the surface95



normal with the polar normal, which is the direction from p� to the farthest vertexin the Voronoi cell Vp� at p�. Since we have already obtained good normal estimates`�p in the Point estimation step, we don't need to estimate the polar normals.After the candidate triangles are collected in W , the algorithm proceed to themanifold extraction step. First, all triangles incident to sharp edges are deleted. Anedge is called sharp if the angle between any two consecutive triangles around theedge is more than 3�=2, or the edge is incident to only one triangle. Next, the outerboundary N of the remained triangles is extracted by a depth-�rst walk along theouter boundary of each of its connected components.It is proved in [5] that N is a manifold homeomorphic to the surface S. In orderto establish that, they need three basic important conditions, which are:(I) restricted Delaunay condition: W contains all restricted triangles;(II) small triangle condition: the circumradius of each triangle in W is O(�); and(III) at triangle condition: the normal to each triangle T 2 W makes a smallangle O(�) with the surface normal at the vertex p where p is the vertex withthe largest interior angle in T .As in our case, all the center points in C� may not lie on S, the proofs of theoriginal cocone paper [5] do not automatically apply. We have to generalize them sothat they apply to samples points not on surface S as well. In the following sections,we will �rst prove the three basic conditions. Note that the small value O(�) will bereplaced by O(�=16). And then we go forward to prove the homeomorphism.5.5.6 Restricted Delaunay conditionWe show that all restricted Delaunay triangles belong toW . SoW contains trianglesthat form a manifold homeomorphic to S by Lemma 5.5.6. This is essential asotherwise there is no hope that the cocone algorithm will succeed in extracting amanifold from W . 96



Lemma 5.5.7 Let v be any restricted Voronoi vertex in Vp�jS. Then \(p�v; np) ��=2 �O(�=8).Proof. Let p�q�s� be the restricted Delaunay triangle dual to v. Let B be theDelaunay ball centered at v and passing through p�, q� and s�. As 2d(p�; v) =2radius(B) � d(p�; s�) � �=82 by Lemma 5.5.3, we have d(p�; v) � d(p�; s�)=2 ��=82 =2. On the other hand, as v 2 Vp�jS , d(p�; v) = O(�=8) by Corollary 5.5.1.Also as d(p�; ~p) = O(prp) = O(�=2) by Lemma 5.4.6 and Lemma 5.3.1, we haved(~p; v) � d(p�; ~p) + d(p�; v) = O(�=8).Now we have \p�v~p � arcsin d(p�; ~p)d(p�; v)= O(�=2)�=82 =2= O(�=2)
(�(3=2)(=8))= O(�5=16):By Lemma 4.1.2 (i), \(~pv; Tp) � arcsin d(~p; v) = O(�=8). So \(~pv; np) � �=2 �O(�=8). In all, \(p�v; np) � \(~pv; np) � \p�v~p � �=2 � O(�=8) � O(�5=16) ��=2 �O(�=8).Lemma 5.5.8 All restricted Delaunay triangles are in W .Proof. Let v be the restricted Voronoi vertex dual to the restricted Delaunay trianglep�q�s�. By Lemma 5.5.7, \(p�v; np) � �=2 � O(�=8). Also \(np; `�p) = O(prp) =O(�=2) by Lemma 5.4.6 and Lemma 5.3.1. The triangle inequality implies that\(p�v; `�p) � \(p�v; np) � \(np; `�p) � �=2 � O(�=8) � O(�=2) � �=2 � O(�=8) >�=2 � �=8. Similarly, both \(q�v; nq) and \(s�v; ns) are greater than �=2 � �=8.Hence p�q�s� will be included in W by the algorithm.97



5.5.7 Small triangle conditionWe prove that the circumcircle of each candidate triangle T in W is small; moreprecisely, its radius is at most �=16.Since there are twin big empty tangent balls tangent to S� at center point p� 2 S�by Lemma 5.5.4, we have the following lemma by using the same argument as inLemma 5 in [2]. The details of this proof is included in the appendix.Lemma 5.5.9 Let v be any point in Vp� such that d(p�; v) � �=16. Then \(p�v; np�) =O(�=16).Lemma 5.5.10 The radius of the smallest Delaunay ball of any triangle T 2W isat most �=16. Hence, the circumradius of T is at most �=16.Proof. Let e be the dual edge of T , and p� be a vertex of T . As the algorithm selectsT , there is a point v 2 e so that \(p�v; `�p) � �=2 � �=8. And by Lemma 5.4.6,\(`�p; np) = O(prp) = O(�=2). Also by Lemma 5.5.1, \(np; np�) = O(�=2). Thusthe triangle inequality implies that \(p�v; np�) � \(p�v; `�p)�\(`�p; np)�\(np; np�) ��=2 � �=8 � O(�=2) = !(�=16). Then by the contrapositive of Lemma 5.5.9,d(p�; v) < �=16.5.5.8 Flat triangle conditionWe prove that the normal of each candidate triangle T 2 W makes a small angleof O(�=16) radians with the surface normal at the vertex of T that has the largestvertex angle.Since there are twin big empty balls tangent to S� at center point p� 2 S� byLemma 5.5.4, and the candidate triangles inW are small by Lemma 5.5.10, we havethe following theorem of triangle normal convergence by using the same argumentin Theorem 11 in [5]. The details of this proof is in the appendix.98



Lemma 5.5.11 The normal to each candidate triangle T 2 W makes an angle ofO(�=16) radians with np� where p� is the vertex of T that has the largest vertexangle.This lemma says that the normal of triangle T 2W is close to the surface normalat a vertex of T . As T is small by the small triangle condition, we can also show forany point x in the interior of T , n~x is close to the normal of T .Lemma 5.5.12 Let x be any point on a triangle T 2W . Then(i) d(x; ~x) = O(�=16), and(ii) \(n~x; nT ) = O(�=16), where nT is the normal line to T .Proof. Consider (i). Let p� be a vertex of T . By Lemma 5.5.10, d(x; p�) � 2�=16,and by Lemma 5.4.6, d(p�; ~p) = O(prp) = O(�=2). So d(x; ~x) � d(x; ~p) � d(x; p�)+d(p�; ~p) = O(�=16).Consider (ii). By Lemma 5.5.1, d( ~p�; p�) = O(�=2). By Lemma 5.5.10, d(p�; x) �2�=16. By part (i), d(x; ~x) = O(�=16). So d( ~p�; ~x) � d( ~p�; p�) + d(p�; x) + d(x; ~x) =O(�=16). Thus by Lemma 4.1.2 (ii), \(np�; n~x) � 3d( ~p�; ~x) = O(�=16). Also byLemma 5.5.11, \(nT ; np�) = O(�=16). Hence \(nT ; n~x) � \(nT ; np�)+\(np�; n~x) =O(�=16).5.5.9 HomeomorphismA piecewise-linear manifold N is extracted from W in the manifold extraction step.It begins by recursively deleting any triangle inW adjacent to a sharp edge. Let W 0be the remaining set of triangles. The lemma below proves that none of the restrictedDelaunay triangles are deleted, and so W 0 contains a manifold homeomorphic to S.Lemma 5.5.13 No restricted Delaunay triangle has a sharp edge.99



Proof. First, since the restricted Delaunay triangles from a manifold homeomorphicto S, no edge of a restricted Delaunay triangle is incident to only one triangle. Itremains to prove that no pair of restricted Delaunay triangles sharing an edge makesan acute angle.Let T and T 0 be a pair of adjacent restricted Delaunay triangles sharing a com-mon edge e. Let p� be a vertex of e. Since T and T 0 are restricted Delaunaytriangles, they have restricted Delaunay balls D;D0 centered at restricted Voronoivertices v; v0 2 S respectively.Let H be the supporting plane of circle @D \ @D0. Note that e lies on H and Hseparates T and T 0. It is clear that \(T; T 0) � \(T;H) +\(T 0;H) as H separatesT and T 0. So it su�ces to lower bound \(T;H) and \(T 0;H).Let nT and nT 0 be the normal lines to T and T 0, respectively. By triangleinequality, \(T;H) � \(np; T ) � \(np;H). To lower bound \(np; T ), we need toupper bound \(np; nT ). By Lemmas 5.5.1 and 5.5.5,\(np; nT ) � \(np�; np) + \(nT ; np�) = O(�=2) +O(�=8) = O(�=8):So \(np; T ) � �=2�O(�=8).To upper bound \(np;H), we need to lower bound \(np; vv0) as vv0 ? H. ByCorollary 5.5.1 and Lemma 5.5.1, d(v; ~p) � d(v; p�)+d(p�; ~p) = O(�=8)+O(�=2) =O(�=8). Then Lemma 4.1.2 (ii) implies that \(nv; np) � 3d(v; ~p) = O(�=8). So if wecan lower bound\(nv; vv0) then we are done. By Corollary 5.5.1, d(v; v0) � d(p�; v)+d(p�; v0) = O(�=8). Then by Lemma 4.1.2 (i), \(vv0; Tv) � arcsind(v; v0) = O(�=8).So \(nv; vv0) = �=2� \(vv0; Tv) = �=2�O(�=8). Hence\(vv0; np) � \(vv0; nv)� \(nv; np) � �=2�O(�=8)�O(�=8):Thus \(np;H) = �=2� \(vv0; np) = O(�=8), i.e., H is nearly parallel to np.Then by triangle inequality, \(T;H) � \(np; T ) � \(np;H) � �=2 � O(�=8).Similarly we can prove that \(T 0;H) � �=2�O(�=8).Now we have \(T; T 0) � \(T;H) +\(T 0;H) � ��O(�=8), which is obtuse. Soe is not sharp. 100



Then in the algorithm, the outer boundary N of W 0 is extracted as the outputmanifold. In the lemma below, we prove that two adjacent triangles in N make anobtuse angle.Lemma 5.5.14 Every pair of adjacent triangles in N meets at their common vertexat an angle at least � �O(�=16) > �=2.Proof. Suppose T and T 0 share a common vertex p�. As \(np� ; nT ) = O(�=16) and\(np� ; nT 0) = O(�=16) by Lemma 5.5.11, we have\(nT ; nT 0) � \(np�; nT ) + \(np�; nT 0) = O(�=16):So \(T; T 0) � � � \(nT ; nT 0) � � �O(�=16) > �=2.Homeomorphism proof. Let � : R3 ! S be the map from each point in R3 tothe closest point on S. First we prove that the restriction of � to N is well-de�ned.Lemma 5.5.15 � : N ! S is well-de�ned.Proof. Suppose to the contrary that � is not well-de�ned. Then there is a pointx on a triangle in W such that x has more than one closest point to S. Thismeans x is a point on the medial axis. So d(x; S) is at least the local feature sizeof some point on S, and thus d(x; S) � 1. This contradicts Lemma 5.5.12(i) thatd(x; S) = O(�=16) < 1.Then we prove that � : N ! S is a homeomorphism. A function is called ahomeomorphism if it is continuous and bijective, and its inverse is also continuous.The approach is to �rst show that � is well-behaved on center points C�, and thenextend the analysis to the interiors of the triangles in N .Lemma 5.5.16 The function � : N ! S is continuous, and so is its inverse.101



Proof. By Lemma 5.5.10, every point x 2 N is within distance of �=16 from a vertexp� 2 C�, and thus is within a distance of d(x; p�) + d(p�; ~p) = O(�=16) from ~p 2 Sby Lemma 5.4.6. Note that the functions � and ��1 are continuous except at themedial axis of S. So the lemma follows from the fact that N and S are continuousand N and S avoid the medial axis.Lemma 5.5.17 Assume p� 2 C� lies on S�. Let m be the center of a medial ballM tangent to S� at p�. No candidate triangle in W intersects the interior of thesegment p�m.Proof. Let M 0 = B(m0; 1=10) be an empty ball tangent to S� at p� in Lemma 5.5.4.Note m0 2 p�m as d(p�;m) = 1�� > 1=10. Suppose to the contrary that a triangleT in W intersects the interior of p�m at some point x. Then either x 2 m0mnfmgor on x 2 int(p�m0). Note that ~x = ~p�. By Lemma 5.5.1 and Lemma 5.5.12(i),d(p�; x) � d(p�; ~p�) + d(~x; x) = O(�=2) +O(�=16) = O(�=16).If x 2 m0mnfmg, then d(p�; x) � 1=10 = !(�=16), which is a contradiction. Nowsuppose that x 2 int(p�m0). In order to intersect int(p�m0), T has to intersect M 0 asp�m0 �M 0, and so does the smallest Delaunay ball D of T . Let H be the supportingplane of the circle @M 0 \ @D. By adapting the proof for Lemma 16 of [5], we canderive the contradiction that H separates int(p�m0) and T .On one side of H, M 0 is contained in D, and on the other, D is contained inM 0. Let H+ be the open halfspace, in which D contains M 0. We �rst show thatp� 62 H+. Since M 0 is empty of center points in C�, T has to lie in H+. Since Dis Delaunay, p� cannot lie in the interior of D. But since p� lie on @M 0, it thereforecannot lie in H+. Next We show that m0 62 H+ either. As m0 2 M 0, if m0 2 H+,m0 has to lie in D. As x 2 T � D, xm0 � D. Since 2 � radius(D) � d(x;m0) �d(p�;m0)�d(p�; x) � 1=10�O(�=16), we have radius(D) � 1=20�O(�=16) > �=16,which contradicts Lemma 5.5.10. In all, p�;m0 62 H+, which implies H separatesint(p�m0) and T .
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Corollary 5.5.2(i) Every center point in C� is a vertex of N .(ii) The function � is one-to-one from N to �(p�) for every p� 2 C�.Our homeomorphism proof proceeds in three short steps. We show that � inducesa homeomorphism on each triangle, then on each pair of adjacent triangles, and�nally on N as a whole.Now with Lemma 5.5.12(ii), by using the same arguments as in Lemma 18 in [5],we thus have the following lemma, which shows that � induces a homeomorphismon each triangle, then on union of adjacent triangles around a vertex.Lemma 5.5.18 Let U be a region contained within one triangle T 2 N or in ad-jacent triangles of N . The function � de�nes a homeomorphism between U and�(U) � S.Then by Corollary 5.5.2 and Lemma 5.5.18 and using same arguments as Theo-rem 19 in [5], we have that � is a homeomorphism for the whole N .Lemma 5.5.19 The mapping � de�nes a homeomorphism from the triangulationN to the surface S.Hence by the convergence lemmas (Lemmas 5.4.6, 5.5.11) , the homeomorphismlemma above (Lemma 5.5.19) and the lemma about the running time analysis(Lemma 5.1.2), we �nally can get our main theorem for this chapter (Theorem 5.2.1).5.6 SummaryThe result in this paper successfully extends our result of curve reconstruction fromnoisy samples to surface reconstruction from noisy samples with theoretical guaran-tees. Instead of using probabilistic sampling model as in curve case, we use deter-ministic sampling model, which makes the proofs simpler and more intuitive. Thealgorithms runs in O(n2+) time where 0 <  � 1=8 is a constant. The output103



piecewise linear manifold is homeomorphic to S, is close to S in terms of Hausdor�distance, and has normals close to the surface normals on S. This result, togetherwith the recent result by Dey and Goswami [15] are the �rst two results to do surfacereconstruction from noisy samples with theoretical guarantees.
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5.7 AppendixProof of Lemma 5.1.1First, we claim that �2 = O( 3q ln! nn ). By this claim, since �2 = 
(�3=2) by themodel, we have � = O(�2=32 ) = O(( ln! nn )2=9). Then the upper bound on �1 follows as�1 = O(�) by the model.Take a maximal set K of disjoint balls with radii �2=2 and centers inside S. Soall points in K are within a distance of �+ �2=2 from S. A packing argument showsthat jKj � (2�+�2)area(S)(4=3)�(�2=2)3 = O((� + �2)=�32). If we double the sizes of the balls in K,the expanded balls cover S entirely. Each expanded ball has radius �2 and containsat most ln! n samples by the model. It follows that jKj � n= ln! n. Combiningthe upper and lower bounds for jKj, we get n= ln! n = O((� + �2)=�32). If � � �2,replacing � by �2 yields �2 = O(pln! n=n). If � > �2, as � < 1, replacing �+ �2 by 2yields �2 = O( 3pln! n=n). This proves our �rst claim.Second, we claim that � = 
(p1=n). By this claim, since �2 = 
(�3=2) by themodel, we have �2 = 
(1=n3=4).Take a maximal set L of disjoint balls with radii � and centered at points on S.Since each ball contains at least one sample by the model, n � jLj. By Lemma 4.3.3,the area of the intersection between S and each ball in L is O(�2). It follows thatjLj = 
(area(S)=�2) = 
(1=�2). Combining the upper and lower bounds for L, weget � = 
(1=pn). This proves our second claim.Proof of Lemma 5.3.3Let ` be the support line of np. It su�ces to show that as we translate ` on Hto a distance d from p, ` \ S� traces a single curve segment inside B(p; d). ByLemma 4.4.2, ` \ S� traces a single curve segment � inside B(p; 2d). Assume tothe contrary that � exits B(p; d) at a point x, and reenters B(p; d) at a point y.Let �(x; y) denote the subcurve between x and y that lies outside B(p; d). ByLemma 4.1.2(i), \(px; Tp) � arcsin(d) � 2d. Similarly, \(py; Tp) � 2d. Thus the105



vector n from p to the midpoint of xy makes an angle at least �=2 � 2d with np.Observe that n is parallel to a curve normal of some point z 2 �(x; y). It followsthat \(nz; np) � \(n; np) � �=2� 2d. But this contradicts Lemma 4.1.2(ii).Proof of Lemma 5.4.1Let C = Lp(`)\S� \ coarse(p). It follows from Lemma 4.4.2 that C is a topologicaldisk, and for any line h 2 Lp(`), since d(p; h) � rp=4, h intersects S� \ B(x; rp=2)exactly once. Hence C � B(x; rp=2).We then prove Lemma 5.4.2, which bounds some distances from p to S� in termsof \(np; `).Proof of Lemma 5.4.2Refer to Figure 5.6. Let h be the line through p1 parallel to `. Let Y be thein�nite tube with axis h and p on its boundary. So the radius of Y is d(p; p1) sin �.Then as in the proof of Lemma 5.4.1, d(p1; x) � radius(Y )=2, which is at mostd(p; p1)=2 � sin � � �d(p; p1)=2.
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Figure 5.6: Illustration for the proof of Lemma 5.4.2.Let x0 be the orthogonal projection of x onto Tp1 . By Lemma 4.1.2(i), d(x; x0) �d(p1; x)2, which is at most �2d(p; p1)2=4. Thusd(p; x) � d(p; p1) + d(x; x0)cos �� d(p; p1) + �2d(p; p1)2=4cos � :Symmetrically, d(p; x) � d(p;p1)�d(x;x0)cos � gives the lower bound.106



Proof of Lemma 5.5.5Let s� be the vertex of � that has the largest vertex angle (� �=3). Suppose thats� is on the surface S�. Let C be the circumcircle of T . By Lemma 5.5.4, thereare twin empty balls B;B0 of radius 1=10 tangent to S� at s�. These balls intersectthe supporting plane of � in twin disks D;D0 tangent at s� such that D � B andD0 � B0. Let R be the common radius of D and D0. See Figure 5.7. Our �rst upperbound R in terms of radius(C).
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Figure 5.7: Illustration for the proof of Lemma 5.5.5.Since the twin tangent balls at s� are empty, the twin disks do not contain thevertices of � . In order to maximize R relative to radius(C), we assume that the twindisks pass through the vertices of � and that the angle at s� measures exactly �=3.Now it is not hard to show that R is maximized exactly when T is equilateral: if wemove s� away from the midpoint of the arc covered by the twin disks, keeping thetwin disks passing through the vertices of T , the radius R decreases, until s� reachesone of the other vertices of � and R = radius(C). Since the worst-case con�gurationis equilateral T , we can conclude that R � p3radius(C).Now we can bound all these radii. Let u denote the restricted Voronoi vertexdual to T . Since u is the minimum circumradius of � , radius(C) � d(u; s�). ByCorollary 5.5.1, d(u; s�) = O(�=8), which implies that R = O(radius(C)) = O(�=8).Now to �nd the angle between the normal to � and the normal to S� at s�,we consider one of the twin tangent balls B at s�. Let m denote the center of Band let v denote the center of D. The segment s�m is normal to S� at s� andthe segment mv is normal to T , so the angle \(n� ; ns�) we would like to bound is107



\s�mv. Observe that \s�mv = �=2, d(s�;m) = 1=10, and d(s�; v) = R = O(�=8).Hence \(n� ; ns�) = \s�mv � arcsin(O(�=8)) = O(�=8).Take any vertex p� of � other than s�. By Corollary 5.5.1, d(u; s�) = O(�=8)and d(u; p�) = O(�=8). Thus d(s�; p�) � d(u; s�) + d(u; p�) = O(�=8). Thend( ~s�; ~p�) � d(s�; p�) + d(s�; ~s�) + d(p�; ~p�)= O(�=8) + 2�= O(�=8) +O(�=2)= O(�=8):And by Lemma 4.1.2(ii), we have \(ns�; np�) � 3d( ~s�; ~p�) = O(�=8). Hence\(nT ; np�) � \(nT ; ns�) + \(ns�; np�) = O(�=8).To prove Lemma 5.5.6, we need Lemma 5.5.5 and two more lemmas from pa-per [2] as stated below.Lemma 5.7.1 For any two points p and q on S with d(p; q) � �f(p), \(pq; np) ��=2 � arcsin(�=2).Lemma 5.7.2 If a ball B intersects surface S in more than one connected compo-nent, then B contains a point of the medial axis of S.With these lemmas, by using almost the same arguments as Theorem 2 in [2],we can prove that the closed ball property: the closure of each k-dimensional face,1 � k � 3, of the Voronoi diagram of C� intersects intersect S in either the empty setor in a closed (k�1)-dimensional topological ball. With this property, by the theorem(Theorem 4.3) of Edelsbrunner and Shah [23], we immediately have Lemma 5.5.6.Proof of Lemma 5.5.6To prove the closed ball property, we will consider the intersection of a Voronoi edge,a Voronoi face, and a Voronoi cell with the surface S respectively.Let p� be a selected center point in C�, and let Vp� be its Voronoi cell. Let thedirection of np� be vertical. 108



We begin by showing that in the vicinity of p�, the surface S is nearly horizontal.Corollary 5.5.1 shows that Vp�jS is small, �tting inside a ball B centered at p� ofradius O(�=8). Since such a small ball cannot intersect the medial axis, Lemma 5.7.2implies that S \ B is connected. Lemma 4.1.2(ii) shows that the normal to S \ Bmakes an angle O(�=8) radians with the vertical.Consider an edge e of Vp� . If e intersects S, then since e is normal to the dualDelaunay triangle T , Lemma 5.5.5 implies that e is within O(�=8) radians from thenormal to S at p�. So e can intersect S only once within ball B.Next consider a face f of Vp�. The face f is contained in its supporting planeH, the perpendicular bisector of p� and another center point s�, where p�s� is anedge of a restricted triangle T . The plane H must contain a vector h parallel tothe normal of T , so again Lemma 5.5.5 shows that the angle \(h; np�) is at mostO(�=8) radians. Each component of f \ S is an arc of a curve, with endpoints onthe edges of f . Assume for the sake of contradiction that there are at least twosuch connected components, and consider any line segment connecting a point onone component with a point on another. Since Vp� jS is small, Lemma 5.7.1 impliesthat each of these line segment is nearly horizontal, speci�cally within angle O(�=8)radians with the horizontal. Hence we can sort the arcs of f \ S from left to rightacross f , as shown in Figure 5.7(a). Let q1q2 be a line segment connecting the rightendpoint of one arc with the left endpoint of the next arc. The segment q1q2 isnearly horizontal so it must leave f as it crosses the nearly vertical edge of Vp� atq1 and reenter f at q2, a contradiction to the fact that f is convex.Finally consider Vp� itself. Let C be Vp�jS . Now C cannot have a handle becauseS is nearly horizontal everywhere within ball B. We assume, however, that C is nota topological disk, again aiming for a contradiction. If C has no handles and is nota topological disk, then either it has more than one connected component or it is atopological disk with holes.Consider the projection C 0 of C onto a horizontal plane. Since each pair ofpoints in C are connected by a nearly horizontal segment, this projection is one-to-one, and C 0 is a planar shape homeomorphic to C. If C 0 has more than one connectedcomponent, let � be the shortest segment connecting two di�erent components, and109
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Proof of Lemma 5.5.9Suppose p� is on the surface S�, where � � �. Let B be the Voronoi ball centeredat v. Let M1 = B(m1; 1=10);M2 = B(m2; 1=10) be the twin empty balls tangent toS� at p� in Lemma 5.5.4. Suppose v and m1 lie on the same side of S�. Refer toFigure 5.9.
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sin juwj sin\vuwsin jwvj � sin sin juwj sin(2�)sin jwvj . If �=3 � jwvj � 2�=3, we have sin�=3 � p3=2and hence � � arcsin 2p3 sin(2�). For the range 2�=3 < jwvj � �, we use the factthat juwj+ jwvj � � since \vuw � 2� < �=2 for su�ciently small �. So, in this casesin juwjsin jwvj < 1. Thus � � arcsin 2p3 sin(2�) = O(�=16).Hence the angle between the normal of T and np� is an acute angle at most�+ � = O(�=16).Proof of Lemma 5.5.18We know that � is well-de�ned and continuous on U , and its inverse is also contin-uous, so it only remains to show that it is one-to-one. First, we prove that if U is inone triangle T , � is one-to-one. For a point q 2 T , the vector from q to �(q) is nor-mal to the surface at �(q). If there was some y 6= q on T with �(y) = �(q), then q,�(q) and y would all be collinear and T itself would have to contain line segment qy,contradicting Lemma 5.5.12(ii), which says that the normal of T is nearly parallelto the normal of S at �(q).Now, we consider the case in which U is contained in more than one triangle.Let q and y be two points U such that �(q) = �(y) = x, and let p� be a commonvertex of the triangles that contain U . Since � is one-to-one in one triangle, q andy must lie in the two distinct triangles Tq and Ty respectively. Let l be the normalline to S at x. Note that l k nx. l pieces the patch U at least twice; if y and qare not adjacent intersections along l, rede�ne q so that this is true. Now considerthe orientation of the patch U according to the estimated normal direction `�p at p�.Either l passes from inside to outside and back to inside when crossing y and q, orfrom outside to inside and back to outside.The acute angles between the triangle normals of Tq, Ty and nx are O(�=16) byLemma 5.5.12(ii), that is, the triangles are stabbed nearly perpendicularly by nx.But since the orientation of U is opposite at the two intersections, the angle betweenthe two oriented triangle normals is greater than zero, meaning that Tq and Ty mustmeet at p� at an acute angle. This would contradict Lemma 5.5.14, which is thatTq and Ty meet at p� at an obtuse angle. Hence there are no two points y; q in U113



with �(q) = �(y).Proof of Lemma 5.5.19Let S0 � S be �(N). We �rst show that (N;�) is a covering space of S0. Informally,(N;�) is a covering space for S0 if function � maps N smoothly onto S0, with no foldsor other singularities; see Massey [41], Chapter 5. Showing that (N;�) is a coveringspace is weaker than showing that � de�nes a homeomorphism, since, for instance,it does not preclude several connected components of N mapping onto the samecomponent of S0, or more interesting behavior, such as torus wrapping twice aroundanother torus wrapping twice around another torus to form a double covering.Formally, the (N;�) is a covering space of S0 if, for every x 2 S0, there is apath-connected elementary neighborhood Vx around x such that each path-connectedcomponent of ��1(Vx) is mapped homeomorphically onto Vx by �.To construct such an elementary neighborhood, note that the set of pointsj��1(x)j corresponding to a point x 2 S0 is non-zero and �nite, since � is one-to-one on each triangle of N and there are only a �nite number of triangles. Foreach point q 2 ��1(x), we choose an open neighborhood Uq of around q, homeo-morphic to a disk and small enough so that Uq is contained only in triangles thatcontain q. Refer to Figure 5.11.
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Uq are in adjacent triangles, it is one-to-one by Lemma 5.5.18.Let U 0(x) = \q2��1(x)�(Uq), the intersection of the maps of each of the Uq. U 0(x)is the intersection of a �nite number of open neighborhoods, each containing x, sowe can �nd an open disk Vx around x. Vx is path connected, and each componentof ��1(Vx) is a subset of some Uq and hence is mapped homeomorphically onto Vxby �. Thus (N;�) is a covering space for S0.We show that � de�nes a homeomorphism between N and S0. Since N is ontoS0 by de�nition, we need only show that � is ono-to-one. Consider one connectedcomponent G of S0. A theorem of algebraic topology (see eg. Massey [41], Chapter5, Lemma 3.4) says that when (N;�) is a covering space of S0, the sets ��1(x)for all x 2 G have the same cardinality. We now use Corollary 5.5.2(ii), that � isone-to-one from N to �(p�) for every p� 2 C�. From the algorithm, it is clear thateach connected component of S contains a �(p�) for some center point p� 2 C�. Soit must be the case that � : N ! S0 is everywhere one-to-one, and N and S0 arehomeomorphic.Finally, we show that S0 = S. Since N is closed and compact, S0 must be as well.So S0 cannot include part of a connected component of S, and hence S0 must consistof a subset of the connected components of S. Since every connected component ofS contains a �(p�) for some center point p� 2 C�, all components of S belong to S0.Hence S0 = S, and N and S are homeomorphic.
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CHAPTER 6CONCLUSION AND DISCUSSIONIn the literature, most of the faithful reconstruction algorithms are proposed fornoiseless sample points from smooth curves / surfaces, or from curves with sharpcorners and endpoints. In this thesis, we propose provably faithful reconstructionalgorithms for noisy sample points lying close to the original curve / surface.We �rst propose a probabilistic noise model for the curve reconstruction prob-lem. Based on this model, we design a curve reconstruction algorithm for the noisyinput. The reconstruction is faithful with probability approaching 1 as the samplingdensity increases. Then we extend our approach to perform surface reconstructionfrom the noisy input points. We are able to make the noise model deterministic sothat the analysis of the faithfulness proof is simpli�ed. We prove that the surfacereconstructed is faithful to the original surface if the input points satisfy the deter-ministic noise model. Both of our curve and surface reconstruction algorithms followthe same framework. First observe that all the sampling points inside the coarseball centering at any sample point p fall inside a thin slab. The normal to this thinslab is a rough estimate to the surface normal. However, the deviated angle betweenthis rough normal and the real surface normal depends on the noise amplitude �,which is a constant by our assumption. That means the deviated angle does nottend to zero when the sampling density increases. Therefore, the algorithms moveon to another stage to estimate a �ner normal direction in the so-called re�nedneighborhood. Using this re�ned normal, the position of the sample point p is re-estimated to a new point (called center point), which is closer to the original curve/ surface than p itself. A subset of these center points is then selected for the �nalsurface reconstruction, which can be done using any existing faithful reconstructionalgorithm for noiseless samples.Dey & Goswami [15] recently has also proposed a provable reconstruction algo-rithm for noisy sample points lying close to a smooth surface. But in their model,116



the noise amplitude is inversely proportional to the sampling density. That meansthey assume the sample points converges to the original manifold automaticallywhen the sampling density increases. Instead, we assume that the noise amplitudeis a constant globally. In order to have the point convergence property, we have tore-estimate the sample point positions to get a set of center points converging to theoriginal manifold. Note that one more di�erence is that in their noise model, theyassume the noise amplitude varies along the manifold and is proportional to the localfeature size. One advantage of this assumption is that at the area where the localfeature size is large, a large noise amplitude is allowed. One immediate future workwould be to generalize our faithful reconstruction algorithm for the sample pointssatisfying a more general noise model such that the noise amplitude is a constantfraction of the local feature size.Currently, our assumption that the noises are close to the original manifold arequite restrictive. We are investigating whether this approach is helpful to handleoutlier noise. Usually the far-away outlier points are much more sparse than thesample points closer to the original manifold. That means that the majority of thesample points cluster around the original manifold, but only a small proportion ofthem scatters around. See Figure 6.1. In such case, it seems that in the coarse

Figure 6.1: Noisy sample points with outliers.neighborhood, a thin slab still can be formed by only enclosing a large proportionof sample points inside the whole coarse ball. Similarly in the re�ned neighborhood,117



we can consider the min-height cylinder which encloses a large proportion of samplepoints inside the cylinder and the corresponding coarse ball. This cylinder directionshould also approximate well to the surface normal. See Figure 6.2.

(a) (b)Figure 6.2: (a) Coarse neighborhood. (b) Re�ned neighborhood.We also suspect that our approach sheds some light on reconstructing curves andsurfaces with features such as corners, branchings, endpoints and noise altogether.These problems awaits to be answered.
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