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Abstract

We propose an algorithm to compute a conforming De-
launay mesh of a polyhedral domain in three dimensions.
Arbitrarily small input angles are allowed. The output
mesh is graded and has bounded radius-edge ratio every-
where.

1 Introduction

In finite element analysis, a domain needs to be parti-
tioned into a cell complex for the purpose of numerical
simulation and analysis [7]. A simplicial complex is a
popular choice and it is also commonly known as a tetra-
hedral mesh. The mesh is required to be conforming:
each input edge appears as the union of some edges in the
mesh and each input facet appears as the union of some
faces of tetrahedra in the mesh. An important challenge
in mesh generation is to construct a mesh with good qual-
ity. Our contribution is a simple Delaunay refinement
algorithm that produces tetrahedra with provably good
edge lengths and radius-edge ratio. Our algorithm is dis-
tinguished from previous ones [2, 5, 8, 11, 13, 14] by its
ability to handle input angles less than ����� and its theo-
retical guarantees.

Our input domain is a bounded volume in 3D whose
boundary is specified by a piecewise-linear complex � .
The elements of � are vertices, edges and facets that in-
tersect properly. That is, the intersection of two elements
is either empty or an element of � . The boundary of each
facet consists of one or more disjoint simple polygonal
cycles. Two elements of � are adjacent if their intersec-
tion is non-empty. Two elements of � are incident if one
is a boundary element of the other. We make the simpli-
fying assumption that each edge of � has two or more
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incident facets, e.g., polyhedron possibly with voids and
holes. This assumption is not critical and it can be re-
moved, with more work, without affecting our results.

Delaunay tetrahedralization is a popular tetrahedral
mesh in theory and practice [6, 7]. For results using
quadtree and octtree based methods, please refer to the
papers by Bern et al. [1] and Mitchell and Vavasis [10].
Ruppert [12] proposed the Delaunay refinement algo-
rithm to mesh a 2D polygonal domain. The mesh is
graded, i.e., the shortest edge incident to every vertex� has length at least a constant factor of the local fea-
ture size at � . Every triangle has bounded aspect ra-
tio. The size of the mesh is asymptotically optimal.
Shewchuk [13] extended Delaunay refinement to 3D for
polyhedral domains. A graded conforming Delaunay
mesh is obtained but there are two differences. First,
when some input angle is less than ���
� , the algorithm
may or may not terminate depending on the specific input
instance. Second, for each tetrahedron � , its radius-edge
ratio (i.e., the ratio of the circumradius of � to the short-
est edge length of � ) is bounded by a constant. Radius-
edge ratio is a fairly good indicator of the tetrahedral
shape. If the radius-edge ratio is bounded, almost all
tetrahedra have bounded aspect ratio except for a class
known as slivers. Nevertheless, bounded radius-edge ra-
tio works well in some applications [9].

Recently, methods have been discovered to eliminate
slivers when every input angle is at least ����� . Li and
Teng [8] improved Delaunay refinement with a random
point-placement strategy in line of Chew [4]. Cheng
et al. [3] introduced sliver exudation to eliminate sliv-
ers from a Delaunay mesh of a periodic point set with
bounded radius-edge ratio. Cheng and Dey [2] in-
troduced weighted Delaunay refinement which extends
sliver exudation to handle boundaries. Both algorithms
by Li and Teng [8] and Cheng and Dey [2] produce a
graded conforming Delaunay mesh with bounded aspect
ratio and asymptotically optimal size.

Much less is known about handling polyhedral do-
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mains with input angles less than ���
� . Murphy et
al. [11] showed the existence of a conforming Delau-
nay mesh, but their method produces tetrahedra of poor
shape and unnecessarily many vertices. Cohen-Steiner
et al. [5] proposed an improved method and they ex-
perimentally studied the effectiveness of their algorithm.
Shewchuk [14] attacked the problem differently and gen-
erated a constrained Delaunay tetrahedralization. In
the above results, gradedness is not guaranteed and the
radius-edge ratio is not guaranteed to be bounded every-
where. It is sometimes unavoidable that the edge length
and the shape of tetrahedra deteriorate near a small input
angle. Thus, it is conceivable that there are lower bound
on edge length and upper bound on radius-edge ratio that
use constant factors depending on the input angle. Nev-
ertheless, no such result is known till now.

For the purposes of this paper, we measure three types
of angles as follows. First, angles between adjacent
edges. Second, take an edge � � and a facet

�
such

that ����� � and � � and
�

are non-coplanar. Let�
be the plane through � � perpendicular to the sup-

porting plane of
�

. The angle between � � and
�

is�	��

����� � ����� � ��� ��
���� ����� . Third, take two adja-
cent and non-coplanar facets

� �
and

��!
. Let "$# be the

supporting plane of
� # . For each point �%�&" �'� " ! , let��(

be the plane through � perpendicular to " ��� " ! . The
angle between

�)�
and

��!
is �%��
 (�*,+ -/.0+21 �,��� �43 �4� �� ( � ��
��5� � � �56 37� � ( � ��
8�5� � ! ��� . Throughout this paper,9

denotes the smallest angle in the domain measured as
described above. We assume that

9;: ���
� as the other
case has been solved [2, 8].

We present an algorithm MESH that constructs a con-
forming unweighted Delaunay tetrahedralization given a
polyhedral domain. The mesh is graded and has bounded
radius-edge ratio everywhere (Theorem 1 in Section 10).
Let <=� �?> 6�@ �BA�C and D�EGF @�H

be two a priori chosen
constants. Our algorithm encloses the input edges within
a buffer zone whose size is proportional to local feature
size. For every tetrahedron � , if � does not lie inside the
buffer zone, its radius-edge ratio D � � ��I D E ; otherwise,
D � � �$I D � where D � depends on < and

9
. The shortest

edge incident to a vertex � has length at least a factor J
of the local feature size at � where J depends on < and

9
.

The rest of the paper is organized as follows. Sec-
tion 2 gives some basic definitions and an overview of
our algorithm. Section 3 describes the augmentation of
the input complex with the buffer zone before MESH pro-
cesses it. Section 4 describes MESH. Sections 5–7 prove
that the output mesh is conforming. Sections 8–10 prove
the bounds on edge length and radius-edge ratio. In Sec-
tion 11, we discuss some future work.

ca

b

x

g(x)
f(x)

Figure 1: The large and small circles have radii K �?L � andMN�?L � respectively.

2 Preliminaries and overview

For a point L , the local feature size K �OL � is the radius of
the smallest ball centered at L that intersects two disjoint
elements of � . Local feature sizes satisfy the Lipschitz
property: K �OL �PI K �?Q �)RTS LVUWQ S for any two points L
and Q . It is inconvenient to use local feature sizes directly
when handling domains with acute angles. For a point L ,
the local gap size MN�?L � is the radius of the smallest ball
centered at L that intersects two elements of � , at least
one of which does not contain L . Figure 1 illustrates local
feature and gap sizes. Clearly, MN�?L � I K �?L � and for each
vertex � of � , MX� � �ZY K � � � . Moreover, we can prove
that MN�?L �2Y\[ � K �OL �]� for the points that we are interested
in (Lemmas 16 and 17 in Section 10). In general, local
gap sizes do not satisfy the Lipschitz property. However,
the Lipschitz property holds under certain conditions and
this sufficient for our purposes.

LEMMA 1 Let ^ be an edge of � . If L and Q are two
points in ^ such that L � ��
��5� ^ � , then MX�OL �%I MN�?Q �_RS L`U�Q S .
Proof. Let a be the ball centered at L with radiusMN�?Q ��R�S L`UbQ S . So a intersects two elements of � , one
of which does not contain Q . Denote this element by c .
Since Q ��^ and L � ��
��5� ^ � , c does not contain L . Sod�e,fg��hgij� a � k MX�OL � .

We need concepts including weighted distance and or-
thogonality that are instrumental to obtaining our results.
Let l and l�m denote two spheres centered at � and 3 re-
spectively. The weighted distance � � l 6 l m � is defined asS �ZU 3 S

! U�dneofg��hgi�� l �
! U�d�e,fg��hgij� l m �

!
. The weighted

distance � �?L 6 l � between a point L and l is defined the
same way by treating L as a sphere of zero radius. l and
l m are orthogonal if � � l 6 l m �pY > . In this case, l and l m
intersect and for any point L ��l � l m , the normal to l
at L is tangent to l m . That is, l and l m intersect at right
angle. If l and l m are orthogonal, � lies outside l m and
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3 lies outside l . The points at equal weighted distances
from l and l m lie on a plane. We call it the bisector plane
of l and l m . The bisector plane is perpendicular to the
line through � and 3 . If l and l m intersect, their bisector
plane is the plane containing the circle l � l m .

We enclose the edges of � with a buffer zone. We
compute spheres centered at points on edges of � . The
buffer zone boundary is the outer boundary of the union
of these spheres. � is then augmented with the buffer
zone boundary to yield a new complex � . The idea is
to apply Delaunay refinement to � to mesh the space
outside the buffer zone such that the tetrahedralization
of the space inside the buffer zone is automatically in-
duced. The spheres are judiciously chosen so that con-
secutive ones are orthogonal. The intuition is that the
space outside the buffer zone will have non-acute angle,
thus allowing the use of Delaunay refinement. There are
still two difficulties to overcome. First, we need to guar-
antee that unnecessarily short edges are not forced when
constructing the buffer zone. Second, we need a method
to triangulate the spherical buffer zone boundary.

3 Augmenting �
We describe the buffer zone and its merging with �
to yield � . Several properties of the buffer zone and� are described in Lemmas 2–5. It suffices to know
the construction of the buffer zone and � , Lemma 2
and Lemma 4 to understand MESH (Section 4), prove
boundary conformity (Sections 5–7) and prove termina-
tion of MESH (Sections 8 and 9). Lemma 3 is used with
Lemma 2 to prove Lemma 5 which is then used in Sec-
tion 10 to analyze the edge lengths and radius-edge ratio.

3.1 Protecting spheres

Let < be some fixed constant chosen from �?> 6 �� C . For
each edge ^ of � , we create some spheres with centers
lying on ^ . We call these protecting spheres. First, for
each vertex � of � , we create a sphere l�� with center �
and radius <�� MN� � � . Second, for each edge � � of � , we
create two protecting spheres l (�� and l	��
 with centers
��� and � ( on � � as follows. Let

9 (( � be the smallest angle
between � � and an edge/facet of � incident to � .

9 �( � is
symmetrically defined. Define 
 (( � Y �%� 

� ����� 6 9 (( � �
and 
 �( � Y �%� 

� ����� 6 9 �( � � . The positions of � � and � (
and the radii of l ( � and l � 
 are:

S � U � � S Y < i������ <�
 (( � � � MX� � �dne,f
� h
i�� l (�� � Y S � U ��� S � i ��
'� <�
 (( � �

Figure 2: < Y @ �0A and the base angle is ����� .

S � U � ( S Y < i������ <�
 �( � � � MN� � �dneofg��hgi�� l	��
 � Y S � U � ( S � i ��
'� <�
 �( � �
By construction, l ( and l (�� are orthogonal and so are
l	� and l	��
 . Third, we call the following algorithm���	����� � � � 6 � ( � which returns a sequence of protecting
spheres that cover �!� � ( . We call two protecting spheres
consecutive if their centers are neighbors on some edge
of � .

Algorithm Split( L 6 Q )
Input: The segment L4Q and protecting spheres l#" and

l	$ .
Output: A sequence of protecting spheres, including l�"

and l�$ , that cover L4Q . Every protecting sphere
has positive radius. Any two consecutive protect-
ing spheres are orthogonal.

1. Compute the point % on L Q using the relation

S LNU % S Y S L�U�Q S ! R dneofg��hgi�� l " � ! U d�e,fg��hgij� l $ � !
�&� S L`U�Q S

2. Set ' Y)( S L$U % S ! Ubdne,f
� h
i�� l " � !
3. if 'TF*�,<+� MN� % �
4. then create a protecting sphere l-, with center %

and radius <+� MX� % �
5.

���!�.��� �0/ 621��
6.

���!�.��� � 1 6�3��
7. else create a protecting sphere l , with center %

and radius '
Note that the sphere with center % and radius ' com-

puted in lines 1 and 2 is orthogonal to both l�" and
l	$ . Figure 2 shows the protecting spheres created for
the sides of an isosceles triangle. The following lemma
states that each protecting sphere l " obtained has radius4 � <5� MN�?L � � , the distance between two neighboring cen-
ters is lower bounded by their local gap sizes and the
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local gap sizes of two neighboring centers do not dif-
fer much. The proof of Lemma 2 can be found in Ap-
pendix 12.1.

LEMMA 2 Let � � Y �
��� � � � � � F @
and � ! Y

�	��

� � � �
� 6 i]��
 9 � : @
. There exist constants ��� : � !

and ��� : @
such that for each edge � � of � , the follow-

ing hold.

(i) l (�� and l	��
 are orthogonal to l ( and l�� respec-
tively. The two ratio ���
	�� ��
���� 
 ���� �

( � � and ���
	�� ��
����
� 
 �� � � 
 � lie

in ��� ! < 6 � � <4C .
(ii)

���!�.��� � ��� 6 � ( � terminates and returns a sequence �
of protecting spheres covering �!� � ( . Any two con-
secutive protecting spheres in � are orthogonal. For
any l	,Z��� U � l (�� 6 l	��
 � , the ratio ����	�� ��
������

�
� � , � lies

in ��� � < 6 �o<4C .
(iii) Let L and Q be two neighboring centers of pro-

tecting spheres on � � . Then
S LGU Q S F ����<*��Ze�!��5MN�?L �56 MX�OQ ��� and MX�OQ � k ���5<5� MN�?L � .

3.2 Buffer zone

Given a set � of spheres, we use " f'�$# �
*&% l � to de-

note the outer boundary of # �
*&% l . Let ' Y " f�� # l	" � ,

where l	" runs over all protecting spheres created. The
space inside ' is the buffer zone. For each edge � � of � ,
let � ( � be the sequence of protecting spheres whose cen-
ters lie on � � . ' � # �&(

*�% 
 � l	" consists of a sequence of
rings delimited by two spheres with holes. This decom-
position is obtained by cutting ' � # �&(

*�% 
 � l " with the
bisector planes of consecutive protecting spheres. The
two delimiting spheres with holes are ' � l ( and ' � l	� .
For each l	, �)� ( � U�� l ( 6 l	� � , l	, contributes exactly
one ring ' � l�, . For each ring, we define its width as
the distance between the parallel planes containing the
two holes. Lemma 3 states that the width of each ring is
lowered bounded by the local gap size and so is the ra-
dius of each hole on ' � l�" for any protecting sphere l�" .
Moreover, ' encloses the edges of � withoutcausing any
unwanted self-intersection or intersection with � . The
proof of Lemma 3 can be found in Appendix 12.2.

LEMMA 3 Let l " be a protecting sphere. There exist
constants � � : ��* : ��+ : �,� such that:

(i) The radius of any hole on ' � l " is at least ��+ <
! �MN�?L � .

(ii) If ' � l " is a ring, its width is at least �&*�<
! � MN�?L � .

(iii) If c is a vertex, edge or facet of � disjoint from L ,
the minimum distance between l-" and c is at least� @ U �o< � � MX�OL � .

(iv) Let l $ be a protecting sphere that is not consecutive
to l " . The minimum distance between ' � l " and
' � l $ is at least � � < � � MN�?L � .

3.3 The new complex -
We merge ' with � to produce a new complex � . '
splits each facet of � into two smaller facets, one inside
' and one outside ' . These facets are the flat facets of � .
For each edge � � of � , each ring ' � l " where L �b� �
is divided by the facets of � incident to � � into curved
rectangular patches; and for each vertex � of � , ' � l-�
is divided by the facets of � incident to � into spherical
patches. These patches are the curved facets of � . The
centers of protecting spheres split the edges of � into the
linear edges of � . The circular arcs on the boundaries of
curved facets are the curved edges of � . The vertices of� consists of the endpoints of linear and curved edges.

For any protecting sphere l-" and any curved facet c
on ' � l " , �4c consists of curved edges that lie at the
intersections between l " and either facets of � or pro-
tecting spheres consecutive to l " . Moreover, these two
kinds of curved edges alternate in � c . How many edges
can a facet

�
of � , where L �&� � , contribute to �4c ? IfL is not a vertex of � , the answer is clearly at most one

as c is rectangular. Suppose that L is a vertex of � . Ob-
serve that L appears on exactly one simple cycle in � � .
Moreover, l " is too small to intersect more than one cy-
cle in � � or intersect the same cycle more than twice.
Thus, l	" �Z� is connected. It follows that

�
contributes

at most one edge to �4c . However, a hole on ' � l-" may
contribute several edges to � c when L is a vertex of � .

By design, all angles in the space outside ' are equal
to ���
� . The next lemma gives a precise statement.

LEMMA 4

(i) Let
�

be a curved facet. Let
� m be a curved/flat

facet adjacent to
�

. If
�

and
� m do not lie on the

same sphere, the normal to
� m at any point in

� �_� m
is tangent to

�
.

(ii) Let ^ and ^ m be two adjacent curved edges that do
not lie on the same circle. Let . (resp. . m ) be the line
through ^ � ^ m that is tangent to and coplanar with
^ (resp. ^ m ). Then . is perpendicular to . m .

(iii) Let
�

be a curved/flat facet. Let ^ be a curved edge
adjacent to

�
. If ^ and

�
do not lie on the same
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plane or sphere, then the normal to
�

at ^ �b� is
tangent to and coplanar with ^ .

Lemma 4 motivates the use of Delaunay refinement in
the space outside ' . In essence, we compute a mesh that
approximates � and respects the input boundary. Due
to Delaunay refinement (modified to handle curved ele-
ments), the edge lengths in the final mesh will be pro-
portional to the local feature sizes with respect to � . For
each point � , let �K � � � denote the local feature size at �
with respect to � .1 Lemma 5 states that if � lies on or
outside ' , �K � � �ZY�[ ��MN� � �]� . This will allow us to re-
late the edge lengths in the final mesh to the local fea-
ture sizes with respect to � in Section 10. The proof of
Lemma 5 can be found in Appendix 12.3.

LEMMA 5 For any point � on or outside ' , �K � � � k�� <��!�MX� � � for some constant
� : @

.

4 Algorithm MESH

We introduce some notations. Given a circle � on a
sphere l , the orthogonal sphere of l at � is the sphere
orthogonal to l that passes through � . We use �� 3 to
denote a circular arc with endpoints � and 3 .

MESH approximates � by a Delaunay subcomplex.
We initialize a set � as the set of vertices of � . The ini-
tial complex is the Delaunay tetrahedralization, � �
	 � ,
of � . � induces several types of geometric objects that
guide MESH to refine the mesh by inserting vertices into
� . We first define these objects.

Each curved edge ^ of � is split by the vertices in �
into helper arcs. Let l be the equatorial sphere of ^ , i.e.,
^ lies on an equator of l . Let �� 3 be a helper arc on ^ . The
circumcap � of �� 3 is the smallest cap on l that contains
�� 3 . If the angular width of �� 3 is less than � , the normal
sphere of �� 3 is the orthogonal sphere of l at ��� and
�� 3 is encroached by a point � if � lies inside its normal
sphere. If the angular width of �� 3 is larger than ����� , �� 3
is wide.

Helper triangles are defined when no helper arc is wide
or encroached by a vertex in � . Let CH " denote the con-
vex hull of � � ' � l " for a protecting sphere l " . If a
convex polygon 
 with more than three vertices appears
as a boundary facet of CH " , then we triangulate 
 as fol-
lows. Let

�
be the supporting plane of 
 . The circumcap

of 
 is the cap on l�" that is bounded by
�V� l�" and sep-

arated from CH " by
�

. First, for each helper arc �� 3 such

1 �������� is the radius of the smallest ball centered at
�

that intersects
two disjoint elements of � .

xS

Figure 3: The figure shows l-" and two protecting
spheres consecutive to l�" . Some boundary triangles of
CH" are shown. The non-shaded triangles are helper tri-
angles. The shaded ones are not as the vertices of each
shaded triangle lie on the boundary of the same hole on
' � l " .

that � 6 37� ��
 and �� 3 lies on the circumcap of 
 , we in-
sert � 3 as a diagonal in 
 . Then we arbitrarily complete
the triangulation of 
 . Afterwards, a boundary triangle �
of CH " is a helper triangle if no hole on ' � l-" contains
all vertices of � on its boundary. See Figure 3. Let " be
the plane containing a helper triangle � . The circumcap
of � is the cap � on l�" that is bounded by " � l-" and
separated from CH " by " . If the angular diameter of �
is less than � , the normal sphere of � is the orthogonal
sphere of l " at ��� and � is encroached by a point � if �
lies inside its normal sphere. If the angular diameter of
� is larger than ��� � , � is wide.

Subfacets are defined when no helper arc is wide or
encroached by a vertex in � . For every facet

�
of � , a

subfacet is a triangle on
�

in the 2D Delaunay triangula-
tion of � � � . Note that we define subfacet using facets
of � instead of flat facets of � because MESH only ap-
proximates � and it does not respect the curved bound-
ary edges of flat facets. The circumcap of a subfacet � is
the disk bounded by the circumcircle of � . The normal
sphere of � is the equatorial sphere of � . If a point � lies
inside the normal sphere of � , � is encroached by � .

We are ready to describe MESH. Starting with � as the
set of vertices of � , MESH repeatedly invoke the appli-
cable rule of the least index in the following list. When
no rule is applicable, the subcomplex of � �
	 � covering
the input domain is the final mesh. Recall that D E F @jH
is an a priori chosen constant.

Rule 1: Pick a helper arc that is wide or encroached by a
vertex in � . Preference is given to wide helper arcs.
Insert the midpoint of the helper arc.

Rule 2: Pick a helper triangle � that is wide or en-
croached by a vertex in � . Preference is given to
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wide helper triangles. Let � be the center of the cir-
cumcap of � . If � does not encroach upon any helper
arc, insert � . Otherwise, reject � and apply Rule 1
to split the helper arcs encroached by � .

Rule 3: Let � be the center of the circumcap of a sub-
facet that is encroached by a vertex in � . If � does
not encroach upon any helper arc, insert � . Other-
wise, reject � and apply Rule 1 to split the helper
arcs encroached by � .

Rule 4: Let � be the circumcenter of a tetrahedron � such
that D � � � F D E and no vertex of � lies inside ' .
If � does not encroach upon any helper arc, helper
triangle or subfacet, insert � . Otherwise, reject � ,
apply Rule 1 to split the helper arcs encroached by� , and then apply Rules 2 and 3 to split the helper
triangles and subfacets encroached by � .

This completes the description of MESH. The rest of
the paper focuses on proving the guarantees offered by
MESH. We will see that MESH never inserts a vertex in-
side ' , i.e., the vertices inside ' are always the endpoints
of linear edges of � .

5 Properties of orthogonality

This section presents three geometric results regarding
orthogonal spheres. We introduce some notations. Given
a sphere l and a point � outside l , � � � 6 l � denotes the
cap on l visible from � . Given a cap � on a sphere l , if
the angular diameter of � is less than � , we use ��� to
denote the orthogonal sphere of l at ��� . If l is a plane
(infinite sphere), then ��� is the equatorial sphere of � .
For any point 3%� ��� � � 6 l � , � 3 is tangent to l , so � is
the center of � � � 6 l � � .

CLAIM 1 Let l be a sphere. Let l m be a sphere such
that l � l m is an equator of l m . For any point % on the
plane containing l � l m and outside l m , � � % 6 l m � � is
orthogonal to l .

Proof. Let L and Q be the centers of l and
l m respectively. Recall that % is the center of
� � % 6 l m � � . Let � be the radius of � � % 6 l m � � .
Since L4Q % is a right-angled triangle, we haveS L U % S ! Y S L U Q S ! R S Q�U % S ! . By Pythagoras theorem
again, we have

S LVUWQ S ! Y d�e,fg��hgij� l �
! U�d�e,fg��hgij� l m �

!
.

Since l m and � � % 6 l m � � are orthogonal, we haveS Q U % S ! Y dneofg��hgi�� l m �
! R �

!
. It follows thatS L;U % S ! Y dneofg��hgi�� l �

! R �
!

and so � � % 6 l m � � is

orthogonal to l .

CLAIM 2 Let � and 3 be two non-diametral points on
a sphere l centered at L . Let

�
be the set of spheres

orthogonal to l that pass through � and 3 . There exists
a unique circle � such that

(i) � is coplanar with � 3 L , � passes through � and 3 ,
and
�

is the set of spheres that pass through � .

(ii) The locus of the centers of spheres in
�

is the line .
through the center of � perpendicular to the plane
containing � .

Proof. Let " be the plane containing � , 3 and L .
Take � � � . The two circles " � l and " � � are
orthogonal in the sense that they intersect at right angle.
It can be verified that there is a unique circle � on " that
is orthogonal to " � l and passes through � and 3 . Thus,
" � � Y � and

�
is the set of spheres that pass through

� . This proves (i) and (ii) is an easy corollary of (i).

CLAIM 3 Let l be a sphere. Let � � and � ! be caps on
l with angular diameter less than � . If � !�� � � , ����
encloses �	�! .

Proof. Fix the center of � ! and grow it to a cap � such
that ��� is tangent to ��� � . So � � � � . Clearly, �	�
encloses �	�! . If we treat the contact point between ���
and ��� � as a degenerate circle, �	� and ���� belong to
the system of orthogonal spheres as described in Claim 2
in the limiting case. So �	�� encloses ��� and hence
���! .

6 Locations of centers

We study the locations of the circumcap centers when
MESH inserts them. To this end, we need to associate
helper arcs, helper triangles and subfacets with elements
of 
 . We first introduce some notations. Given a helper
arc, helper triangle or subfacet � , let �
� denote the cir-
cumcap of � . Hence, if the angular diameter of �
� is
less than � , �	�� is the normal sphere of � . We extend
the definition for any circular arc � . The circumcap ���
is the smallest cap on the equatorial sphere of � that con-
tains � . ���� is defined as before if the angular diameter
of � � is less than � .
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A helper arc belongs to the curved edge that contains
it. A subfacet � belongs to the flat facet

�
if
�

lies out-
side ' and

�
contains the vertices of � . Note that it is

possible that ���� �
. This definition does not cover all

subfacets but we are not concerned as we will see in Sec-
tion 7 that MESH never deals with subfacets that are not
covered. Clearly, a subfacet belongs to at most one flat
facet. A helper triangle � belongs to a curved facet

�
if

there exists a connected subset � � ��
��5� ��� ��� � such that�
	 � � � contains the vertices of � . This definition is some-
what complicated due to the fact that � does not lie on
' and the vertices of � may lie on the boundaries of two
curved facets. The following result shows that � belongs
to exactly one curved facet under the right conditions.

LEMMA 6 Assume that MESH has not inserted any ver-
tex inside ' . If there is no wide or encroached helper
arc, each helper triangle belongs to exactly one curved
facet.

Proof. Let � be a helper triangle on CH " . Assume to
the contrary that � does not belong to any curved facet.
Then some helper arc � must cross ��� and cut ����� into
two arcs � � and � ! such that each ��
8�5� � # � contains a
vertex of � . Note that � does not lie on l " � l $ for any
protecting sphere l $ consecutive to l " . Otherwise, � �
or � ! lies inside l $ which implies that a vertex of � lies
inside ' , contradicting our assumption. It follows that �
lies at the intersection of l-" and a facet of � , i.e., l�" is
the equatorial sphere of � .

If � # is less than a semicircle for some � , then �
	 con-
tains � # . But then � is encroached by the vertex of � in��
���� � # � , contradicting our assumption that no helper arc
is encroached. Suppose that � � and � ! are semicircles.
Then � passes through the center of � � . If any endpoint
of � lies outside � � , then ��	 contains � � and so some
vertex of � encroaches upon � , contradiction. Otherwise,
both endpoints of � lie on ����� . Thus, the vertices of �
and the endpoints of � are vertices of a boundary facet
of CH " . Recall that when triangulating the boundary of
CH " , we first connect the endpoints of � with a diago-
nal. But then this diagonal cuts � and so � would not exist,
contradiction. This completes the proof that � belongs to
at least one curved facet.

Lastly, � cannot belong to two curved facets, otherwise
the definition would imply that the interior of two curved
facets intersect.

Clearly, for a helper arc � , the center of � 	 lies on
the curved edge that � belongs to. In fact, the center is
the midpoint of � . The next two lemmas show that for a

subfacet (resp. helper triangle) � , the center of � � lies
on the flat facet (resp. curved facet) that � belongs to.
With slightly more work in Section 7, these two lemmas
will allow us to show that Rules 2 and 3 never insert a
vertex inside ' .
LEMMA 7 Assume that MESH has not inserted any ver-
tex inside ' and there is no wide or encroached helper
arc. Let � be a subfacet belonging to a flat facet

�
. The

center of ��� lies on
�

.

Proof. Let � be the center of �
� . Let " be the plane
containing

�
. If � �� � , ��� intersects � � at an arc �

such that � cuts ��� into two parts, one contains � and
the other contains ��� �b� . This implies that �
� �b�
lies inside �	�� . Since the vertices of � lie on ��� � � ,
some vertex of � lies inside � �� . The emptiness of �
�
implies that � lies within a helper arc � . By Claim 3,
���	 encloses �	�� , so � is encroached by some vertex of
� , contradiction.

LEMMA 8 Assume that MESH has not inserted any ver-
tex inside ' and there is no wide or encroached helper
arc. Let � be a helper triangle belonging to a curved facet�

. The center of ��� lies on
�

.

Proof. Suppose that
� � l�" for a protecting sphere l�" .

Let � be the center of ��� . Assume to the contrary that �
lies outside

�
.

Case 1: � lies outside ' � l " . So � lies inside
some protecting sphere l $ consecutive to l " . Note that� � � �?Q 6 l " � . Let � be a vertex of � that does not lie on
l	" � l	$ (such a vertex exists by the definition of helper
triangle). Since � lies outside l-$ , � � intersects l�" � l	$ at
an arc � . The emptiness of � � implies that � lies within
a helper arc � . Since � is not wide by assumption, the
angular width of � is less than � , so ���� is defined. Since
� Y �
� � l " � l $ and � � � �?Q 6 l " � , the angular diame-
ter of ��� is also less than � , otherwise the angular width
of � would be at least � . So the normal sphere of � is
���� . Let " be the plane through L and the endpoints
of � . By Claim 1, �	�� is orthogonal to l " . Since l $
and � �� are also orthogonal to l " , Claim 2 implies that
l	$ , �	�� and �	�� intersect at the circle " � �	�� . It fol-
lows that the caps �
� , � � and � �OQ 6 l	" � contain � and
their boundaries pass through the endpoints of � . See
Figure 4. Using this and the fact that � � � �?Q 6 l-" � , we
get � � � � ��� � �?Q 6 l	" � . This implies that the vertex� of � lies inside � � as � lies outside l $ . By Claim 3,� lies inside �	�	 , contradicting the assumption that � is
not encroached.

7
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Figure 4: The three solid line segments delimit the caps
� � , � � and � �?Q 6 l	" � on l	" .

Case 2: � lies on a curved facet other than
�

on
' � l " . We will reduce to case 1 by properly choosing
a vertex � of � and a sphere to play the role of l#$ in
case 1. Let � be the shortest geodesic on l-" from �
to a vertex 3 of � . Clearly, �

� � � . We claim that �
does not cross l�" � l�� for any protecting sphere l��
consecutive to l�" . Observe that � ��� 6 l�" � does not lie
inside �
� , otherwise the emptiness of ��� would imply
that �
� � � ��� 6 l " � contains some wide helper arc.
Thus, �
� U�� 
��j� � ��� 6 l " � � is star-shaped with respect
to � and shortest geodesics on l " originating from � . So
our claim follows. Since � �� � , our claim implies that
� enters

�
from another curved facet at a curved edge

^ where ^ is also incident on a flat facet
� m adjacent to�

. Let
�

be the plane containing
� m . Note that

�
passes

through L . Consider the infinite sphere bounded by
�

with the halfspace containing � as its inside. We denote
this infinite sphere by

���
.
���

will play the role of l $ in
case 1. We claim that � has a vertex outside

� �
. Recall

that the destination of � is a vertex 3 of � and � intersects�
. If 3 �� � , then 3 �� � � , otherwise � would be more

than a semicircle and so � � ��� is a complete circle.
Since � � is empty and ^ � � � � � , this implies that ^ is
a complete circle, contradiction. If 3$� � , then 3$�&^ . If
� does not have any vertex outside

� �
, then ��� � � �

.
Using this and the fact that � belongs to

�
, we conclude

that for any neighborhood � � 3 � around 3 , � � 3 �_� �
has points inside

� �
. However, since � enters

�
at 3 ,

for a sufficiently small neighborhood � � 3 � around 3 ,
� � 3 �)�;� does not lie inside

� �
, contradiction. This

proves our claim that � has a vertex � outside
� �

. To
summarize, we have the same setting as in case 1 with
l	$ substituted by

� �
:
� �

is orthogonal to l�" , � � � � ,� �� � � , and � � � l	" �&� is an arc within a helper arc
� . Thus, the argument in case 1 shows that � encroaches
upon � , contradiction.

7 Boundary conformity

We are ready to prove that � �
	 � is conforming when-
ever no helper arc is wide or encroached and no sub-
facet is encroached. Thus, the output mesh is conform-
ing when MESH terminates (termination will be proved
in Sections 8 and 9). We start with a result characterizing
the subcomplex of � �
	 � inside ' .
LEMMA 9 Assume that MESH has not inserted any ver-
tex inside ' . Let l " and l $ be two consecutive protect-
ing spheres. When there is no wide or encroached helper
arc, (i)–(iii) hold. When there is no wide or encroached
helper arc/triangle, (i)–(iv) hold.

(i) For any flat facet
�

incident to L and any helper arc
�� 3 � ' � l	" � � , the equatorial sphere of � 3 L is
empty.

(ii) For any helper arc endpoint � � l " � l $ , the equa-
torial sphere of � L4Q is empty.

(iii) For any helper arc �� 3 � l	" � l	$ , the circumsphere
of � 3 L4Q is empty.

(iv) For any helper triangle � 3 � on CH " , the circum-
sphere of � 3 � L is empty.

Proof. Consider (i). Let � Y �� 3 . Let l be the equatorial
sphere of � 3 L . Observe that the centers of l " , l and
���	 lie on a straight line. Since L lies on l but outside
���	 , the center of l lies between L and the center of
���	 . Thus, " f�� l�"�� ���	 � encloses l . Since L is the
only vertex inside " f'� l-" � ���	 � , l is empty. Consider
(ii). Let l be the equatorial sphere of �4L Q . Since l-" and
l	$ intersect at right angle, �_L0� Q in triangle � L4Q is equal
to ����� . Thus, L4Q is the diameter of l which implies
that " fp� l " � l $ � encloses l . Since L and Q are the
only vertices inside " f�� l " � l $ � , l is empty. Consider
(iii). The circumsphere of � 3 L4Q is the equatorial sphere
of �4L Q which is empty by (ii). We can prove (iv) by
considering the circumcap and normal sphere of � 3 � and
employing the same arguments in proving (i).

Next, we bootstrap from Lemma 9 to show that MESH

never inserts any vertex inside ' .
LEMMA 10 MESH never inserts any vertex inside ' .
Proof. Assume to the contrary that MESH wants to insert
a vertex � inside ' for the first time. MESH is not apply-
ing Rule 1 since Rule 1 never inserts a vertex inside ' .
It follows that there is no wide or encroached helper arc.
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By Lemmas 6 and 8, � is not inserted by Rule 2. If � is in-
serted by Rule 3 to split an encroached subfacet � , then �
does not lie inside ' by Lemma 9. In fact, Lemma 9 fur-
ther implies that � belongs to a flat facet outside ' . But
then � does not lie inside ' by Lemma 7, contradiction.
The remaining possibility is that Rule 4 wants to insert �
inside some protecting sphere l " . It follows that there is
no wide or encroached helper arc/triangle. Let � be the
circumcenter of the tetrahedron � . By Rule 4, � has no
vertex inside ' . At least one vertex of � is outside l " as
l " cannot be the empty circumsphere of � ( L lies inside
l " ). Let l be the circumsphere of � . Let � be the cap
on l " that is bounded by l " � l and lies inside l . SinceL does not lie inside l , the angular diameter of � is less
than � , so �	� is defined. If � � ��� Y��

for all helper tri-
angle � on CH " , then � � � �?Q 6 l " � for some protecting
sphere l $ consecutive to l " . It follows that " f�� l " � l $ �
encloses l and hence � , contradicting the fact that MESH

has not inserted any vertex inside ' . Next, take a helper
triangle � E on CH " such that � � � ��� �Y��

. Starting from
� E , we visit a sequence of helper triangles � E 6 � ��6 � !o6 ����� to
derive a contradiction as follows.

Case 1: � � �
��� . Clearly l lies inside " f'� l " � ��� � .
So any vertex of � outside l " lies inside �	� . Since �	�� �
encloses �	� by Claim 3, some vertex of � encroaches
upon � # , contradiction.

Case 2: � �� �
��� . The vertices of � # divide ���
��� into
three arcs and by emptiness of � , ��� � ������� lie on one
arc, say the one between vertices � and � of � # .

Case 2.1: There is a helper triangle � # � � on CH " that
shares � � with � # . If � � �
��� � �
��� � - , (refer to Claim 2)
we move a point % from the center of ���� � towards the
center of �	���� � - and stop as soon as ��� � % 6 l�" � is tan-
gent to ��� . Tangency implies that � � � � % 6 l-" � ,
so " fp� l	"
� � � % 6 l	" � � � encloses l . Since % lies be-
tween the centers of ������ and �	���� � - , Claim 2 implies that
" f'� ������ � ������	� - � encloses � � % 6 l " � � . So " fp� l " � ������ �
���� �	� - � encloses l " � � � % 6 l " � � and hence l . Hence,
some vertex of � encroaches upon � # or � # � � , contradic-
tion. If � �� �
��� � �
��� � - , we continue to visit � # � � . We
will never return to � # as � � �
����
 � � �
��� � - .

Case 2.2: If �]# is the only helper triangle on CH "
incident to � � , � and � are the endpoints of a helper
arc � � l	" � l	$ for some protecting sphere l-$
consecutive to l�" . Let % be the center of �	�	 . By
Claim 1, �	�	 is orthogonal to l-" , so �	�	 Y � � % 6 l	" � � .
If � � �
��� � � � % 6 l " � , we conclude as in case
2.1 that " f'� l " � ������ � ���	 � encloses l . So some
vertex of � encroaches upon � # or � , contradiction. If

� �� �
��� � � � % 6 l " � , then � � � � % 6 l " � � � �OQ 6 l " �
which implies that " f'� l�" � �	�	 �$l	$ � encloses l . Since
no vertex of � lies inside l�" or l	$ , some vertex of �
encroaches upon � , contradiction.

Finally, we put together Lemmas 6–10 and summarize
the main results of this section.

COROLLARY 1 MESH never inserts a vertex inside ' .
(i) Whenever no helper arc is wide or encroached, the

following hold.

(a) Subfacets inside ' are not encroached.

(b) Each subfacet that does not lie inside ' be-
longs to exactly one flat facet. Each helper
triangle belongs to exactly one curved facet.

(c) The center of the circumcap of a subfacet
(resp. helper triangle) � lies on the flat facet
(resp. curved facet) that � belongs to.

(ii) Whenever no helper arc/triangle is wide or en-
croached, the following hold.

(a) For any two consecutive protecting spheres l "
and l $ and any helper arc �� 3 � l " � l $ ,� 3 L4Q � � � 	 � .

(b) For any protecting sphere l-" and any helper
triangle � 3 � on CH " , � 3 � L � � �
	 � .

(iii) Whenever no helper arc is wide or encroached and
no subfacet is encroached, � �
	 � is conforming.

8 Between adjacent elements

The termination of MESH hinges on the fact that we will
not keep generating encroached helper arc, helper trian-
gle or subfacet. In particular, if a new vertex inserted
on one element encroaches upon something on an adja-
cent and non-incident element and if this happens indef-
initely, then algorithm will not terminate. In this section,
we show that this cannot happen. Lemmas 11, 12 and 13
analyze the cases for helper arc, helper triangle and sub-
facet respectively. Lemmas 11 and 12 are stated more
generally for their usage in Section 9.

LEMMA 11 Let � be an arc on a curved edge ^ such that
the angular width of � is less than � . If c is an element
of � such that c is adjacent to ^ and ^ �� �4c , then c
does not intersect the inside of ���� .
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Proof. Case 1: ^ lies at the intersection between a pro-
tecting sphere l�" and a facet of � . Then c is a curved
edge or curved facet lying on a protecting sphere l#$
consecutive to l�" . Since ^ lies outside l�$ and ^ meets
l	" � l	$ at right angle, the cone of rays from L through
l	" � l	$ and the cone of rays from L through ����� do
not cross. Observe that l $ and ���� lie inside their cor-
responding cones. Thus, l $ does not intersect the inside
of ���� and neither does c .

Case 2: ^ � l " � l $ for two consecutive protecting
spheres l " and l $ . The endpoints of ^ lie on two facets� �

and
� !

of � . Note that L 6 Q � � � � � ! . Let " # be
the halfplane that is bounded by the supporting line ofL4Q and contains the endpoint of ^ on

� # . For � = 1 or
2, since ^ meets "$# at right angle, either "V# avoids �	��
or " # is tangent to �	�� . Observe that either c � " #
for some � or c is separated from ^ by " � and " ! . It
follows that c does not intersect the inside of � �� .

LEMMA 12 Suppose that there is no wide or encroached
helper arc. Let � be a helper triangle belonging to a
curved facet

�
. Let � � � � be a cap with the same

center as � � and angular diameter less than � . Let c be
an element of � adjacent to

�
. For any vertex � � � � c ,� does not lie inside �	� .

Proof. Let
� � l " for some protecting sphere l " . As-

sume to the contrary that � lies inside ��� . Observe that
c �� l " , otherwise the emptiness of � would be contra-
dicted.

Case 1: c is a curved edge or curved facet lying on
a protecting sphere l $ consecutive to l " . In order that
��� intersects c , � must cross l " � l $ . Otherwise, the
cone from L through ��� and the cone from L through
l " � l $ do not cross, implying that l $ does not intersect
the inside of �	� , contradiction. By emptiness of � ,
� � l " � l $ is an arc � within a helper arc � . Let % �
and % be the centers of ���� and ��� respectively. By
Claim 1, �	�� is orthogonal to l�" . Since l	$ and �	�
are also orthogonal to l�" , Claim 2 implies that l�$ , �	�
and � �� intersect at the same circle and Q , % � and % are
collinear. If Q lies between % � and % , the subset of l $
inside ���� lies outside �	� . Since � lies on the subset
of l $ inside �	�� , � is outside �	� , contradicting the fact
that � � � . If Q does not lie between % � and % , the
subset of l $ inside ��� is equal to the subset of l $ inside
���� . Since � lies on the subset of l�$ inside �	� , � lies
inside �	�� and hence �	�	 by Claim 3. This contradicts
the assumption that � is not encroached.

Case 2: c is a flat facet or a curved boundary edge
of a flat facet. Let " be the plane containing the
corresponding flat facet. Note that " passes throughL . Since � lies inside ��� , ��� intersects l�" � " at
an arc � within a helper arc � . Since ���� and ��� are
orthogonal to l�" , " � ���� Y " � �	� by Claim 2.
Since � lies inside " � ��� , � lies inside �	�� . But then
� also lies inside ���	 by Claim 3, contradiction.

LEMMA 13 Suppose that there is no wide or encroached
helper arc. Let � be a subfacet belonging to a flat facet�

. Let c be an element of � adjacent to
�

. For any
vertex � � � � c , � does not lie inside �	�� .

Proof. The proof is similar to that of Lemma 12
by treating the supporting plane of

�
as an infinite

sphere.

9 Insertion radius

For each vertex � , we define the insertion radius of � as
follows. If � is a vertex of � , ��� is the minimum distance
from � to another vertex of � . If � is inserted/rejected by
MESH, � � is the minimum distance to a vertex in � at
the time when � is inserted/rejected. In this section, we
prove a lower bound on the insertion radii of vertices.
Thus, MESH must terminate by a packing argument.

We first introduce some notations. Consider the time
when MESH inserts/rejects a vertex � using Rule � , @ I
� I � . We say that � has type � and we define the parent
of � as follows. If � is the center of � � for a wide helper
arc/triangle � , the parent of � is undefined. Suppose that� is the center of � � where � is a non-wide encroached
helper arc/triangle or an encroached subfacet. If � has
a vertex encroaching upon � (i.e., lying inside ���� ), the
the parent of � is the nearest encroaching vertex in � .
Otherwise, �	�� is empty. What happens is that MESH

rejected a vertex � because � encroached upon � and this
also prompted MESH to consider � . The parent of � is� in this case. If � is the circumcenter of a tetrahedron
� , the parent of � is the endpoint of the shortest edge of
� that appeared in � the latest. Finally, the parents of
vertices of � are undefined.

We will use induction. To this end, Lemma 14 relates
the insertion radius of � to the insertion radius of its par-
ent � and to

S �VU � S . The proof of Lemma 14 needs the
following claim.
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CLAIM 4 Let � be a cap with angular diameter at most
��� � . Let � be the center of � . For any point � inside ���
and any point 3 on or outside ��� ,

S 3 U � S F � @ ��� � �� e !�� S �$U � S06�S �$U 3 S,� .
Proof. Let % be the center of ��� . Since the angular
diameter of � is at most ����� ,

S �7U % S : d�e,fg��hgij� ��� � ����0i�� ��� � � which is at most
S 3 U % S ��� . By triangle in-

equality,
S 3 U � S7k S 3 U % S U S �7U % S . It follows that

S 3 U � S F S 3 U % S �
���
Since � and � lie inside ��� ,

S 3 U % S;k�S � U � S �
� .
Thus,

S 3 U � S F S � U � S ��� . By triangle inequality,S � U 3 S I S � U % S R S 3 U % S which is at most � � S 3 U % S .
Thus,

S 3 U � S F S �$U 3 S ��� .

LEMMA 14 Let � be a vertex of � or a vertex in-
serted/rejected by MESH. Let � be the parent of � .

(i) If � is undefined, ��� k �K � � � �
� .

(ii) Otherwise, � � F S �7U � S ��� and if � � I �K � � � ��� , the
following hold depending on the type of � :

Type 1: � has type 2, 3 or 4 and ���`F ��� ��� .

Type 2 or 3: � has type 4 and ����F ��� ��� .

Type 4: � �`F D8E � ��� .

Proof. Go back to the time when � appeared. If � is a
vertex of � , then � � k �K � � � by definition. We analyze
the other cases below.

Case 1: � is the center of � � for a wide helper
arc/triangle � . The parent � is undefined in this case.
If � is a helper arc, let l be the equatorial sphere of � .
Note that l is either a protecting sphere or the equato-
rial sphere of the common hole between two consecutive
protecting spheres. If � is a helper triangle, let l be the
protecting sphere that contains the vertices of � . Let c
be the element of 
 that � belongs to (i.e., c is a curved
edge or curved facet depending on whether � is a helper
arc or helper triangle). Note that c lies on l . By Corol-
lary 1, � � c . Let � � � � be the cap with center �
and angular diameter ��� � . Let a be the smallest ball
centered at � that contains � . Let % be the center of
l . Suppose that ��
��5� a � does not contain any vertex in
� . Then � � k d�e,fg��hgij� a �VY S �$U % S ��� i ��
'� ��� @ � �$kS � U % S �
� . Observe that % lies on some linear edge of� that stabs l . Since all linear edges are disjoint from
' , we have

S � U % SGk �K � � � by definition. It follows

that � � k �K � � � ��� . Suppose that ��
���� a � contains a vertex
� � � . Observe that " f'� l � �	� � encloses a which
implies that � lies inside ��� . If � is a vertex of � ,
then � �� c as vertices on c do not lie inside ��� , soS �$U � SGk �K � � � by definition. Otherwise, � was in-
serted by MESH. We claim that � lies on an element
c m of � disjoint from c . If � is a wide helper arc, then
MESH has split helper arcs only so far, so � lies on some
curved edge c m . By Lemma 11, for �	� to enclose � ,
c m is disjoint from c . If � is a wide helper triangle, then
MESH has split helper arcs/triangles only so far, so � lies
on some element c m of � . By Lemma 12, for �	� to en-
close � , c m is disjoint from c . This proves the claim.
Our claim implies that

S ��U � S$k �K � � � . It follows that
� � Y �%��
 � *�� S �7U � S k �K � � � .

Case 2: � is the midpoint of a non-wide encroached
helper arc � . Note that � has type 1. Let ^ be the curved
edge that � belongs to. Let 3 be the vertex in � such that
� � Y S 3 U � S . Recall that � is the parent of � . We first
relate � � to

S �ZU � S . If 3 lies inside �	�	 , then � Y 3
by definition of parent; otherwise,

S 3 U � S F S ��U � S ���
by Claim 4. Hence, � � Y S 3 U � S F S �VU � S ��� . Next,
we relate � � to �K � � � and � � . If � is a vertex of � , then� �� ^ as vertices on ^ do not lie inside ���	 , so

S � U
� Sbk �K � � � . If � lies on an element c of � such that
^��� �4c , Lemma 11 implies that ^ and c are disjoint
and so

S � U � SVk �K � � � . Since � �VF S �VU � S ��� , we get
� � F �K � � � ��� for the above two cases. The remaining
case is that � has type 4 or � lies on a curved/flat facet
whose boundary contains ^ . Note that � has type 2, 3
or 4. What happens is that MESH attempted to insert� but since � encroached upon � , MESH rejected � and
inserts � to split � now. In this case, 3 does not lie inside
���	 , otherwise the parent of � would be 3 instead. Since
3$� � when � was rejected, ��� I S �$U 3 S . By Claim 4,S 3 U � S F S �$U 3 S ��� . It follows that � � F � � ��� .

Case 3: � is the center of � � where � is a non-wide en-
croached helper triangle or an encroached subfacet. Note
that � has type 2 or 3. Let

�
be the curved facet or flat

facet that � belongs to, whichever is appropriate. Let 3
be the vertex in � such that � � Y S 3 U � S . We first re-
late � � to

S �%U � S . If 3 lies inside �	�� , then � Y 3 by
definition of parent; otherwise,

S 3 U � S F S ��U � S ��� by
Claim 4. Hence, � � Y S 3 U � S F S �$U � S ��� . Next, we
relate � � to �K � � � and � � . Suppose that � is a vertex of �
or � has type 1, 2 or 3. Vertices of type 1 are always in-
serted. If � has type 2 or 3, although � encroached upon
� , � was inserted as � has type 2 or 3. It follows that � is
a vertex in � � c for some element c of � . We invoke
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Lemma 12 if � is a helper triangle or Lemma 13 if � is
a subfacet. The implication is that c is disjoint from

�
.

Since � � �
by Corollary 1,

S �ZU � Sbk �K � � � . Since
� � F S �%U � S ��� , we get � � F �K � � � ��� . The remaining
case is that � has type 4. By Rule 4, � was rejected for
encroaching upon � . In this case, 3 does not lie inside
���	 , otherwise the parent of � would be 3 instead. Since
3$� � when � was rejected, ��� I S �VU 3 S . By Claim 4,S 3 U � S F S �$U 3 S ��� . It follows that ����F ��� ��� .

Case 4: � is the circumcenter of a tetrahedron � . By
definition, � is an endpoint of the shortest edge of � . Let
3 be the other endpoint of this edge. If � is a vertex of � ,
by the definition of parent, 3 is also a vertex of � . This
implies that ��� Y S � U � S Y S 3 U � S Y �K � � � .
If � is not a vertex of 
 , since D � � � F D E ,
� � Y S �$U � S F D E � S �$U 3 SPk D E � � .

We prove one more claim and then derive the lower
bounds for insertion radii in Lemma 15.

CLAIM 5 Let � be a vertex of � or inserted/rejected by
MESH. Let � be the parent of � . If ��� F � � ��� , then
�K � � � : �K � � � � ��� � � � � ��� ��R � � � .
Proof. Since � is defined, ��� F S � U � S ��� by
Lemma 14. Using the Lipschitz property, we get
�K � � � I �K � � �4R�S �`U � S : �K � � � � � �
� � � � ��� �NR � ��� .

LEMMA 15 Let � be a vertex of � or inserted/rejected
by MESH. If � is a vertex of � , then ��� k �K � � � . Other-
wise, there are four constants � � F � !_Y � � F � � F �
such that if � has type � , then � � F �K � � � � � # .
Proof. We prove the lemma by induction using the con-
stants � �bY�� �0D E � � D E U @�H0�

, � ! Y � � Y � � > D E R@�H0� � � D E U @jHB� and � � Y � �BD E R � > � � � D E U @jHB� . Before
MESH starts, � � k �K � � � for each vertex � of � . In the
induction step, if ���VF �K � � � ��� , we are done as � �$F � .
Otherwise, Lemma 14 implies that the parent � of � is
defined.

If � has type 1, by Lemma 14, � has type 2, 3 or 4 and
� � F � � ��� . By induction assumption, �K � � � : � ! � � . By
Claim 5, �K � � � : � � ! � � R � � � Y � � � � .

If � has type 2 or 3, by Lemma 14, � has type 4 and
� � F � � ��� . By induction assumption, �K � � � : � � � � . By
Claim 5, �K � � � : � � � � � R � � � Y � ! � � .

If � has type 4, then � � F D E � � by Lemma 14.
By induction assumption, �K � � � : � � ��� regardless of
whether � is a vertex of � or � was inserted/rejected. By

Claim 5, �K � � � : � � � �
�,D�E R � ��� Y � � � � .

We are ready to prove that MESH terminates by a
packing argument.

COROLLARY 2 MESH terminates and for each output
vertex � , its shortest incident edge has length at least
�K � � � � � @)R � � � .
Proof. Let � � be the shortest edge incident to� . If � appeared in � no later than � , thenS � U � S k ��� k �K � � � � � � by Lemma 15. If �
appeared in � before � , then

S �2U � S k � � k �K ��� � ��� �
by Lemma 15. Using the Lipschitz condition, we get
�K � � �_I �K ��� ��RbS �2U � S I � @NR � � � � S ��U � S . The edge
length bound implies that we can center disjoint balls
at the output vertices with radii �K�� � � � � �

R � � � � , where
�K � � � is the minimum local feature size with respect to� . Since �K�� � � F > and the input domain has bounded
volume, there is a finite number of output vertices. It
follows that MESH terminates.

10 Mesh quality

In this section, we relate the edge lengths to local feature
size with respect to � , bound the radius-edge ratio and
summarize the guarantees offered by MESH. We first
prove in Lemmas 16 and 17 that MN� � � Y [ � K � � �]� for
each output vertex � .

LEMMA 16 Let � � be an edge of � . Let 3 be a point on
� � . There exists a constant � � : @ such that

(i) If
S 3 U � S k � < ��� � � K � � � and

S 3 U � S7k � < ��� � � K � � � ,
then MN� 3 � k � � < �jK � 3 � .

(ii) For any point � on or outside ' , MX� � �'RTS �$U 3 S�k
� � <+��K � � � .

Proof. We prove the lemma for the constant
� � Y i]� 
 9 ��� . Consider (i). Let a be the ball centered at
3 with radius MX� 3 � . If a intersects two disjoint elements
of � , MN� 3 �VY K � 3 � . Otherwise, we can assume that a
touches � or the interior of an edge/facet of � incident to
� . So MX� 3 � k S 3 U � S � i ��
 9 . By the Lipschitz condition,
K � 3 � I K � � �'RTS 3 U � S . Since

S 3 U � S k � < �
� � ��K � � � ,
we get K � 3 � I � � � R < � �o< � � S 3 U � S . So
K � 3 � I �]� � R < � � � < i]��
 9 � � � MN� 3 � : MN� 3 � � � � � < � .
Consider (ii). Suppose that

S 3 U � S : � < ��� � �gK � � � .
Using the Lipschitz condition and the fact that
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S � U � S$k <5��K � � � , we get K � � �PI K � � ��R S �$U � S�I� � @_R < � �,< � � S � U � S . Since
S 3 U � S : � < �
� � �,K � � � ,S 3 U � S : S �$U � S ��� . Using triangle inequality, we getS � U 3 S k S � U � S U S 3 U � S F S �ZU � S �
� . Thus,

K � � � : �]� � R �o< � �,< � � S �_U 3 S : S �_U 3 S � � � � < � . We get
the same result for the case where

S 3 U � S : � < ��� � ��K � � � .
If
S 3 U � S F � < ��� � ��K � � � and

S 3 U � S F � < �
� � �jK � � � ,
then using K � � �_I K � 3 ��RbS � U 3 S and (i), we get K � � � IMX� 3 � � � � � < �NRTS �`U 3 S : � MX� 3 �'RTS ��U 3 S�� � � � � < � .

LEMMA 17 For each vertex � in the final mesh, MX� � � k
� ! <+��K � � � for some constant � ! : � � .
Proof. We prove the lemma for the constant
� ! Y �	��

� � � �
� 6 � � i ��
'� 9 �
� � � � @ R i ��
'� 9 �
� � ��� . If� is a vertex of � , then MN� � �%Y K � � � . Otherwise, if �
is a linear edge endpoint, then for each endpoint � of
the edge of � that contains � ,

S � U � S F � < �
� � �,K � � � .
By Lemma 16(i), MN� � � k � � < �gK � � � . The remaining
case is that � lies on or outside ' . Let a be the
ball centered at � with radius MX� � � . If a intersects
two disjoint elements of � , MN� � �\Y K � � � . Suppose
not. If a intersects an edge � � , then for any point
3 � a � � � ,

S � U 3 SbI MX� � � . Using Lemma 16(ii),
we get MN� � ��k � � � < ��� � �,K � � � . Otherwise, a intersects
the interior of two adjacent facets

� �
and

��!
of � . Let

"$# be the plane containing
� # . Let � be the point in

" � � " ! nearest to � . Since � � makes an angle at least9 �
� with " � or " ! , we have
S ��U � S � i ��
'� 9 �
� � I MX� � � .

The orthogonal projections of � � onto " � and " ! must
intersect � � � or � � ! at some point 3 . Observe thatS �PU 3 S I S �7U � S , so

S � U 3 S I MN� � � � i]� 
�� 9 �
� � . Using
Lemma 16(ii), we get � � <��BK � � � I MN� � � R S �%U 3 S%IMX� � � � � @)R i ��
'� 9 �
� �]� � i]��
X� 9 �
� � .

We are ready to prove the main results of this paper.

THEOREM 1 MESH terminates and produces a Delau-
nay mesh � conforming to � . There exists two con-
stants J and D � depending on < and

9
such that

(i) For each vertex � of � , the length of the shortest
edge incident to � is at least J&��K � � � .

(ii) Let � be a tetrahedron in � . If � does not have a
vertex inside ' , then D � � � I D�E ; otherwise, D � � �_I
D � .

Proof. The termination of MESH has been proved in
Corollary 2. Since MESH terminates, Corollary 1 implies
that � is conforming.

We prove (i) for the constant J Y �%� 

� � ! � <�� � � @ R
� �n� 6 � ! � � <

! �
. Let � be a vertex of � . Consider the

case where � lies on or outside ' . Lemmas 5 and 17
imply that �K � � � k � � ! < � �8K � � � . By Corollary 2, the
shortest edge incident to � has length at least �K � � � � � @_R
� �n� which is at least � � � ! < � � � @'R � ��� � �nK � � � . Consider
the case where � lies inside ' . Then � is a linear edge
endpoint. By Lemma 2(iii), the shortest edge incident
to � has length at least � � <�� MX� � � . By Lemma 17, � � <5�MN� � � k � ! �,�j<

! �5K � � � .
We prove (ii) for the constant D �)Y �,< � � J � @ U �,< �]� . If

� does not have a vertex inside ' , Rule 4 guarantees that
D � � � I D E . Otherwise, Corollary 1 implies that there are
two possibilities.

Case 1: There exists a protecting sphere l " such that
� Y � 3 � L for some helper triangle � 3 � on CH " . Since
the angular diameter of the cap � ����� is at most ��� � , the
circumradius of � is less than dneofg��hgi�� l-" ��I �,< � MX�OL � .
Assume that � is an endpoint of the shortest edge of � . By
(i), the shortest edge length of � is at least J � K � � � . Using
the Lipschitz condition, we get K � � �_k K �OL � U S � U L S`k
K �?L � U �o<5� MX�?L � k � @ U �o< � �,K �?L � . Thus, the shortest
edge length of � is at least J � @ U �,< � �,K �OL � . It follows
that D � � � : �o< � � J � @ U �o< � � .

Case 2: There exists consecutive protecting spheres
l	" and l	$ such that � Y � 3 L Q for some helper arc
�� 3 on l	" � l	$ . The circumradius of � is less thand�e,fg��hgij� l	" ��I �o< � MX�OL � . Since L lies outside l�$ and Q
lies outside l " , L Q is longer than some edge of � (e.g.,�4L or � Q ). Thus, the shortest edge of � is incident to� or 3 . Since � and 3 lie on l " , case 1 shows that the
shortest edge length of � is at least J � @ U �o< � ��K �?L � . So
D � � � : �,< � � J � @ U �,< �]� .

11 Conclusion

The constants may be improvable using a more refined
analysis. We also plan an experimental study of the algo-
rithm. We will look into the possibility of incorporating
weighted Delaunay refinement [2] into our algorithm to
eliminate slivers and guarantee bounded aspect ratio in
the presence of small angles.
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12 Appendix

12.1 Proof of Lemma 2

We first prove Lemma 2(i) as a separate claim.

CLAIM 6 Let � � be an edge of � . l ( � and l � 

are orthogonal to l ( and l � respectively. The two
ratio dneofg��hgi�� l (�� � � MX� � � � and d�e,fg��hgij� l���
 � � MX� � ( � lie
in ��� ! < 6 � � <4C , where � � Y �
��� � � � � � and � ! Y
�	��

� � � �
� 6 i]��
 9 � .

Proof. l (�� and l	��
 are orthogonal to l ( and l	� re-
spectively by construction. Let a be the ball centered
at � � with radius MN� � � � . Let c be an element of �
such that � � ��Wc and c touches a . Let � be the mini-
mum distance between � and c . By triangle inequality,
� I S � U � � S R MN� � � � which is at most � � S � U � � S
as MN� ��� �VI S � U ��� S . By the definition of

S � U �!� S ,
we get � I �,< i������ <�
 (( � � � MX� � � . Since �,< : ���Bij� <�
 (( � � ,
� : MN� � � which implies that � � c . So either c Y � or
c is an edge/facet incident to � .

We claim that
S � U �!� S � i ��
 9 (( � I MX� � � � I S � U ��� S .

If c Y � , then MN� ��� � Y=S � U ��� S and our claim is true.
Otherwise, let � be the angle between � � and c . Since
�����`F�� k 9

(( � and MN� ��� �2Y S � U ��� S � i ��
 � , our claim
is true. Let � Y dne,f
� h
i�� l (�� � � MX� � � � . It follows that

�T��� i ��
'� <�
 (( � � 6 i ��
'� <�

(( � �i ��
 9 (( � C�
 � < i ��
 
 (( � 6G<�


(( �i ��
 9 (( � C��
Clearly, i ��
 
 (( � Y �%��
g��i]��
'� ����� �56 i ��
 9 (( � � k
�%� 

� � �
��� 6 i ��
 9 � . If

9 (( � I ����� , then
<�
 (( � � i ��
 9 (( � Y < 9

(( � � i]� 
 9 (( � which is maxi-
mized when

9 (( � Y ��� � . If
9 (( � F ��� � , then

<�
 (( � � i ��
 9 (( � : �4< � � � i]��
'� ����� � � Y �
�4< � � � � � � .
Next, we show that when Split �?L 6 Q � is called, there is

always a gap between l�" and l	$ .

CLAIM 7 Let � Y @
� >���� . Whenever

���!�.��� �OL 6 Q � is
called, the spheres centered at L and Q with radii �5�d�e,fg��hgij� l " � and � � dneofg��hgi�� l $ � do not intersect.

Proof. Given a sphere l , let l denote the sphere with
the same center as l and radius �+� d�e,fg��hgij� l � . Let � �
be an edge of � . We first show that l (�� � l	��
 Y �

.
Since 
 (( � I ��� � and MX� � ��I S � U � S , it follows from
definition that

S � U ��� S : �o< � MX� � � I �,< � S � U � S andd�e,fg��hgij� l (�� � I � < ��� � � � S � U � � S : � ���4<
!
� � � � S � U � S .

So
S � U ��� S8R d�e,fg��hgij� l (�� � : � �o< R �
�4<

!
� � � � S � U � S :S � U � S �
� , implying that l ( � does not reach the midpoint

of � � . The same holds for l � 
 . So l ( � � l � 
 Y �
.

Consider the creation of a protecting sphere l , in line 4
of Split �?L 6 Q � , assuming that l-" � l	$ Y �

. Observe that% lies outside l�" and l	$ . Since � � % 6 l	" �_Y ' ! and line
3 of Split is satisfied,

S L�U % S F 'TF*�,<+� MN� % � � (1)

Assume to the contrary that l-" intersects l , . Then <��MN� % � k S LVU % S � � U;dne,f
� h
i�� l	" � . Substituting this into
(1), we get

S L�U % S F � �
� � � � S L7U % S U � � d�e,fg��hgij� l " � ,
so S L`U % S : � � � � � � U � �]� � dne,f
� h
i�� l " � � (2)
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Let c be an element of � such that % �� c and
c touches the ball centered at % with radius MN� % � .
Let � be the minimum distance between L and
c . By triangle inequality, (1) and (2), we get
� I S L%U % S R MX� % � : � � @ R �,< � � � �,< � � � S L%U % S :
� � @ R �o< � � � < � � U � �]� � d�e,fg��hgij� l	" � . If L Y � � ,
then dne,fg��hgij� l " � I � � < � MN�?L � by Claim 6, oth-
erwise dneofg��hgi�� l " � Y < � MX�?L � . Since � � F @

,
� : � � � � � @2R �o< � � � � U � � � � MN�?L � . By our choices of � ,
� � and < , one can verify that � � � � @2R �,< � � � � U � � : @

.
However, since L 6 % � ��
��5� � � � and % �� c , we haveL �� c which implies � k MX�?L � , contradiction.

The gap between l " and l $ in Claim 7 implies that
when we create a protecting sphere l-, between l " and
l	$ , % cannot be too close to L and Q and l , cannot be
too small. This is the main idea behind the proof of
Lemma 2. The details are given below.

Proof of Lemma 2:

We prove the lemma for the constants � � Y � ! � � U@�� � � @gR � ! � � and � � Y � @ � � �n� � �	��
�� � �
��� 6 i ��
 9 � , where
� is the constant in Claim 7. Clearly, (i) is equivalent to
Claim 6.

Consider (ii). If
���!�.��� � � � 6 � (8� does not terminate,

Claim 7 implies that infinitely many non-intersecting
protecting spheres are created in line 4 of Split. This is
impossible as there is a constant � F > such that MX� % � k �

for any point %$� � � � ( . Lines 1, 2 and 7 of Split guaran-
tee that any two consecutive protecting spheres created
are orthogonal and hence overlapping. Thus, the spheres
in � cover �!� � ( . Take a sphere l	, � � U�� l (�� 6 l	��
 � .
By lines 3 and 4, d�e,fg��hgij� l�, � � MX� % �GI �,< . If l	, was
created in line 4, then dne,f
� h
i�� l-, � Y < � MX� % � , oth-
erwise dneofg��hgi�� l	, ��Y ' . So it suffices to prove that' k � � <�� MX� % � when l , was created in line 7. Claim 7
implies that % is at distance at least � � U @j� � dneofg��hgi�� l-" �
from l	" or at least � � U @�� � d�e,fg��hgij� l�$ � from l	$ , say the
former is true. Since l-" intersects l , ,

' k � � U @j� � dneofg��hgi�� l " � � (3)

It follows that
S L U % SPI ' R dne,f
� h
i�� l�" � I � ' � � � U @j� .

Using this and Lemma 1, we get

MX� % � I MX�OL �NRTS L$U % S7I MX�OL ��R � ' � � � U @j� � (4)

If L Y ��� , then d�e,fg��hgij� l " �Vk � ! < � MX�?L � by Claim 6,
otherwise dneofg��hgi�� l " �ZY < � MX�OL � . So (3) yields ' k
� ! < � � U @j� � MX�OL � . Substituting this into (4), we get MX� % � I

' � @)R � ! < � � � � � ! < � � U @j� � which is less than ' � � ���5< � .
Hence, ' k � � <+� MN� % � .

Consider (iii). Since l-" and l	$ are orthogonal,S LbU Q S F � e !���d�e,fg��hgij� l	" � 6 d�e,fg��hgij� l	$ � � k � � < ��Ze�!��5MN�?L �56 MX�OQ ��� by (i) and (ii). Suppose that L Y �
or � . Then Q Y � � or � ( respectively. It follows from
definition that d�e,fg��hgij� l $ �`Y < �ne,
�� <�
 (( � � � MX�?L � . Note
that ��e,
'� <�
 (( � �7k < i ��
 
 (( � k <�� �	��
g� � � �
� 6 i ��
 9 � Y
� � �,��< . So dne,f
� h
i�� l $ �`k � � �,�j< ! � MX�?L � . Using this and
the fact that d�e,fg��hgij� l $ � I � � < � MN�?Q � by Claim 6, we getMN�?Q � k �,�5<5� MX�OL � . Suppose that L � ��
8�5� � � � . Since l "
intersects l $ ,

S L2U Q S7I d�e,fg��hgij� l " ��R d�e,fg��hgij� l $ � which
is at most �,< � MX�?L ��R MX�OQ �]� . Using this and Lemma 1, we
get MX�OQ � k MX�OL � U S L U Q S k � @ U �o< � � MX�?L � U �,< � MX�?Q � ,
so MX�OQ � k �]� @ U �o< � � � @ R �,< �]� � MN�?L � . Observe that� @ U �,< � � � @2R �,< � FW< F �,�j< .

12.2 Proof of Lemma 3

We prove the lemma for the constants ��+ Y �,���,� � � � ,
��* Y �

!
� ��� � � � R � �,� � and � � Y �,����* .

Consider (i). Consider a hole on ' � l "
bounded by l " � l	, for some protecting
sphere l	, consecutive to l " . By Lemma 2(ii),�%� 

��d�e,fg��hgi5� l	" � 6 d�e,fg��hgij� l , ���`k � � < � �%� 
4� MX�?L �56 MX� % � � .
By Lemma 2(iii), MX� % � k � � < � MX�OL � which implies
that �	��

��dneofg��hgi�� l	" �56 dneofg��hgi5� l , � ��k � � � � <

! � MX�OL � .
Since l	" intersects l , at right angle, the radius of the
hole is at least �%� 

��d�e,fg��hgij� l�" �56 dneofg��hgi5� l , � � � � � k
� �,���,�j<

!
�
�
� � � MN�?L �2Y ��+ < ! � MN�?L � .

Consider(ii). Let ' � l�, be a ring adjacent to ' � l " .
We have

S L U % S;I d�e,fg��hgij� l " � R dneofg��hgi�� l	, � which
is at most �o< � MX�?L �_R �,< � MX� % � by Lemma 2(ii). By
Lemma 2(iii), MN�?L � k ����<+� MN� % � . It follows that

S L`U % S I � � � R �,< �,� � � �,� � � MN�?L � � (5)

Let � be the distance between L and the bisector plane of
l " and l	, . By orthogonality, � Y dneofg��hgi�� l " � ! � S L U % S .
Since dne,f
� h
i�� l " � k �,�5< � MX�?L � by Lemma 2(ii), � k
� �,�5< � MX�?L � � ! � S L U % S . By (5), we get � k � �

!
� �,��<

!
� � � R�o< �,� � � � MX�OL � which is larger than ��* <

! � MN�?L � .
(iii) follows from the facts that the distance between L

and c is at least MX�?L � and dne,f
� h
i�� l " � I �,<+� MX�OL � .
Consider (iv). Let � be the minimum distance be-

tween ' � l�" and ' � l	$ . If L and Q do not lie on the
same edge of � , then � k�S L U Q S UTdne,f
� h
i�� l�" � Ud�e,fg��hgij� l	$ �=k S L;U Q S U �,< � MX�OL �7R MX�?Q � � . SinceS L U Q S k �Ze�!g� MX�OL � 6 MN�?Q � � , we get � k � @ U H < � � S L UQ S7k � @ U H < � � MX�OL � . Observe that

@ U H < k < F � � < � .
If L and Q lie on the same edge of � , then ' � l "
and ' � l $ are separated by a ring ' � l-, adjacent
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to ' � l " . By (ii), the width of ' � l�, is at least
� * <

! � MX� % � . By Lemma 2(iii), MN� % � k � � < � MN�?L � . There-
fore, � k � � � * < � � MN�?L �2Y � � < � � MX�?L � .
12.3 Proof of Lemma 5

We give an overview of our proof strategy. Let � be a
point on or outside ' . Let a be the ball centered at � with
radius �K � � � . Let c and c m be two disjoint elements of �
intersected by a . We analyze the distance � between c
and c m . The difficult cases are when c and c m lie on
the same protecting sphere or two consecutive protecting
spheres, or when c lies on a protecting sphere and c m is
an adjacent flat facet. We proceed in three steps. First,
we consider some geodesic � from c to c m on ' and
show that 	�� 
��B���'� � � Y�� � � � . Second, we argue that	.�5
��0���'� � � is at least the distance between two disjoint
boundary elements of some curved facet. Third, we show
that this distance is at least a constant factor of the local
gap size. These three steps are described in the Claims 8–
10. Afterwards, we give the proof of Lemma 5.

CLAIM 8 Let
�

be a curved facet on ' � l " for some
protecting sphere l " . The minimum distance between
two disjoint boundary elements of

�
is at least � � < � � MX�OL �

for some constant � �
: � � .

Proof. We prove the claim for � �
Y �	��
g� � + i ��
 9 6 � � � � � .

Let � be the minimum distance between two disjoint
boundary elements of

�
. Since

�
has at least four

boundary edges, � is achieved by the minimum distance
between two disjoint boundary edges (including their
endpoints), say ^ and ^ m .

Case 1: ^ and ^ m lie on some facets c and c m of �
respectively. Note that L �Wc � c m . If c � c m Y ��L � ,L is a vertex of � . Since the angle between c and c m
is at least

9
, we get � k � i ��
'� 9 �
� � � dneofg��hgi�� l�" �bY

�,< i]� 
�� 9 �
� � � MX�OL ��k < i]� 
 9 � MX�?L � . If �,L � 
 c � c m ,
c � c m is an edge of � . Note that this edge passes
through hole(s) on ' � l " . So � k � � i ��
'� 9 �
� � where
� is the minimum radius of the hole(s). By Lemma 3(i),
� k ��+ <

! � MX�OL � , so � k ��+ <
! i ��
 9 � MX�OL � .

Case 2: ^ lies on a facet c of � and ^jm lies on the
boundary of a hole on ' � l�" . This case can happen only
when L is a vertex of � . (Otherwise, ' � l-" is a ring.
Since all curved facets on a ring are rectangular, case 2
is impossible.) We have ^ m � l	" � l , for a protecting
sphere l , consecutive to l�" . If % ��&c , by Lemma 3(iii)
and Lemma 2(iii), we get � k � @ U �,< � � MX� % � k ���5< � @ U�,< � � MX�OL � . If % � c , then L % � �4c which implies that c
intersects l " � l	, . Since l " � c is connected, it contains

only one edge in � � and that edge is ^ . Observe that the
adjacent edges of ^ in � � lie at the intersections between
l	" and protecting spheres consecutive to l-" . It follows
that one endpoint of ^ lies on l-" � l , . Since ^ and ^ m are
disjoint, they are separated by a curved edge on l#" � l ,
whose endpoints lie on two different facets of � incident
to L . By case 1, we get � k �	��
g� < i]��
 9 6 ��+]<

! i ��
 9 � �MN�?L � .
Case 3: ^ and ^ m lie on boundaries of holes on ' � l " .

If ^ and ^ m lie on the same hole boundary l-" � l	$ for a
protecting sphere l-$ consecutive to l�" , then ^ and ^ m are
separated by a curved edge on l-" � l	$ whose endpoints
lie on two different facets of � incident to L . By case 1,
we get � k �	��

� < i ��
 9 6 � + <

! i]��
 9 � � MN�?L � . If ^ and ^ m lie
on the boundaries of two holes l " � l $ and l " � l	, for
two protecting spheres l $ and l	, consecutive to l " , by
Lemma 3(iv) and Lemma 2(iii), we get � k � � < � � MN�?Q �_k
�,�&� � < � � MX�?L � .

Finally, observe that � � < � is at most the minimum of
< i ��
 9 , � + <

! i ��
 9 , � � < � @ U �o< � and � � � � < � .

CLAIM 9 Let � and 3 be two points on two orthogonal
spheres l and l m . Let � be the shortest geodesic between� and 3 on " f'� l �7l m � . Then

S � U 3 S k 	.�5
��B���'� � � � ��� � � .
Proof. Let L and Q be the centers of l and l m respec-
tively. Let " be the plane through 3 , L and Q . Let � "
and � $ be the circles " � l and " � l m respectively.

Case 1: � �W" . Consider the case where � and 3 lie
on the same side of L4Q . Let � be the intersection point
of � " and � $ on the same side of L4Q as � and 3 . The
length of � is at most the minimum tour length from � to
� on � " and from � to 3 on � $ which is at most � S �%U
� S_R S 3 U � Sj� ����� . Since � " and � $ intersect at right
angle by orthogonality, ��� �,3 in triangle � 3 � is at least
����� . So

�
� � S � U 3 S k S � U � S`R=S 3 U � S . This

implies that
S �%U 3 S k � � ���
� � � 	�� 
��B���'� � � . Consider

the case where � and 3 lie on opposite sides of L4Q . Let
� (resp. 	 ) be the intersection point of � " and � $ on
the same side of L4Q as � (resp. 3 ). Let 3 m be the point
on � $ hit by a ray from 3 perpendicular to L4Q . Since �
and 3 m lie on the same side of L4Q , the previous argument
shows that

�
� � S �VU 3 m S$k S �VU � S RTS 3 m U � S . SinceS 3 m U � S_Y S 3 U 	

S
and

S �$U 3 S7k S ��U 3 m S , we get

�
�&� S �$U 3 S k S �$U � S2R�S 3 U 	

S
� (6)

Next, we compare
S �%U 3 S with

S � U 	
S
. Without loss

of generality, assume that triangle � 3 � contains the mid-
point of �
	 . If ��� �,3 in � 3 � is at least ���
� , � 3 is the
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longest side of � 3 � and so
S � U 3 S k S � U 	 S �
� . If ��� �,3

in � 3 � is less than ���
� , then ��� L 3 in triangle � 3 L is at
least ���
� and so

S �7U 3 S k S �7U&L S . Since �4L is a radial
of � " , we get

S � U 	
S �
� I S ��UGL S I S �$U 3 S . In all,S �$U 3 S k S � U 	

S �
� � (7)

The length of � is at most the minimum tour length from� to � on � " , from � to 	 on l � l m and from 	 to 3 on � $ .
Thus, 	.�5
��B���'� � � I � S � U � SgR S � U 	 SgR S 3 U 	 S�� ����� . By
(6) and (7), we get 	.�5
��0���'� � � I � @2R @ � � � � � � S ��U 3 S .

Case 2: � �� " . Let � m be the point on � " closest to � .
Let � be the distance from � to " . Note that � I\S � U 3 S .
The length of � is at most the minimum tour length from� to � m on l and from � m to 3 on " f'� l � l m � . The tour
length from � to � m is at most � � ��� I � ����� � � S �VU 3 S .
By case 1, the tour length from � m to 3 is at most� @ R @ � � � � ��� S � m U 3 S . Using triangle inequality, we
get

S � m U 3 S I S ��U	� m S'R�S �`U 3 S I � ��� R�S �7U 3 S I� � � R @�� � S �%U 3 S . Hence, 	.�5
��B���'� � ��I � ���
� � � S � U
3 S2R � � � � RT@�� ! ��� � � � � S �$U 3 S : � � � S �$U 3 S .
CLAIM 10 Let c be an element of � on ' � l " for some
protecting sphere l " . Let c m be an element of � disjoint
from c such that either c m � ' or c m is a flat facet. The
minimum distance between c and c`m is at least � � < � �MX�OL � for some constant � �

: � � .
Proof. We prove the lemma for � �

Y �,���
!
� �
� �
� � � ��� � � .

Let � be the minimum distance between c and c m .
Case 1: c m � ' . Let c m � l	$ for some protecting

sphere l $ ( Q may be L ). If l " �Y l $ and l " and l $ are
not consecutive, then by Lemma 3(iv), � k � � < � � MX�OL �
which is larger than � � <�� � MX�OL � . Otherwise, l " Y l $ or
l " and l $ are orthogonal. Let � be the shortest geodesic
between c and c m on " f�� l " �bl $ � . For each hole on
' � � l " �Zl $ � crossed by � , we reroute around the hole
boundary using the shorter arc. This yields a curve �
between c and c m on ' � � l	" � l	$ � . If l	" Y l	$ , clearly
� k � �
��� � � 	�� 
��B���'� � � , otherwise � k 	�� 
��B���'� � � � ��� � �
by Claim 9. Observe that 	.�5
 �B����� � � I � ���
� � � 	.�5
 �B����� � � .
So we get

� k � ��� ��� �
! � � � 	.�5
��B���'� � � � (8)

Case 1.1: � intersects two disjoint boundary elements
of some curved facet

�
on ' � � l�" � l	$ � . By Claim 8,	.�5
��0���'� � �_k � � < � � �	��
�� MX�?L �56 MX�OQ � � . Since MX�?Q �_k � � < �MX�OL � by Lemma 2(iii), 	.�5
��0���'� � �_k ��� � � < + � MX�OL � . Sub-

stituting into (8), we get � k � � ���&� � < + � � � �
! �]� � MX�OL � F

� � <�� � MX�OL � .

Caes 1.2: every pair of curved edges that � intersects
consecutively are adjacent. Let ^ and ^ m be any such ad-
jacent pair of curved edges. Let � Y � � ^ and 3 Y � � ^ m .
We extend � by taking a detour on ^ from � to the closest
endpoint of ^ and back to � . We do the same on ^ m . This
yields a longer curve � . ( � is self-intersecting but this is
not a problem.) � passes through more than one vertex
of � on ' since c and c m are disjoint. It follows that
� passes through two vertices of some curved facet on
' � � l " � l $ � . Case 1.1 shows that

	�� 
��B���'� � � k � � � � � � < + � ��� �
! �]� � MX�OL � � (9)

It remains to bound 	.�5
��B���'� � � . Assume without loss of
generality that ^ and ^ m bound a curved facet on l-" . Let
� and � m be the supporting circles of ^ and ^ m respec-
tively. Since ^ and ^ m meet at right angle (Lemma 4),
� � � m consists of two diametral points of � or � m ,
say � m . Let a be the ball centered at � with radius� � � < � � � � � MN�?L � . If 3
�� a , then

S ��U 3 S F � � � < � � � � � MX�?L � .
The detour on ^ or ^ m has length at most ��� � dneofg��hgi5� l " � IH �4< � MN�?L � which is at most

� @ � ��� � � � < �
�]� � S �$U 3 S � (10)

If 3V��a , we show in the following that the detour on ^
or ^ m has length at most

� � �5� S �VU 3 S which is smaller
than (10). Let � be the common endpoint of ^ and ^ m . Let� and � m be the other endpoints of ^ and ^ m respectively.
Let � be the point on � m diametrally opposite to � . Note
that � � � m Y � � 6 � � . Let " be the plane containing � m .
Since the center of a � " lies on the line containing � � ,
a � " contains � or � . By Claim 8,

S � U � m S and
S 3 U � S

are at least � � < � � MX�OL � which implies that � 6 � m �� a . We
claim that � � a . Otherwise, � � a which implies
that the two arcs a � � and a � � m cross at � . Since
^ and ^ m cannot meet at � , we have � �\a or � m �\a ,
contradiction. By our claim that � � a , we get

S ��U � S I� � � < � � � � � MX�OL � and
S 3 U � S I � � � � < � ��� � � MX�OL � . Observe

that
S � U � S : S � U � m S and

S 3 U � S : S 3 U � S . So both
detours on ^ and ^ m pass through � . Since dne,f
� h
i�� l�" �_k
� � < � MN�?L � by Lemma 2(ii), L is further from � than � and
3 . Thus, ��� � 3PF ����� and so � e !g� S �7U � SB6jS 3 U � So� I� � � S �ZU 3 S . It follows that the detour on ^ or ^ m has
length at most

�
� �+� S ��U 3 S .

By (10), we conclude that 	.�5
 �B����� � � I
� � H ��� � � � < � � � � 	.�5
 �B����� � � . Substituting into (8) and (9),
we get � k � � � �

!
� <�� � � �
� � � �

� � � MX�OL � F)� � <�� � MX�OL � .
Case 2: c m is a flat facet. If l " � c m Y��

, L is disjoint
from the facet of � that contains c m , so Lemma 3(iii)
implies that � k � @ U �o< � � MX�OL � F � � <���� MX�OL � .
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Figure 5: The shaded region is c m . The two dashed line
segments delimit the two holes on ' � l#" passed through
by the boundary edges of c m incident to L . The bold
arc is the curved edge ' � l�" � c m . Note that � cannot
lie outside the right-angled triangle � 3 L . Otherwise, the
point � , which is above � , would lie outside ' � l " .

Otherwise, let � �&c and � � c m be the points such thatS �%U � SVY � . If � lies on a curved boundary edge ^ of
c m , then c � ^ Y �

as c � c m Y �
. So we can let c m Y ^

and apply case 1 to finish the analysis. If � lies on a
linear boundary edge ^ of c m , then c m lies inside ' and
so c m and ^ are incident to L . Then

S �%U � S is at least
the radius of the hole on ' � l " that ^ passes through.
By Lemma 3(i),

S �VU � SVk ��+ <
! � MN�?L � F � � < � � MX�OL � .

It remains to consider �;� ��
��5� c m � . Observe that � is
the orthogonal projection of � onto c m which implies
that c m lies inside ' and c m is incident to L . Since
the subset of c m inside l�" is a cone with apex L (the
angle of the cone may be greater than � ), the ray
from L through � reaches a point 3=� l " � c m . If
3;� ' � l " � c m , we keep it. Otherwise, 3 lies on a
hole on ' � l " and we move 3 along l " � c m until
3 reaches ' � l " � c m . Figure 5 shows the situation.
Observe that in either case ��� 3 � k ����� . It follows
that

S �VU 3 SVI � � � S � U � S . Since c � c m Y �
, c is

disjoint from the curved edge ' � l " � c m that contains
3 . By Case 1,

S � U 3 STk � �,�&�
!
� <�� � � ��� � � �

� � � MX�OL � .
Hence,

S � U � S k � �,���
!
� <�� � � ��� �

�
��� � � � � MN�?L � Y

� � <�� � MX�OL � .

Proof of Lemma 5

We show that �K � � � k � � E <�� � MX� � � where � � E Y � � � � � �
@,R

�,< � R � � <�� � . The lemma thus follows by setting
� Y

� � � � which is smaller than � � E . Recall that � lies on or
outside ' . Let a be the ball centered at � with radius
�K � � � . If a � ' Y �

, then a intersects two flat facets of� outside ' . Since � lies on or outside ' , at most one
facet of � contains � . It follows that d�e,fg��hgij� a � k MX� � � .
Consider the case where a � ' �Y �

. Assume to the

contrary that d�e,fg��hgij� a � : � � E�< � � MX� � � . We need two
facts.

FACT 1 Let � and 3 be two points. If � does not lie on
any edge of � , then MX� � � I MX� 3 �NRTS �$U 3 S .
Proof. Let � be the ball centered at � with radiusMN� 3 ��R S � U 3 S . So � intersects the two elements of �
that defines MX� 3 � . Since � does not lie on any edge of
� (including edge endpoints), at most one facet of �
contains � . Thus, at most one of the elements of � that
intersect � contains � , so MX� � � I d�e,fg��hgi,� � � . ��

FACT 2 If a intersects a protecting sphere l " , thend�e,fg��hgij� a � : � � � <�� ���
� � MX�?L � .

Proof. By Fact 1, MN� � �%I MN�?L �)R S � U\L S . Since a
intersects l " , we get MX� � � I MX�?L �`R d�e,fg��hgij� l " �`Rd�e,fg��hgij� a � : � @`R �,< � � MN�?L � R � � E�<�� � MX� � � . Thus,MN� � � : � � @ R �o< � � � @ U � � E <�� �]� � MN�?L � which implies
that d�e,fg��hgij� a � : � � � E � @_R �,< � <�� � � @ U � � E <�� �]� � MX�OL � .
One can verify that � � E � @,R �,< � � � @ U � � E <�� �pY � � �
� .

��

Take two disjoint elements c and c m of � intersected
by a . For any protecting sphere l " intersected by a , by
Lemma 3(i), the distances between � and the linear edges
incident to L are at least � + <

! � MX�OL � F � � � <�� ���
� � MX�OL � .

So neither c nor c m is a linear edge or an endpoint of a
linear edge.

If both c and c m are flat facets, since they are disjoint,
they lie on different facets of � . Since at most one facet
of � can contain � , we have MX� � �PI dneofg��hgi�� a � , contra-
dicting the assumption that dneofg��hgi�� a � : � � E�<�� � MX� � � .
Without loss of generality, it remains to consider c �
' � l " for some protecting sphere l " . By Claim 10,
the minimum distance between c and c m is at least
� � <�� � MX�?L � which is larger than � � d�e,fg��hgij� a � by Fact
2. Thus, a cannot intersect both c and c m , contradic-
tion.
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