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Abstract

We consider the problem of unfolding lattice polygons
embedded on the surface of some classes of lattice
polyhedra. We show that an unknotted lattice poly-
gon embedded on a lattice orthotube or orthotree can
be convexified in O(n) moves and time, and a lat-
tice polygon embedded on a lattice Tower of Hanoi or
Manhattan Tower can be convexified in O(n2) moves
and time.

1 Introduction

Graph reconfiguration problems have wide applica-
tions in contexts including robotics, molecular con-
formation, animation, wire bending, rigidity and knot
theory. The motivation for reconfiguration problems
of lattice graphs arises in applications in molecular bi-
ology and robotics. For instance, the bonding-lengths
in molecules are often similar [8, 13, 14], as are the
segments of some types of robot arms.

A unit tree (resp. unit polygon) is a tree (resp. poly-
gon) containing only edges of unit length. An orthog-
onal tree (resp. orthogonal polygon) is a tree (resp.
polygon) containing only edges parallel to coordinate-
axes. A lattice tree (resp. lattice polygon) is a tree
(resp. polygon) containing only edges from a square
or cubic lattice. Note that a lattice tree or polygon is
basically a unit orthogonal tree or polygon. A lattice
polyhedron is a polyhedron whose surface is the union
of lattice faces from a cubic lattice. A graph is simple
if non-adjacent edges do not intersect. We consider
the problem about the reconfiguration of a simple
chain, polygon, or tree through a series of continuous
motions such that the lengths of all graph edges are
preserved and no edge crossings are allowed. A tree
can be straightened if all its edges can be aligned along
a common straight line such that each edge points
“away” from a designated root node. In particular, a
chain can be straightened if it can be stretched out to
lie on a straight line. A polygon can be convexfied if
it can be reconfigured to a convex polygon. We say
a chain or tree is locked if it cannot be straightened.
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We say a polygon is locked if it cannot be convexified.
We consider one move in the reconfiguration as a con-
tinuous monotonic change for the joint angle at some
vertex, or a continuous axial rotation of one of its an-
gle side around its another angle side in 3D, during
which no edge crossings occur.

In four dimensions or higher, a polygonal tree can
always be straightened, and a polygon can always be
convexified [9]. In two dimensions, a polygonal chain
can always be straightened and a polygon can always
be convexified [11, 17, 6]. However, there are some
trees in two dimensions that can lock [3, 10, 15]. In
three dimensions, even a 5-chain can lock [4]. Alt et
al. [2] showed that deciding the reconfigurability for
trees in two dimensions and for chains in three dimen-
sions is PSPACE-complete. However the problem of
deciding straightenability for trees in two dimensions
and for chains in three dimensions remains open. Due
to the complexity of the problems in two and three di-
mensions, some special classes of trees and polygons
have been considered. Cantarella and Johnston [7]
showed that a unit 5-chain in three dimensions can
always be straightened. Demaine et al. [12] even stud-
ied interlocked configurations of several short chains
in three dimensions. In particular, they showed that
two 3-chains cannot interlock, but three of them can.
They also showed that a 3-chain and a 4-chain can in-
terlock. Poon [15] showed that a unit tree of diameter
4 in two dimensions can always be straightened. In
their paper, they posed a challenging open question
whether a unit tree in either two or three dimensions
can always be straightened.

Biedl et al. [4] proved that an open chain on the
surface of a convex polyhedron can always be straight-
ened. In this paper, we show that an unknotted lattice
polygon embedded on a lattice orthotube, orthotree,
Tower of Hanoi, and Manhattan Tower can always be
convexified.

2 Preliminaries

A near-lattice edge is a unit-length edge within dis-
tance ε � 1 from some lattice edge. The particular
lattice edge is called the core edge of the correspond-
ing near-lattice edge. A core vertex is a lattice vertex
of some core edge. A near-lattice tree (resp. near-
lattice polygon) is a tree (resp. polygon) that contains
only near-lattice edges. Suppose P is a near-lattice
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tree or polygon. The core of P , denoted by K(P ), is
the union of core edges for all edges in P . A spring
in P is the set of edges in P converging to a common
lattice edge. A spring with only one edge is called a
singleton. A near-lattice edge or spring is called em-
bedded or lying on a lattice polyhedron if its core is
embedded on the lattice polyhedron.

3 Lattice Orthotube

A lattice orthotube is a lattice polyhedron made out
of boxes that are glued face-to-face such that its face-
to-face contact graph is a path or cycle. A lattice or-
thotube is called open if its face-to-face contact graph
is a path; otherwise it is called closed. In an open lat-
tice orthotube, the two blocks whose degrees in the
face-to-face contact graph are one are called the end
blocks of the given orthotube. An end face of an open
orthotube is a face of its end block such that it is op-
posite to the face which is the intersection of the end
block and the second last end block.

Remark that there are some orthogonal polygons
embedded on some orthogonal polyhedra that can
lock as shown in Figure 1(a), and there are some lat-
tice polygons embedded on some closed lattice ortho-
tubes can knot as shown in Figure 1(b). This moti-

(a) (b)

Figure 1: (a) A 3D locked orthogonal polygon. (b) A
3D knotted lattice polygon.

vates that we consider the lattice polygons embedded
on open lattice orthotubes, and the unknotted lattice
polygons embedded on closed lattice orthotubes.

3.1 Open Lattice Orthotube

In this subsection, we will show that lattice polygons
embedded on open lattice orthotubes can always be
convexified.

Consider a near-lattice polygon embedded on open
lattice orthotube. The end block of the orthotube
is called free if its end face does not contain any edge
from the core of the given embedded near-lattice poly-
gon. It is clear that the free end blocks of an open or-
thotube do not help in our unfolding process and can
be truncated away. We thus assume the end block
of any orthotube mentioned below is not free. Our
algorithm proceeds by folding up the polygon from
the non-free end blocks of the orthotube successively.
Suppose we are given a near-lattice polygon embed-
ded on a lattice orthotube at the beginning of each

folding step. We fold up the part of the given near-
lattice polygon lying on the end block onto the springs
of the second last end block using constant number of
moves. After one folding step, again we obtain back a
near-lattice polygon. We repeat this step until the re-
mained orthotube contains only one lattice cell. Now
it is clear that the near-lattice polygon embedded on
one lattice cell can be unfolded to a convex polygon
straightforwardly. We first need the following lemma
on how to perform a folding step. Then we summarize
our result in Theorem 2.

Lemma 1 Given a near-lattice polygon P embedded
on an open lattice orthotube Q such that both end
blocks of Q are not free, and Q contains more than
one lattice cells. Then the part of P lying on an end
block of Q can be folded onto some springs on the
second last end block so that the current end block
becomes free.

Proof. Suppose the end face of the orthotube Q is
facing to the right. We divide into three cases de-
pending on how many core edges of P lie on the end
face.

Case 1: The end face contains one core edge. Then
the end block can be folded up as shown in Figure 2.

Figure 2: Case 1 of folding up an end block.

Case 2: The end face contains two core edges. Then
for the two subcases in Figure 3(a) or (b), the end
block can be transformed into Case 1 as shown in
the figures; for the subcase in Figure 3(c), it can be
treated as two occurrences of Case 1. Consequently,
the resulting end block can be folded up by applying
once or twice the operation of Case 1.

(a) (b) (c)

Figure 3: Case 2 of folding up an end block.

Case 3: The end face contains three core edges.
Then the end block can be transformed into Case 1
as shown in Figure 4.

Note that for any of the operations above, only the
joint angles at the end vertices of the end edges of a
constant number of related springs are changed. Thus
folding up the end block takes a constant number of
moves and time. �
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Figure 4: Case 3 of folding up an end block.

Theorem 2 A lattice polygon embedded on an open
lattice orthotube can be convexified in O(n) moves
and time.

3.2 Closed Lattice Orthotube

Given an unknotted lattice polygon embedded on a
closed lattice orthotube. First it is clear that at any
cross section, the intersection of the given lattice poly-
gon and the cross-section cutting plane contains either
zero, two or four corner vertices. If there is a point
on lattice orthotube where the cross section does not
intersect the given lattice polygon, then after cutting
the closed orthotube open, we can use the algorithm
for open lattice orthotube to unfold the polygon. Oth-
erwise there is no such point where the cross section
does not intersect the given lattice polygon. Then it
is clear that there must exist some cross section at
some lattice points where all the four corner vertices
lie in the intersection of the given polygon and the
current cross-section cutting plane, and the structure
of its neighborhood on the polygon is in one of the
cases in Figure 5.

(a) (b) (c)

Figure 5: Cases for folding a closed lattice orthocube.

For case (a) in the figure, the closed orthocube can
still be cut along the cross section to obtain an open
lattice orthocube. In both cases (b) and (c), by succes-
sively applying the folding operation of Case 1 to fold
the end block of an open lattice orthocube, we can
transform them to case (a) by eliminating the long
U-turns. Therefore, we have the following theorem.

Theorem 3 An unknotted lattice polygon embedded
on a closed lattice orthotube can be convexified in
O(n) moves and time.

4 Lattice Orthotree

A lattice orthotree is a lattice polyhedron made out
of boxes that are glued face-to-face such that its face-
to-face contact graph is a tree. In a lattice orthotree,
those blocks whose degrees in the face-to-face contact
graph are one are called the end blocks of the given

orthotree. To convexify a lattice polygon embedded
on a lattice orthotree, the algorithm runs in the same
fashion as that for an open lattice orthotube. We fold
up the polygon from the end blocks successively.

Theorem 4 A lattice polygon embedded on a lattice
orthotree can be convexified in O(n) moves and time.

5 Lattice Towers

Let Zk be the plane z = k for k ≥ 0. A Manhattan
Tower Q is an orthogonal polyhedron such that

1. Q lies in the halfspace z ≥ 0 and its intersection
with Z0 is a simply connected orthogonal poly-
gon;

2. For j > k ≥ 0, Q∩Zj ⊂ Q∩Zk: the cross section
at a higher level is nested in that at a lower level.

A Tower of Hanoi Q is a Manhattan Tower such that
its intersection with Zk for k ≥ 0 is either empty or a
simply connected orthogonal polygon.

5.1 Lattice Tower of Hanoi

Given a lattice polygon embedded on a lattice Tower
of Hanoi. The overall intuition of the unfolding algo-
rithm is to press level by level vertically downwards
from the highest level. Let’s first consider the detail
for pressing the highest level L down to the second
highest level L′ under the condition that L′ is not
the lowest level. Notice that between L and L′, there
are vertically lattice polygon edges connecting them,
which we call legs. And we also call the end vertex of
the leg at L′ the foot of the leg. To press level L to
level L′, we press the maximal polygon path on level
L one by one onto the level L′. More precisely, each
maximal polygon path α on level L has two legs con-
necting to level L′. We will collapse one leg and pull
one edge of α towards one of the collapsed leg. On
the other end, the other leg is pulled to replace the
position of one end edge of α, and the end edge of α
is pulled to replace the position second last end edge
of α, and so on so forth. See the operation (a) in Fig-
ure 6. Remark that at the end of the pressing step, we

(a) (b)

L
L′

Figure 6: Pressing a path from level L down to L′.

don’t really press α down to the level L′; but we keep a
level higher but very close the level L′ to prevent edge
crossing with polygon edges in level L′. Later on, this
treatment also gives us some convenience to recog-
nize which springs are “inside” and which springs are
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“outside” for those springs with the same core edges.
We then have the convention that the highest spring
is the “most inside”. After the pressing step, if the
core edge of some spring has degree one at its one end,
we need to collapse those dangling springs. See the
operation (b) in Figure 6. It is clear that this pressing
step takes at most O(n) moves and time. Notice that
each time we press a path down to one level lower,
two vertical legs are collapsed. There can be at most
O(n) vertical legs. All the pressing operations take
O(n2) moves and time.

After all the pressing steps, we obtain near-lattice
polyhedron of height one. At this stage, using a gen-
eralized end-block collapsing similar to what we did
for orthotubes and orthotrees, we can fold up the
current near-lattice polygon to become a near-lattice
unit square, which can then be convexified straightfor-
wardly. This end-block collapsing process can be re-
alized such that it takes O(n2) moves and time. How-
ever, its detail is eliminated in this abstract. Hence,
we have the following theorem.

Theorem 5 A lattice polygon embedded on a lattice
Tower of Hanoi can be convexified in O(n2) moves and
time.

5.2 Lattice Manhattan Tower

Given a lattice polygon embedded on a lattice Man-
hattan Tower. The algorithm is the same as that for
lattice Tower of Hanoi. The only difference is that
when we press the highest level L to the second high-
est level L′, we need to press several separate orthog-
onal polygonal regions on L instead of only one for
lattice Tower of Hanoi. Thus we have the following
theorem.

Theorem 6 A lattice polygon embedded on a lattice
Manhattan Tower can be convexified in O(n2) moves
and time.

6 Open Problems

We conjecture that a lattice polygon embedded on a
general lattice polyhedron can always be convexified.
The conjecture [16] that any unknotted lattice poly-
gon in 3D can always be convexified is still open.
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