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Abstract

We consider whether or not protein chains in the HP
model have unique or few optimal foldings. We solve
the conjecture proposed by Aichholzer et al. that the
open chain L2k−1 = (HP )k(PH)k−1 for k ≥ 3 has ex-
actly two optimal foldings on the square lattice. We
show that some closed and open chains have unique
optimal foldings on the hexagonal and triangular lat-
tices, respectively.

1 Introduction

Protein folding is a central and long-standing prob-
lem in molecular and computational biology. Due to
the complexity of the problem, a variety of simplified
models have been proposed to simulate how real pro-
teins fold. In the Hydrophobic-Polar (HP) model, the
amino acids in proteins are grouped into two types:
hydrophobic (H) monomers and hydrophilic or polar
(P ) monomers. H monomers tend to attract each
other while P monomers are neutral. Proteins are
modeled as chains of H and P nodes, or equivalently,
strings from {H,P}+. The chains are embedded in
some lattice in two or three dimensions such that
monomers which are adjacent in the given chain must
be placed at adjacent points in the lattice. Two non-
adjacent nodes on the chain are in contact if they oc-
cupy a pair of neighboring lattice points. An optimal
folding of a chain is an embedding in the lattice which
maximizes the number of HH contacts.

Much research has been done on the HP model. In
particular, Berger and Lieghton [2] showed the NP-
completeness of finding the optimal folding on the
cubic lattice in 3D, and Crescenzi et al. [3] proved
the NP-completeness on the square lattice in 2D.
Constant-factor approximation algorithms were also
developed for various lattices in both 2D and 3D. We
consider the question of whether or not chains in HP
model have unique or few optimal foldings. The prob-
lem is related to the folding stability of protein chains,
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and was first suggested by Hayes [4]. Aichholzer et
al. [1] exhibited families of closed and open chains in
the square lattice, each of which has a unique optimal
folding. In this paper, we obtain several results for
the square, hexagonal and triangular lattices in two
dimensions.

2 Open Chain in Square Lattice

Consider the open chain L2k−1 = (HP )k(PH)k−1. In
this section, we solve a conjecture proposed by Aich-
holzer et al. [1] by showing the theorem below.

Theorem 1 The open chain L2k−1 for k ≥ 3 has
exactly two optimal foldings on the square lattice.

First, we need the theorem from [1] about unique
optimal folding of the closed chain as stated below.
See Figure 1 for examples. Note that, in our figures,
we use small circles to denote H nodes and small black
disks to denote P nodes; we use solid segments to
denote chain edges and dashed ones to denote HH
contacts.

Theorem 2 [1] The closed chain Sk =
P (HP )dk/2eP (HP )bk/2c for k ≥ 1 has a unique
optimal folding on the square lattice.

Figure 1: Optimal foldings of S6 and S7.

Aichholzer et al. [1] show that Fact 18 to Lemma 29
in their paper hold for the open chain L2k =
(HP )k(PH)k for k ≥ 1. We can verify that these
properties are also true for L2k−1. However, for the
later lemmas and theorems in their paper, adjust-
ments need to be made to be suitable for the chain
L2k−1. The two lemmas below simulate Lemmas
30 and 31 in [1], and their proofs can be adapted
with slight modifications. A straight node is a node
collinear with both its preceding and following nodes
on the chain. A solitary straight H node v is a straight
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H node on the bounding box B of the chain such that
both its preceding and following H nodes are not on
the same side of B as v.

Lemma 3 In an optimal folding of L2k−1, there are
either one or two solitary straight H nodes on its
bounding box B. In particular, if there are exactly
two solitary straight H nodes on B, then (see Fig-
ure 2(a))

(i) They lie on opposite sides of B.

(ii) One of them is adjacent to the PP edge, and the
other is adjacent to an end edge uv and in contact
with an endpoint.

(iii) The PP edge and the end edge uv lie on opposite
sides of B.

BB

(a) (b)

Figure 2: Optimal foldings: (a) when there are two
solitary straight H nodes; (b) when there are only one.

Lemma 4 In an optimal folding of L2k−1, if there is
exactly one solitary straight H node on its bounding
box B, then (see Figure 2(b))

(i) The solitary H node is adjacent to the PP edge.

(ii) The solitary H node and the contact of the two
endpoints of the chain lie on opposite sides of B.

(iii) The PP edge and an end edge of the chain lie on
opposite sides of B.

BB

(a) (b)

Figure 3: Modify cases (a) and (b) in Figure 2 to
closed chains S2k−2 and S2k−1 respectively.

Now we are ready to prove our main theorem.

Proof of Theorem 1. Case (a): If there are exactly
two solitary H nodes, by Lemma 3 we can modify
the optimal folding of L2k−1 to an optimal folding of
S2k−2 by adding a chain edge between the contact of
the two end nodes and replacing the end H node on
the chain bounding box to a P node. See Figure 3 (a).
Thus in this case, the number of optimal folding(s)
of L2k−1 is equal to that of S2k−2, which is one by
Theorem 2.

Case (b): If there is exactly one solitary H node,
by Lemma 4 we can modify the optimal folding of
L2k−1 to an optimal folding of S2k−1 by connecting
the two end H nodes by a short chain HPPH. See
Figure 3 (b). Thus in this case, the number of optimal
folding(s) of L2k−1 is equal to that of S2k−1, which is
one by Theorem 2. �

3 Hexagonal Lattice

3.1 Closed chain

Consider the closed chain Hk =
(HP )kPPP (HP )kPPP for k ≥ 1. We call the
two subchains PPPP the two ends of Hk. In the
above expression of Hk, we denote the ith H node
by Hi for 1 ≤ i ≤ 2k. We consider the folding Fk,
in which each Hi for 1 ≤ i ≤ k is in contact with
H2k−i+1. See Figure 4 for an example of folding Fk.
We call a contact between an H node and a non-H
node a missing contact.

Figure 4: Folding F3 for H3.

As in folding Fk, all H nodes are in contact with
other H nodes. As there is no missing contact in
Fk, there is also none in the optimal folding. Now
suppose each Hi for 1 ≤ i ≤ k is in contact with
Hci

in the optimal folding. Due to the parity of the
positions of H nodes, we have ci > k. We claim that
ci decreases as i increases in the lemma below. After
we have the claim, our theorem is immediate.

Lemma 5 Suppose each Hi for 1 ≤ i ≤ k is in con-
tact with Hci in the optimal folding. Then ci de-
creases as i increases.

Proof. Suppose to the contrary that there exist
i, i′(i < i′) such that ci < ci′ . Note that Hi (resp.
Hi′) is in contact with Hci

(resp. Hci′ ). Denote the
subchain from Hi to Hi′ (resp. from Hci to Hci′ ) not
containing any end of Hk by C1 (resp. C2). Denote
the subchain from Hi to Hci′ containing one end of
Hk by E1. And also denote the subchain from Hi′ to
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Hci containing another end of Hk by E2. See Figure 5
for illustration.

Hi′Hi

Hci′
Hci

C1

E1
E2E2

C2

Figure 5: Illustration for the proof of Lemma 5.

Note that there are no chain edges or contacts that
can intersect the contact Hi′Hci′ . Consider the cycle
D = C∪E1∪Hi′Hci′ . As Hi is in contact with Hci

, it
is not hard to see that Hci

must be in the interior of
cycle D. Also it is clear that E2 lies in the exterior of
cycle D. As E2 connects Hi′ and Hci , E2 must inter-
sect the contact Hi′Hci′ . This is a contradiction. �

Theorem 6 The closed chain Hk for k ≥ 1 has the
unique optimal folding Fk on the hexagonal lattice.

Proof. By Lemma 5, ci decreases as i increases from
1 to k in any optimal folding. As all ci are different
and ci ∈ {k + 1, . . . , 2k}, ci must be 2k − i + 1. Thus
Fk is the unique optimal folding. �

3.2 Open chain

Consider the open chain H′
k = P (HP )kPPP (HP )k

for k ≥ 1. In the above expression, we denote the ith
H node by Hi for 1 ≤ i ≤ 2k. We consider the folding
F ′

k, in which each Hi for 1 ≤ i ≤ k is in contact with
H2k−i+1. Notice that F ′

k simulates Fk. See Figure 6
for an example of F ′

k.

Figure 6: Folding F ′
3 for H′

3.

The uniqueness of the optimal folding forH′
k can be

shown by following the similar proof skeleton as The-
orem 6, but with slightly more involved arguments.

Theorem 7 The open chain H′
k for k ≥ 1 has the

unique optimal folding F ′
k on the hexagonal lattice.

4 Triangular Lattice

4.1 Closed chain

Consider the closed chain Tk = (HP )k. We consider
its folding Gk defined as shown in Figure 7.

In this section, we show the following uniqueness
theorem. Note that the theorem is not true for k = 6.

G7 G8

Figure 7: Foldings G7 & G8 for T7 & T8 respectively.

Theorem 8 The closed triangular chain Tk for k ≥ 2
and k 6= 6 has the unique optimal folding Gk on the
triangular lattice.

When k is small, we can show the uniqueness of
the optimal folding by enumerating the configurations
of the HH-contact graph with maximum number of
contacts.

Lemma 9 The chain Tk for 2 ≤ k ≤ 5 or k = 7 has
the unique optimal folding Gk. The chain T6 has two
optimal foldings including Gk as shown in Figure 8.

G6

Figure 8: Two optimal foldings of T6.

It remains to show the uniqueness of the optimal
folding of long chains as stated in the following main
lemma.

Lemma 10 The chain Tk for k ≥ 8 has the unique
optimal folding Gk.

As there are six missing contacts in Gk, we observe
that an optimal folding has at most six missing con-
tacts.

We call an H node fully-contacted if there is no
missing contact from it. The optimal folding of Tk for
k ≥ 8 contains at least two fully-contacted H nodes
due to the above observation. By careful examination
of the neighborhoods of the two H nodes, we can show
that there must be a pair of contacting H nodes that
are both fully-contacted and non-straight.

Lemma 11 An optimal folding of Tk for k ≥ 8 con-
tains two fully-contacted non-straight H nodes in con-
tact with each other.

Using the above lemma, we can divide the whole
chain at a pair of contacting H nodes into two “quite-
long” paths.

Lemma 12 An optimal folding of Tk for k ≥ 8 con-
tains two non-straight contacting H nodes such that
they divide Tk into two paths, each of which contains
at least two internal H nodes.

3



We define a U-line (resp. D-line) as a line of slope√
3 (resp. −

√
3). We define a canonical line of the

triangular lattice as a horizontal line, a U-line, or a
D-line. A canonical strip of a lattice edge e in the
triangular lattice is a strip between the two parallel
canonical lines, each of which passes through exactly
one endpoint of e. Note that each lattice edge has
exactly two canonical strips.

Lemma 13 Suppose C is a path along Tk connecting
a pair of contacting H nodes such that C contains ei-
ther a non-straight internal H node or two internal H
nodes. Then there are at least three missing contacts
from internal H nodes of C.

Proof. (Sketch) Suppose X is a canonical strip of the
contacting edge e between the pair of ending H nodes
such that the two end edges of C are separated by X.
Without loss of generality, we assume that X runs
horizontally, the contact edge e between the two end
H nodes of C lies on a U-line, and C crosses X to the
right of e in an odd number of times. See Figure 9 for
illustration. Let Ha,Hb be the upper and lower ends
of e respectively.

Ha

Hb
HL

2 HR
2

HL
1

HR
1

X

`2

`1e

Figure 9: Illustration for the proof of Lemma 13.

Sweep a D-line to the right until it reaches some
extremal H node of C. We call the D-line at cur-
rent position `1. Let HL

1 and HR
1 be the leftmost

and rightmost H nodes on `1 respectively. We de-
fine `2,H

L
2 ,HR

2 similarly by sweeping a horizontal line
downwards.

It is clear that the right-contact of HR
1 and the

bottom-right-contact of HR
2 are both missing. With

the given conditions, it is easy to show that HL
1 = Ha

and HL
2 = Hb cannot both be true. Without loss

of generality, we assume that the former is not true.
Then we have that the top-right-contact of HL

1 is also
missing. �

Now by an involved analysis, we can show that in
order for each of these two paths to contain exactly
three missing contacts, it must possess the pattern as
shown in Figure 10 (a) or (b). The details are omitted
in this abstract. With this property, it is immediate
to claim our main lemma, Lemma 10, and we finish
the proof of Theorem 8.

(a)

Ha

Hb

(b)

Ha

Hb

Figure 10: Patterns in an optimal folding.

4.2 Open chain

However, the open chain T ′
k = (HP )k−1H can have

several optimal foldings on the triangular lattice. In-
stead, we show the following theorem for the open
chain T ′′

k = (HP )k(PHP )2(PH)k for k ≥ 3 by using
the similar technique we use for the closed chain Tk,
but with a more involved analysis. See Figure 11 for
an example of the unique optimal folding.

Theorem 14 The open chain T ′′
k for k ≥ 3 has a

unique optimal folding on the triangular lattice.

Figure 11: The unique optimal folding of T ′′
3 .

5 Conclusion & Discussion

We solve a conjecture about an open chain in the
square lattice. We obtain unique optimal foldings for
chains in the hexagonal and triangular lattices, re-
spectively. All of our results are in two dimensions.
Is there any family of chains that have unique optimal
foldings on some lattice in three dimensions?
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