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Polyline Simpli�cation Using Quadric ErrorMetric with Bounded ErrorBYSheung-Hung PoonA Thesis Presented toThe Hong Kong University of Science and TechnologyIn Partial Ful�llmentof the Requirements forthe Degree of Master of Philosophyin Computer ScienceHong Kong, January 1999
AbstractWe study the problem of polygonal line simpli�cation. The objective is to seek a polygonalline of smaller size that approximates the original one well. We present an algorithm that isbased on edge contraction. An edge contraction merges two adjacent vertices into a new vertexand this new vertex will be made the new endpoint of the uncontracted edges incident to thetwo vertices merged. Thus, repeated applications naturally yield a simpli�cation algorithm.We implemented three algorithms QG, QGG, and QLG based on this approach. QGG and QGsupport each edge contraction in O(logm) time, where m is the size of the current polygonalline, whereas QLG supports each edge contraction in O(1) time. The selection of the edge tobe contracted is based on the quadric error produced, which was introduced by Garland andHeckbert in simplifying 3D polygonal surfaces. We use and improve their algorithm in 2D. Ifiv



the quadric error of each edge contracted is at most �2, we can guarantee that the directedHausdor� distance from the simpli�ed line to the original one is within �. We can supply anerror tolerance � to QG, QGG and QLG and let edges be contracted repeatedly until the currentminimum quadric error exceeds �2. On the other hand QGG and QG can also allow the userto directly and interactively reduce the number of edges in the simpli�ed line when deemednecessary. We have conducted some experiments to measure the approximation error of thesimpli�ed lines produced by our algorithms.
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Chapter 1
Introduction

The automation of mapmaking, initiated during 1950s, has become increasingly popular in the�eld of cartography. A major e�ort in automating the mapmaking process has been the de-velopment of methods for generalizing digital data. There are four signi�cant components ofautomatic generalization which include simpli�cation, smoothing, displacement, and enhance-ment.This thesis describes an edge contraction approach to do simpli�cation. The remaining threecomponents are brie
y described in the following. Detailed descriptions can be found in [4].Smoothing routines relocate or shift coordinate pairs in an attempt to smooth out small pertur-bations and capture only the signi�cant trends of the polygonal lines. Displacement routinesare concerned about shifting between polygonal lines to prevent coalescence or overlap at areduced scale. Finally, enhancement routines allow detail to be added to the already simpli�eddata set. Recently some geographers have become interested in applying the theory of fractalsfor the purpose of enhancement.We now turn to have an overview on the component of simpli�cation. Simpli�cation algorithmsare concerned about identifying and eliminating super
uous coordinates. They are performedby applying a variety of mathematical/statistical criteria, such as angular deviation or distancebetween points/segments. We will summarize most of the existing simpli�cation algorithms inChapter 2.
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1.1 Thesis objectives and motivationIn this thesis, we use edge contraction based on quadric error to do the simpli�cation. Theapproach was originally designed for 3-dimensional surface simpli�cation by Garland and Heck-bert [1]. We found that their results preserved many important features of the original surfaceeven though the percentage of faces reduced was up to 80 or 90. We suspect that there is away to quantify the approximation error. Since a 3-dimensional surface can be very complex,we turn to 2-dimension, and succeed in improving the edge contraction approach and prove anapproximation error bound.1.2 Thesis organizationChapter 2 reviews on the previous work on polygonal line simpli�cation. In Chapter 3, wepresent some preliminaries and de�ne some basic concepts for our algorithms and proofs.In Chapter 4, we describe an basic edge contraction algorithm, which in fact is the 2-dimensionalversion of Garland and Heckbert's edge contraction surface simpli�cation algorithm [1]. Chap-ter 5 points out the de�ciencies of this basic algorithm, and proposes the remedies. We describethree algorithms based on the improved edge contraction procedure. In Chapter 6, we provethe bound on the directed Hausdor� distance from the simpli�ed line to the original one.In Chapter 7, we present the experimental results which compare the basic algorithms, thethree new algorithms and the Douglas and Peucker algorithm (DP), which is a the high-qualityalgorithm used popularly in cartography. Unlike two of the new algorithms QG and QGG,DP does not allow the user to directly and interactively increase the simpli�cation. Thus,our experiments are by no means to show that our algorithms can replace DP. In fact, DPoutperforms our algorithms for most of the cases in terms of approximation quality. Ourobjective is to verify whether the output quality of our algorithms are close to that of DP.Finally, we conclude the thesis in Chapter 8, and suggest some directions for future work inChapter 9.In Appendix ??, we supplement the thesis by presenting the experimental graphs of more than10 data sets for error analysis of the outputs of the algorithms.
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Chapter 2
Previous Work on PolylineSimpli�cation

The polygonal line simpli�cation problem is a well-studied problem in various disciplines includ-ing geographical information systems (GIS) [4, 6, 7, 8, 9, 10], digital image analysis [11, 12, 13],and computational geometry [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. We �rst summa-rize the algorithms used in cartography. And then we will have a survey on the theoreticalalgorithms in computational geometry.2.1 Algorithms in cartographyThere are various kinds of classi�cations for these many di�erent methods. we will stick to theclassi�cation proposed by McMaster [4], who claimed that some other classi�cations seemedto be inadequate. Although the original classi�cation has �ve categories, I will only use fourcategories by combining two of them. The di�erence is that the third category described belowwas further divided into two categories, called constrained and unconstrained ones.The algorithms are divided into four categories: 1) Independent point algorithms, 2) Localprocessing algorithms, 3) Extended local processing algorithms, and 4) Global algorithms.
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2.1.1 Independent point algorithmsThese routines are very simple in nature and do not, in any way, account for any meaningfulrelationship with the neighboring points. The best example is the nth point routine where everynth point (eg. 3rd, 6th, 9th, ...) is retained. Although this routine is simple and e�cient, it isuseless in any application for high-quality approximation. However, it have some utility whenwe are eliminating points on extremely dense polyline.2.1.2 Local processing algorithmsLocal processing routines utilize the characteristics of the immediate neighboring points todetermine whether to retain the points. For instance, an algorithm eliminates points if they arecloser together than a prescribed distance. Other examples are Tobler's algorithm (1965) [4]and Jenk's algorithms [4].2.1.3 Extended local processing algorithmsUnlike local routines, these algorithms search beyond the immediate neighboring points andevaluate sections/parts of the polygonal line. In this category, some routines are less constrainedin their search, and others may be more constrained.One example of extended processing routine with constraint is Lang's routine (1969) [4]. Ituses a Euclidean distance measure for vertex removal. It operates on six consecutive verticesv0; v1; : : : ; v5 at a time. First we connects v0 to v5. Let ` be the supporting line of v0v5. Ifthe distance of any vi(1 � i � 4) from ` exceeds the input error tolerance �, ` is repositionedfrom points v0 to v4 and the distances from this line to the remaining intermediate points arecalculated. As soon as all perpendicular distances between the two end points are less than �,the end point v4 is retained, v4 becomes the new v0, and the next segment of the polygonal lineis processed.Other examples are Reumann-Witkam's routine (1974), Opheim's routines (1981, 1982) andJohannsen's routine (1974) [4].2.1.4 Global algorithmsThis category, unlike others, considers the polyline in its entirety while processing. Another dif-ference is that the algorithms in the previous categories are sequential. The global simpli�cation4



algorithm commonly used in cartography was developed by Douglas and Peucker (1973) [6]. Itis called the Douglas and Peucker Algorithm (DP). This method is summarized by the authorsas follows:This method begins by de�ning the �rst point on the line as an anchor and the lastpoint as a 
oating point. These two points de�ne a straight segment. The inter-vening points along the curved line are examined to �nd the one with the greatestperpendicular distance between it and the straight line de�ned by the anchor andthe 
oater. If this distance is less than the maximum tolerable distance, the straightsegment is deemed suitable to represent the whole line. in the case where the con-dition is not met, the point lying furthest away becomes the new 
oating point [6].For more details on this algorithm, please refer to [4, 6]. This algorithm has been reportedto be superior in choosing critical points [6, 26, 27]. The asymptotic time complexity hasbeen reduce to O(n logn) by Hershberger and Snoeyink [9] from its original O(n2). Theroutine uses the data structure of dynamic path hull to keep track of the farthest point froma line. However, the overhead increases so much that the improved algorithm runs slightlyslower than the original version for the statistical properties of cartographic data [28]. Recently,Hershberger and Snoeyink [25] further reduced the running time to O(n log� n) again. However,the improvement itself is more of theoretical interest.2.2 Algorithms in computational geometryThe �rst category below, in fact, does not address polyline simpli�cation directly. We put ithere because the algorithms in the categories following it will use some results of them.2.2.1 Homotopic path and loop resultsHershberger and Snoeyink de�ned the concepts of homotopic path and loop in [14]. Twopaths among obstacles in the plane are homotopic if they are the same endpoints and they canbe deformed continuously to each other without leaving the plane. Similarly, two loops amongobstacles in the plane are homotopic if they can be deformed continuously to each other withoutleaving the plane.Given a path � inside a triangulated polygon possibly with holes, Hershberger and Snoeyink [14]5



presented linear time algorithm to compute a shortest path homotopic to � and a minimum-linkpath (a path with minimum number of edges) homotopic to �. Note that the minimum-linkpath returned may be self-intersecting. Similarly, given a loop � inside a triangulated polygonpossibly with holes, a shortest loop homotopic to � can be computed in linear time. However,it is not known how to compute a homotopic loop with minimum edges. Hershberger andSnoeyink [14] showed how to compute in linear time a homotopic loop with at most one morethan the minimum number of edges. Again, this homotopic loop may be self-intersecting.In [16], Kahan and Snoeyink showed that representing the minimum-link path may requireO(n2 logn) bits while the input polygon requires only O(n logn) bits. Thus, all the linear-timealgorithms for minimum-link paths heavily depend on the theoretical assumption that storingand carrying out a single arithmetic operation involving real numbers can be done in constanttime.2.2.2 Approximating x-monotone polyline using uniform error metricAccording to di�erent requirements and error metric, di�erent algorithms arouse. Generally,researchers are interested in two versions of the simpli�cation problem:� min-# problem: given an input error tolerance �, minimize the number of edges, and� min-� problem: given a bound on the number of edges in the simpli�ed line, minimize theerror �.For a x-monotone polyline using uniform error metric, Hakimi and Schmeichel [15] solved themin-# problem in O(n) time. The trick is to fatten the monotone line to a polygon, and thenapply a linear time algorithm similar to the minimum-link homotopic path algorithm. On theother hand, the min-� problem can be solved in O(n2 logn) time. The trick is to identify all\critical values" of � (i.e., for any no. of edges, the minimum error must be equal to one ofthese critical values). There are O(n2) of these values. After sorting these values in increasingorder, the min-� problem can be solved by binary searching among these values and solving thecorresponding min-# problems. Later, Wang et al. [17] used a clever plane-sweep approach toimprove the running time to O(n2). The running time has subsequently been improved furtherto to O(n logn) by Goodrich [18] using parametric searching.
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2.2.3 Approximating a general polylineFor general polyline, Imai and Iri [23] proposed a version of the problem in which vertices ofsimpli�ed line must be vertices of the original line, and the simpli�ed line must visit thesevertices in the same order as they appear in the original line. Thus, the simpli�cation can beviewed as replacing a subchain between two vertices by a line segment between them. Imai andIri [23] proposed several error metrics. One of them has subsequently been studied by others:Error of joining vivk equals the maximum distance of vj from vivk for i � j � k.Note that this error measure will �nally guarantee a bound on the Hausdor� distance betweenthe simpli�ed line and the original line.Melkman and O'Rourke [24] solved the min-# problem in the above setting in O(n2 logn)time. Later, Chan and Chin [20] improved the running time to O(n2) time which also impliedan O(n2 logn) time algorithm for the min-� problem. Chan and Chin [20] also studied the min-# and min-� problems for simplifying a closed polygonal line. For a closed polyline, the min-#problem can be solved in S(n) time where S(n) is the running time for solving the all-pairsshortest path problem in an unweighted directed graph while the min-� problem can be solvedin S(n) logn time.Guibas et al. [22] proposed other versions of the problem in which vertices of the simpli�edline need not be vertices of the original line. They only dealt with the min-# problem. Oneapproach is to fatten the polygonal line to a \splinegon" �rst by convolving it with a disk ofradius �. Now the input line is a path within this splinegon. Then the splinegon is triangulated.Afterwards, they apply the homotopic minimum-link path algorithm in [14] to compute thesimpli�ed line. The fattening and triangulation are expensive operations in practice.Guibas et al. [22] also proposed other versions of the min-# problem which place further re-quirements on the ordering and locations of the vertices of the simpli�ed line. The simpli�edline is required to stab the fattened vertices (disks of radius � centered at the vertices), as wellas the fattened edges (convex hull of the adjacent fattened vertices) in order. New vertices ofthe simpli�ed line can either 1) lie anywhere (which implies that the directed Hausdor� dis-tance is not bounded), 2) lie inside fattened edges, or 3) lie inside fattened vertices. If newvertices can lie anywhere or must be inside fattened edges, the minimum-link path can befound in O(n2 logn) time. This also uses a graph approach like in [23]. If new vertices mustlie inside fattened vertices, a path with at most twice as many edges as the minimum-link path7



can be computed in linear time using a simple greedy algorithm. If the fattened vertices aredisjoint, and new vertices can lie anywhere or inside fattened edges, a minimum-link path canbe computed in linear time using a greedy approach.2.2.4 Negative resultsGuibas et al. [22] proved two negative results in some settings. Given a subdivision S inside aregion R, computing a subdivision S0 with minimum-link so that S and S0 can be continuouslydeformed into each other within R (homotopic) is NP-hard. Given a simple polygon curve �inside a region R, computing a simple polygon curve �0 with minimum-link so that � and �0can be continuously deformed into each other within R (homotopic) is also NP-hard.Thus the general problem of simplifying a map in GIS research is likely to be di�cult. Also,optimizing the size of the simpli�ed line while enforcing simplicity is probably a di�cult problemtoo.

8



Chapter 3
Preliminaries and De�nitions

A polygonal line or simply polyline L is a contiguous sequence of edges in the plane. We denoteL by a sequence of vertices v0 : : : vm where vi�1vi, 1 � i � m, is an edge. A vertex vi is aninterior vertex of L if it is adjacent to two vertices in L. An edge vivi+1 is an interior edge ofL if both vi and vi+1 are interior vertices. A subchain of L is a polygonal line represented by acontiguous subsequence of vertices.L is monotone if the intersection between L and any vertical line is a single contiguous interval,which can degenerate to a single point. L is convex if L is monotone and for any two pointsx and y on L, the line segment xy lies above the subchain between x and y. Similarly, L isconcave if L is monotone and for any two points x and y on L, the line segment xy lies belowthe subchain between x and y. Traverse L from v0 to vm and orient the supporting lines li
(a) (b) (c)Figure 3.1: (a) A monotone polyline; (b) a concave polyline; and (c) a convex polyline.for 1 � i � m consistently. The turning angle at an interior vertex vi is negative (positive) ifvivi+1 lies on the left (right) of the oriented li. The magnitude of the turning angle at vi is thesmallest rotation angle for the oriented li about vi to align with the oriented li+1. The turningangle is zero if vivi+1 lies on li. L is called a spiral if no two turning angles are of di�erentsigns. L is a in
ection polygonal line if it is not a spiral. In this case, L must contain an edge9



vivi+1 such that vi and vi+1 are interior vertices and the signs of the turning angles at vi andvi+1 are di�erent. We call vivi+1 an in
ection edge. We call L nice if the magnitude of each
e(a) (b)Figure 3.2: (a) A spiral; and (b) A non-spiral where e is a in
ection edge.turning angle is at most �=2.�1 �2�3 �4 �5

Figure 3.3: A nice polyline where all turning angles �1; �2; : : : ; �5 are � �=2.Each edge e in L induces a strip which is the region between the two perpendicular lines throughthe endpoints of e. Each interior vertex vi of L induces a wedge de�ned as follows. Shoot tworays from vi normal to vi�1vi and vivi+1 towards the larger angle at vi. The cone betweenthese two rays is the wedge induced by vi. See Figure 3.4 for an example.The directed Hausdor� distance from a point v to an object O is the minimum Euclideandistance from v to O. We use H(v;O) to denote the square of this distance. The directedHausdor� distance from O0 to O is the maximum directed Hausdor� distance from any pointv in O0 to O.
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(a) (b)
vi

strip wedge
Figure 3.4: (a) A strip induced by edge e; and (b) a wedge induced by interior vertex vi.
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Chapter 4
An Edge Contraction Algorithm
4.1 Quadric errorAn edge contraction merges the two endpoints of an edge uu0 into a new vertex v, which iscalled a destination vertex. Sometimes the edge contraction is denoted by (u; u0) ! v.The�gure below is an example of edge contraction. The uncontracted edges incident to vi and vi+1will become incident to v. This leaves us the issue of �xing the location of v which is related tou u0 vuu0 ! vBefore AfterFigure 4.1: Contract edge uu0 to destination vertex v.the objective that the simpli�ed line should approximate the original one well. That is, an errormeasurement should be developed. In the related work of simplifying 3D polygonal surfaces [1],Garland and Heckbert de�ned a notion of quadric error. We translate that to 2D. In this case,the quadric error of contracting vivi+1 to v is H(v; li) + 2H(v; li+1) +H(v; li+2). Thus, v is tobe �xed such that H(v; li) + 2H(v; li+1) +H(v; li+2) is minimized.We represent v using homogeneous coordinates (x; y; 1). Let li be the line aix + biy + ci = 0,where a2i + b2i = 1. We de�ne a line matrix Kli for li to be0BBBB@ a2i aibi aiciaibi b2i biciaici bici c2i 1CCCCA :12



Then H(v; li) = (aix + biy + ci)2 which can be written as (x; y; 1)Kli(x; y; 1)t. Thus, we wantto �x v such that � = (x; y; 1)(Kli + 2Kli+1 +Kli+2)(x; y; 1)t is minimized. We de�ne a vertexmatrix Mvi = Kli + Kli+1 for each vertex vi. Thus, � can be rewritten as (x; y; 1)(Mvi +Mvi+1)(x; y; 1)t. Furthermore, if we de�ne Mvi +Mvi+1 to be the vertex matrix of the newvertex v, then the quadric error � can be simpli�ed to be (x; y; 1)Mv(x; y; 1)t.Suppose that Mv equals 0BBBB@ m11 m12 m13m12 m22 m23m13 m23 m33 1CCCCA :Then � becomesm11x2+2m12xy+2m13x+m22y2+2m23y+m33. At the minimum, @�=@x = 0and @�=@y = 0. Thus, we have the following system of linear equations0BBBB@ m11 m12 m13m12 m22 m230 0 1 1CCCCA0BBBB@ xy1 1CCCCA = 0BBBB@ 001 1CCCCA :whose solution yields the optimal location for v. Note that the last matrix is identical to Mvexcept that the last row is replaced by (0; 0; 1). To see that we indeed obtain the minimum(instead of the maximum or other possibilities), let's check the determinant of second orderderivatives ������� @2�=@x2 @2�=@y@x@2�=@x@y @2�=@y2 ������� ;which equals ������� 2m11 2m122m12 2m22 ������� :The above determinant equals 4(m11m22 �m212). Observe that by using a multiset I = fi; i+1; i+ 1; i+ 2g of indices, (m11m22 �m212) can be written as(Pi2I a2i )(Pi2I b2i )� (Pi2I aibi)2)= Pi6=j2I (a2i b2j � aibiajbj)= Pi<j2I (a2i b2j � aibiajbj + a2jb2i � ajbjaibi)= Pi<j2I (a2i b2j � 2aibiajbj + a2j b2i )= Pi<j2I (aibj � ajbi)2= Pi<j2I a2i b2j [1� (aj=bj)(bi=ai)]2:13



Thus, the determinant is always positive unless the supporting lines li, for all i 2 I , are parallel.We assume that this is not the case. (In the next chapter, we will improve upon this algorithmand a side e�ect is that this assumption is always enforced.) Since we can assume some rotationof the �gure so that both ai and bi are nonzero for all i, we have (Pi a2i ) > 0 and (Pi b2i ) > 0.These two conditions together with the positive determinant implies that the point (x; y) foundindeed minimizes the quadric error [33]. Incidentally, (m11m22 �m212) is also the determinantof the system of equations representing @�=@x = 0 and @�=@y = 0. Therefore, we concludethat this system is solvable with a unique solution.4.2 Repeated edge contractionThe above completes the description of contracting one edge. How do we proceed afterwards?In general, let Su be a multiset of lines associated with each vertex u in the current simpli�edline. Initially, for each vertex vi of L, Svi contains li and li+1. In general, if we contract anedge uu0 to the new vertex v in the current simpli�ed line, let Sv = Su [ Su0 without removingduplicates, and �x v so as to minimize the quadric error Pl2Sv H(v; l). The correspondingedges of the lines in Sv form a subchain Cv = vi�1vi : : : vk of L for some i and k. Note thatli+1; : : : ; lk�1 appear twice in Sv and li and lk appear once in Sv. Hence, the quadric errorPl2Sv H(v; l) equals H(v; li) + 2Pk�1j=i+1H(v; lj) +H(v; lk).In the implementation, it is not necessary to explicitly maintain the multisets Sv because thisinformation is captured by the vertex matrix Mv. Contracting an edge uu0 is carried out bythree simple steps. First, add Mu and Mu0 to form Mv(which corresponds to Sv = Su [ Su0).Second, replace the last row of Mv by (0,0,1) to form a matrixM�v . Third, determine the x andy coordinates of v by the equation (x; y; 1)t = (M�v )�1(0; 0; 1)t. Note that (x; y; 1)Mv(x; y; 1)tequals the quadric errorPl2Sv H(v; l).We can use the same argument in last section to verify that (M�v )�1 exists and the v determinedindeed minimizes the quadric error, provided that not all the lines in Sv are parallel.4.3 A basic algorithmRepeated application of the edge contraction above yields a basic algorithm, which is the 2-dimensional version of Garland and Heckbert's algorithm proposed in [1]. We denote this14



algorithm by Q.We use linked lists to represent lists of the vertices and edges of L, and use a heap to store thequadric error of each possible edge contraction for current simpli�ed polygonal line. We sketchthe algorithm Q below.Algorithm QInput. A polyline L, and an error tolerance �.Output. A simpli�ed polyline L = v0v1 : : : vm.1. Compute Mvi = Kli +Kli+1 for all interior vertices vi of L.2. For each interior edge vivi+1, set Mv =Mvi +Mvi+1 , and solve M�v (x; y; 1)t = (0; 0; 1)t forv = (x; y), and compute the quadric error (x; y; 1)Mv(x; y; 1)t.3. Insert all the edges into a min-heap with their quadric errors as the key.4. while the minimum quadric error in the heap is not larger than �2,5. Remove from the heap the edge uu0 with minimum quadric error.6. Contract uu0 to v.7. Update the adjacency information of v.8. Update the quadric errors(in the heap) of the two edges incident to v.Line 4 of the above algorithm can be replaced by4. while size of the current simpli�ed polyline > the input target size,if the input parameter is the target size instead of the error tolerance �.Clearly, each edge contraction takes O(logm) time where m is the size of the current simpli�edpolyline.
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Chapter 5
Our Improved Algorithms

5.1 De�cienciesThe basic algorithm stated in the last chapter su�ers from the problem that the quadric errorused does not guarantee a bound on the distance of a new vertex v from the original polygonalline. We describe two problematic scenarios below.Figure 5.1 shows a spiral L = v0 : : : vnvn+1 : : : v2n+1 in which the edges vi�1vi for 1 � i � n,and vi�1vi for n + 2 � i � 2n + 1 lie on two lines l1 and l2 respectively. Let l3 be the linethrough vnvn+1. Let l be the line through vn+1 perpendicular to l1. Suppose that we �rstcontract vnvn+1 and then repeatedly contract edges without destroying v0 or v2n+1. Then wewill eventually obtain a simpli�ed line v0vv2n+1. We claim that the vertex v can lie very far tothe right while the maximum quadric error of any edge contraction performed is very small.vnvn+1Before After vv0 v2n+1 v0 v2n+1Figure 5.1: Contract v0 : : : v2n+1 down to v0vv2n+1.By Lemma 6.1 in the next chapter, v must lie in the triangle bounded by l1, l2, and l3. Wearrange the three lines such that this triangle is isosceles. See Figure 5.2. Let di be the distanceof v from li. Then the quadric error of producing v is (2n � 1)d21 + (2n � 1)d22 + 2d23. At theoptimal location for v, d1 and d2 should be balanced. Let l03 be the line that is parallel to, atdistance d3 from, and below l3. For any �xed d3, the optimal location of v is the intersection16



vn+1vn : : :: : :v0 v2n+1 l1l2l3
l

�D
Figure 5.2:between l03 and the bisector of angle �.If we increase n at this �xed d3, then the quadric error will increase. To reduce the quadricerror again, we have to decrease d1 and d2 which can only be achieved by increasing d3. Thus,by increasing n, we can push v arbitrarily close to the right vertex of the isosceles triangle. LetD be the half of the length of bottom of the triangle. So we can make the directed Hausdor�distance from v to L arbitrarily close to D. Let � be the right angle of the isosceles triangle.Then d3 � 2D sin �. The quadric error of the right vertex of the triangle is certainly an upperbound on the minimum quadric error of producing v since v lies inside the triangle by Lemma 6.1in the next chapter. The former quadric error is 8D2 sin2 �. Hence, by decreasing �, we canmake the quadric error of producing v small compared with D. The quadric error of other edgecontractions prior to the one producing v can only be smaller. This completes the example.Another problematic scenario is that when we contract a in
ection edge that is almost parallelto the two adjacent edges, the new vertex produced can also be far from the original line.Figure 5.3 shows a polygonal line v0 : : : vnvn+1 : : : v2n+1 in which vnvn+1 is a in
ection edge.Note that the three lines containing the edges of the original polygonal line are arranged in thesame fashion as in Figure 5.2. Thus, when we repeatedly contract down to a polygonal linev0vv2n+1, the vertex v will also be very far from the original polygonal line while the maximumquadric error of edge contractions performed is small.v0 vn+1Before Aftervnv2n+1 v0 v2n+1 vFigure 5.3: Contract v0 : : : v2n+1 down to v0vv2n+1.17



5.2 Revised quadric error and its computationWe suggest methods for handling the two bad scenarios in the previous section. In the nextchapter, we will prove that they are su�cient to translate the quadric error to a bound on thedirected Hausdor� distance from the simpli�ed line to the original line.The basic idea is that we need not restrict ourselves to supporting lines of the edges of L forquadric error computation. Thus, our approach is to add extra lines. For each interior vertexvi of L such that the magnitude of the turning angle at vi is more than �=2, we add a line l thatlocally touches L at vi and makes the same acute angle with vi�1vi and vivi+1. See Figure 5.4.Doing so will constraint the corresponding contracted vertex to be within some distance aroundvi, which we will prove it rigorously in Chapter 6. Correspondingly, Svi = fli; li+1; lg. Thevertex matrix Mvi of vi is set to be Kli +Kli+1 +Kl (instead of Kli +Kli+1), where Kli , Kli+1 ,and Kl are the line matrices of li, li+1, and l respectively. As in the previous chapter, wheneverwe contract two edges uu0 in the current simpli�ed line to produce a new vertex v, the vertexmatrix of v Mv is set to be Mu+Mu0 and Sv equals Su[Su0 without removing duplicates. Thequadric error of contracting uu0 is again (x; y; 1)Mv(x; y; 1)t, where v = (x; y).Suppose that the corresponding edges of the line in Sv form the subchain C = vi�1 : : : vk. Thenthe quadric error can be rewritten as of the last edge contraction producing v is H(v; li) +2Pk�1j=i+1H(v; lj) +H(v; lk) +Pl2E H(v; l), where E is the set of extra lines added at sharpturns at interior vertices of C. As a shorthand, we denote this sum by Q(v; C).vn vn+1Before After vn vn+1v0 v2n+1 v0 v2n+1Figure 5.4: Add an extra line to the sharp corner at vn+1.
v0 vn+1Before Afterv0 vn+1vn vnv2n+1 v2n+1Figure 5.5: Add a complementary line for the in
ection edge vnvn+1.We also add extra lines for in
ection edges or edges that are adjacent to two collinear edges.For each such edge e, we add a line l that passes through the midpoint of e and perpendicular18



to e. We call l the complementary line of e. See Figure 5.5. The e�ect of doing this willagain constraint the corresponding contracted vertex to be within some distance around themidpoint of e, which we will prove it rigorously in Chapter 6. Unlike the extra lines added atsharp turns, complementary lines are much less natural. Suppose that we are producing a newvertex v that represents a subchain Cv of the original polygonal line. We will see in the nextchapter that for our bound on the directed Hausdor� distance to hold, complementary lines ofedges in Cv are only needed when Cv does not have any sharp turn at interior vertices. Also, inthis case, we only need one complementary line for the proof to work. Therefore, during edgecontraction, we should eliminate complementary lines to avoid increasing the quadric error offuture edge contractions unnecessarily (recall that the quadric error will bound the squareddirected Hausdor� distance from the simpli�ed line to the original one).To cater for complementary line, we keep an auxiliary vertex matrix M 0v in addition to Mv foreach vertex v of the current simpli�ed line. Initially, M 0vi is the zero matrix for each vertex ofthe original polygonal line. In general, let Cv be the subchain of the original polygonal linethat v represents. If an extra line has been added to a sharp turn at an interior vertex of Cv ,then M 0v is set to be the zero matrix; otherwise, M 0v is the line matrix of the complementaryline of some in
ection edge in Cv. How do we select this in
ection edge? This is done duringedge contraction.Suppose that we contract an edge uu0 to a new vertex v. Let K be the line matrix of thecomplementary line of uu0 if uu0 is a in
ection edge, and let K be the zero matrix otherwise. Ifan extra line has been added to a sharp turn at an interior vertex of Cu [Cu0 , then we set M 0vto be the zero matrix. Otherwise, if at most one of K, M 0u and M 0u0 is not the zero matrix, thenwe set M 0v to be it. Finally, if at least two of K, M 0u and M 0u0 are not the zero matrix, then weset M 0v to be one of them. That is, we keep the complementary line of at most one in
ectionedge in Cu [ Cu0 . After obtaining M 0v, the quadric error for contracting uu0 to produce v is(x; y; 1)(Mv +M 0v)(x; y; 1)t. If we replace the last row of Mv +M 0v by (0; 0; 1) to form a matrixM�v , then solving M�v (x; y; 1)t = (0; 0; 1)t yields the location of v. Clearly, one obtains di�erentedge contraction procedures by using a di�erent selection criteria when at least two of K, M 0uand M 0u0 are not the zero matrix. We describe several algorithms resulted in the next section.In all, if v represents Cv = vi�1 : : : vk, then the quadric error of the edge contraction producingv has been revised to be the sum of two terms Q(v; Cv) + �, where19



� Q(v; Cv) = H(v; li) + 2Pk�1j=i+1H(v; lj) +H(v; lk) +Pl2E H(v; l), where E is the set ofextra lines added at sharp turns at interior vertices of Cv , and� � = 0 if no complementary line is kept with Cv , or � = H(v; l) if l is the complementaryline kept with Cv .Q(v; Cv)+� is the revised quadric error used by our simpli�cation algorithm and it is computedas (x; y; 1)(Mv +M 0v)(x; y; 1)t where v = (x; y).5.3 Three improved algorithmsFirst of all, our proof of the bound on the directed Hausdor� distance in the next chapter holdsindependent of the edge contraction procedure chosen. In the experimentation, we implementedtwo edge contraction procedures. In one procedure, we greedily select the nonzero matrix amongK, M 0u and M 0u0 depending on which yields the smallest quadric error for contracting uu0. Inthe other procedure, we preferM 0u �rst, then M 0u0 , and then K, assuming that u appears beforeu0 in the representation of the current simpli�ed line.Finally, one still has freedom in selecting the next edge to be contracted. We experimentedwith two methods. The �rst method is greedy in nature: choose the next edge that yields thesmallest quadric error. Since there are two edge contraction procedures as described in theprevious paragraphs, and each may produce a di�erent quadric error for contracting the sameedge, the greedy method actually yields two simpli�cation algorithms. In both of these twoalgorithms, all quadric errors for contracting an edge of the current simpli�ed polygonal lineare stored in a minimum heap. After each edge contraction, we have to update(in the heap)the quadric errors of two edges incident to the vertex produced by the contraction. Outlinesof these two algorithms are similar to the basic algorithm presented in last chapter. So thetime needed for each edge contraction for both of these two versions is O(logm) where m isthe size of the current simpli�ed polyline. We use QGG to denote the algorithm that picks thenext edge greedily and sets M 0v to obtain the smallest quadric error. We use QG to denote thealgorithm that picks the next edge greedily and sets M 0v according to the order of preferenceM 0u, M 0u0 , and then K.In the second edge selection method, we always choose the leftmost edge (according to therepresentation of the current simpli�ed line) subject to the constraint the resulting quadric20



error is below some prescribed threshold. The quadric error computation is based on settingM 0v to obtain the smallest quadric error. A heap is no longer needed and we just need tokeep track of the leftmost edge with quadric error without exceeding the threshold. each edgecontraction now takes constant time. We denote this algorithm by QLG.
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Chapter 6
Error Bound Analysis

Let Ls be a simpli�ed polyline obtained from a polyline L by a sequence of edge contractionsof any of our improved algorithms. In this chapter, we will show that the directed Hausdor�distance from Ls to L is bounded by the square root of the maximum quadric error of the edgecontractions performed. We prove our result in two steps. First, we prove that for each vertexon Ls, it is bounded by that distance from L. Then we prove the same for each edge of Ls.6.1 Bound for new verticesWe �rst prove two technical lemmas.Lemma 6.1 Consider the arrangement of m � 2 lines, l1; : : : ; lm, such that not all of themare parallel. Let S2 be the union of all bounded cells, S1 the union of all bounded edges, andS0 the set of all vertices. If v is a point that minimizesPmi=1 ciH(v; li) for any positive integersci, then v 2 S0 [ S1 [ S2.Proof: Assume to the contrary that v 62 S0[S1 [S2. Let v lie in the interior of an unboundedcell U or on the two semi-in�nite edges of U . See Figure 6.1.Let the chain of boundary edges of U be e1; e2; : : : et, where e1 and et are semi-in�nite. Let xbe the intersection point of the supporting lines of e1 and et. If e1 and et are parallel, thentheir supporting lines intersect at two points at in�nity and let x be the one that lie outside Uat in�nity.
22



v
e1

et w xe2U rwpH(v; li) pH(w; li)
Figure 6.1:The ray rv emanating from v through x intersects the boundary of U , say at a point w. Letrw be the ray emanating from w through x. For each line li that does not contain v, since liavoids the interior of U , li either intersects rw or is parallel to rw. Thus, H(v; li) � H(w; li).Moreover, by assumption, not all the lines are parallel and so there exists lk such that lk in-tersects rw and so H(v; lk) > H(w; lk). This contradicts the given condition that v minimizesPmi=1 ciH(v; li).Lemma 6.2 Let x be the intersection of two lines l1 and l2. Let ?1 and ?2 be the perpen-diculars to l1 and l2 at x respectively. If the smaller angle between ?1 and ?2 is acute, thenjvxj2 � H(v; l1) +H(v; l2) for any point v inside the angle.Proof: Let vfi be the perpendicular from v to li. See Figure 6.2. Extend the line segment vf2to intersect l1 at f 02. Since \vxf1 = \xvf2+\vf 02x, \vxf1 � \xvf2. Since d1 = jvxj sin(\vxf1)and jxf2j = jvxj sin(\xvf2), d1 � jxf2j. Hence, d21 + d22 � jxf2j2 + d22 = jvxj2.Lemma 6.3 If l1, l2, and l are three concurrent lines such that l stabs the smaller (breakties arbitrarily) double wedge formed by l1 and l2, then H(v; l) � H(v; l1) + H(v; l2) for anyarbitrary point v.Proof: Let di = pH(v; li) and d = pH(v; l). Let x be the common intersection of l1, l2,and l. Let vfi be the perpendicular from v to li and let vf be the perpendicular from v to23



v
l1
l2d2d1 dx

?1?2
f1 f2� f 02

Figure 6.2:l. Let ?1 and ?2 be the perpendiculars to l1 and l2 at x respectively. Suppose that v liesinside the acute angle between ?1 and ?2. It is obvious that jvxj � d. By Lemma 6.2, wehave d21 + d22 � jvxj2 � d2. Suppose that v lies outside the acute angle between ?1 and ?2.Without loss of generality, let v be in the region as shown in Figure 6.3. It is obvious that

v
l1
l2ld2d1 dx

?1?2
f1 f2f�

Figure 6.3:\vxf1 � \vxf . Since d1 = jvxj sin(\vxf1) and d = jvxj sin(\vxf), we have d1 � d.For the following lemmas, we let L be the subchain of the original polyline associated with avertex v of the current simpli�ed polyline. Now if L is nice and concave/convex, we can provethat the distance of v from L is within the square root of the quadric error for contracting L24



downto v.Lemma 6.4 Let L = v0 : : : vm;m � 2; be a nice concave/convex polyline. If v is a point thatminimizes Q(v; L), then H(v; L) � Q(v; L).Proof: We consider the case where L is convex as the other case is symmetric. See Figure 6.1.Let li be the supporting line of the edge vi�1vi. Consider the arrangement of the lines li's. Let

v0v1v2vm�1vm
v

l1lm U v0v1v2vm�1vm
v

l1lm U
Figure 6.4:U be the cell such that L is a subset of the boundary of U . Since L is convex, U is unbounded.We have two situations depending on whether l1 and lm are parallel or not. See Figure 6.1. ByLemma 6.1, v lies inside the shaded region as the other cells are all unbounded. So v must lieinside some strip or wedge induced by an edge or interior vertex of L. If v lies inside a strip,then clearly H(v; L) � H(v; li) for some i which is less than Q(v; L). If v lies inside a wedge,then since L is nice, then angle of the wedge is acute and so by Lemma 6.2, H(v; L) � Q(v; L).Now we prove that the same result holds when L is a nice spiral.Lemma 6.5 Let L = v0 : : : vm;m � 2; be a nice spiral. If v is a vertex that minimizes Q(v; L),then H(v; L) � Q(v; L).Proof: Rotate the �gure so that v0 and vm are below v and they lie on opposite sides of avertical line ` through v. Without loss of generality, we assume that v0 and vm lie on the left25



and right of ` respectively. We call a vertex vi on L a local maximum if vi is not an endpointof L and vi is not below its two neighboring vertices. Local minimum is de�ned symmetrically.Case 1: there is a concave subchain C of L that contains a local maximum and intersects `above/below v.

v0
`vC vm
(a) v0

`vC vm
(b)Figure 6.5: Case 1.Suppose that C intersects ` above v. See Figure 6.5(a). Let `0 be the horizontal line tangential tothe local maximum in C. The perpendicular from v to `0 must then intersect C. By Lemma 6.3,the length of this perpendicular is at mostpQ(v; L) and so is the distance of v from C. Supposethat C intersects ` below v. See Figure 6.5 (b). Then v lies inside some strip or wedge inducedby edges or interior vertices of C and so H(v; L) � Q(v; L).Case 2: there is a maximal concave subchain C of L such that C contains a local maximum,and vm (v0) is not the left(right) endpoint of C if C lies on the right (left) of `. See Figure 6.6.We can assume that case 1 does not apply and so C lies on one side of `, say the right side. SeeFigure 6.6(a). Let vk be the left endpoint of C. Since vk 6= vm by assumption, vk is incidentto another edge e not in C. Since C is maximal and L is a spiral, e must lie on the right of vkbelow the edge in C incident to vk. If v lies inside the strip induced by e or some edge in C,or v lies inside the wedge induced by vk or some interior vertex of C, then we are done. If thisis not the case, then observe that both endpoints of e must lie above v and the strip inducedby e intersects l above v. Let C 0 be the maximal convex subchain that contains e. Then eitherC 0 contains a local minimum or C 0 contains vm which lies below v. See Figure 6.7. In eithercase, v must lie inside some strip or wedge induced by edges or interior vertices in C 0. Hence,H(v; L) � Q(v; L). 26



v0
`
v C

vm(a) v0
`vC vm
(b)

e vk 6= vm 6= v0
Figure 6.6: Case 2 (a) & (b).

v0
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vme vk 6= vmC 0 C 0v v
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Figure 6.7: Case 2 (a.1) & (a.2).Case 3: there is a local minimum in L. Let C 0 be the maximal convex subchain that containsthis local minimum. Suppose that C 0 intersects `. If C 0 intersects ` below v (See Figure 6.8(a)),then by Lemma 6.3, the distance of v from the horizontal tangential line touching the localminimum in C 0 is bounded by pQ(v; L). So is the distance of v from C 0 then. If C 0 intersects` above v (See Figure 6.6(b)), then v must lie inside some strip or wedge induced by edges orinterior vertices in C 0 and so H(v; L) � Q(v; L). Suppose that C 0 does not intersect `. Withoutloss of generality, assume that C 0 lies on the left of `. Let C be the maximal concave subchainshares an endpoint with C 0 and separates C 0 from vm. If the common endpoint of C 0 and C isthe right endpoint of C, then it is clearly not v0 as v0 has degree one in L. Otherwise, sinceC separates C 0 and vm, the right endpoint of C cannot be v0. If C contains a local maximum27
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vmv0Figure 6.8: Case 3 (a) & (b).
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Figure 6.9: Case 3 (c) & (d).(See Figure 6.9(c)), then C satis�es cases 1 or 2 and we are done. If C does not contain alocal maximum (See Figure 6.9(d)), then since L is a nice spiral, C must be incident to theleft endpoint of C 0 and vm, increasing from left to right, and cross ` below v and above thelocal minimum in C 0. Hence, the vertical distance from v to C is less than the distance from vto the horizontal tangential line touching the local minimum in C 0. The latter is bounded bypQ(v; L) by lemma 6.3 and so H(v; L) � Q(v; L).Case 4: The remaining possibility is that L does not contain any local minimum. If L doesnot contain any local maximum too, then L is actually a convex/concave chain with respect tohorizontal direction (See Figure 6.10(a)) and Lemma 6.4 applies. Suppose that L contains alocal maximum. Let C be the maximal concave subchain containing this local maximum. Since28
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Figure 6.10: Case 4 (a) & (b).cases 1 and 2 do not apply, without loss of generality, we can assume that C lies on the rightof ` and vm is the left endpoint of C. See Figure 6.10(b). So vm�1vm is an edge in C. Wecan also assume that v lies below the intersection between ` and the strip induced by vm�1vm,otherwise v must lie inside some strip or wedge induced by edges or interior vertices in C and

(b.1)
v
(b.2)v0 v0

vm�1vmv L vm�1vm
`
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`0 `0`0 `0`v `v `

Figure 6.11: Case 4 (b.1) & (b.2).we are done. Let `v be the line through v orthogonal to vm�1vm. Note that v0 and vm lies onthe left and right of `v respectively. Sweep a line `0 parallel to vm�1vm through v downward.If `0 \L is always connected throughout the sweeping (See Figure 6.11(b.1)), then L must be aconvex chain with respect to the leftward orientation of `0. Thus, Lemma 6.4 applies. If `0 \ Lever becomes disconnected during the sweeping, (See Figure 6.11(b.2)), then L contains a localminimum with respect to the upward orientation of `v. Thus, we can rotate the whole �gure29



so that `v becomes vertical and apply case 3 above.Now we can prove a more general statement. That is for a general polyline L, we can provethat the distance of v from L is within the square root of the quadric error for contracting Ldownto v after performing a sequence of edge contractions.Lemma 6.6 Let L = v0v1 : : : vm;m � 2; be a polygonal line. If v is a vertex that minimizesQ(v; L) + �, where � = 0 if no complementary line is associated with L, or � = H(v; l) if l isthe complementary line associated with L. Then H(v; L) � Q(v; L) + �.Proof: Case 1: If L is not nice, then we have an extra line l added at a sharp turn at vertex viand � = 0. Let l1 and l2 be the supporting lines of the two incident edges of vi. We denote l byl3 for uniformity. Then the six angles formed by l1, l2, and l3 are at most �=2. Denote them by�i, i = 1; 2; : : : ; 6. Let di =pH(v; li). Assume that v lies inside angle �2. See Figure 6.12(a).Let f1 and f2 be the feet of the perpendiculars from v to l1 and l2 respectively. Without loss

(a)
l1

l2l3
�1�2�3�4 �5 �6vi

vd1 d2f1 f2 x
(b)

l1
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Figure 6.12: (a) A star for Case 2; and (b) a cross for Case 3.of generality, suppose f1 = vi or f1 is on the left of vi. Since �2 � �=2, f2 must be above or online l1. By the same reasoning as in the proof of Lemma 6.2, jvvij2 � d21 + d22 � Q(v; L).Case 2: If L is nice but not a spiral, then � = H(v; l) where l is the associated complementaryline of some edge vivi+1. Let l1 be the supporting line of vivi+1. And we denote l by l2 foruniformity. Note that l1 \ l2 is the midpoint of vivi+1, say x. Let di = pH(v; li). Thenby Pythagoras' Theorem, jvxj2 = d21 + d22. Since d21 � Q(v; L) and d22 = H(v; l), jvxj2 �30



Q(v; L) +H(v; L) = Q(v; L) + �.Case 3: If L is a nice spiral, then by Lemma 6.5, H(v; L) � Q(v; L).Up to here, we have proved a bound on the distance of v from the original polygonal line L.We summarize as the following theorem.Theorem 6.1 Let L be a polygonal line. Let Ls be the simpli�ed polygonal line after per-forming a sequence of edge contractions. Then for any vertex v on Ls, H(v; L) is at most themaximum quadric error of the edge contractions performed.Proof: By Lemma 6.6, H(v; Lv) � Q(v; Lv)+�, which is quadric error of the edge contractionproducing v.
6.2 Bound for new edgesWe now prove a bound on the directed Hausdor� distance from each edge of Ls to the originalpolygonal line L.We �rst prove two technical lemmas.Lemma 6.7 Let L = v0v1 : : : vm, m � 1, be a polygonal line. Let l be a line and let v00; v0m, andLl be the orthogonal projections of v0; vm and L onto l respectively. Suppose that L avoids l ex-cept possibly at v0 and vm. Then for all point x in Ll, H(x; L) � max(Q(y; L); jv0v00j2; jvmv0mj2)for any point y on l. Note that v00v0m � Ll.Proof: Since L avoids l, L is on one side of l. Let vi be a vertex of L with maximum distancefrom line l. Through vi, draw a line l0 parallel to l. Let h be the distance between parallel linesl and l0.Case 1: vi is neither v0 nor vm. See Figure 6.13.If the turn at vi is not sharp, then l0 stabs the smaller double wedge formed by the supportinglines of edges incident to vi. So by Lemma 6.3, h2 � Q(y; L). If the turn at vi is harp, thenan extra line l00 is added at vi. So l0 will stab the smaller double wedge formed by l00 andthe supporting line of an edge incident to vi. Hence, we again conclude that h2 � Q(y; L) byLemma 6.3. 31
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qvi�1 vi+1 ?x v0mv00Figure 6.13: Case 1: vi is neither v0 nor vm.Draw the perpendicular ?x from x to l0. Since x 2 Ll, ?x must intersect L at a point, say q,before reaching line l0. Thus, we have jqxj2 � h2 � Q(y; L).Case 2: vi is v0 or vm. See Figure 6.14. Without loss of generality, assume that vi = vm. In
l
l0v0v1v2 vm = vivm�1

y hx
q?x v0mv00Figure 6.14: Case 2: vi is v0 or vm.this case, h = jvmv0mj and jqxj2 � h2 = jvmv0mj2.Therefore H(x; L) � max(Q(y; L); jv0v00j2; jvmv0mj2).Note that in Lemma 6.7, Q(y; L) is unde�ned when L has only one edge. For this case,H(x; L) � max(jv0v00j2; jvmv0mj2).We can generalize the previous lemma to the case when l does not avoid L.Lemma 6.8 Let L = v0v1 : : : vm;m � 1; be a polygonal line. Let l be any line and let v00, v0mand Ll be the orthogonal projections of v0, vm and L on l respectively. Then for all point x onLl, H(x; L) � max(Q(y; L); jv0v00j2; jvmv0mj2) for any point y on l.Proof: Draw a line ?x perpendicular to l through x. Since x 2 Ll, ?x must intersect L atsome point, say q. See Figure 6.15. Let C be a maximal subchain of L such that C contains q32
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Figure 6.15: Case 2: vi is v0 or vm.and avoids l except possibly at its two endpoints. Let a and b be the endpoints of C and let a0and b0 be their orthogonal projections onto l respectively. Since C contains q, x lies in the or-thogonal projection of C onto l. By Lemma 6.7, we have H(x;C) � max(Q(y; C); jaa0j2; jbb0j2).Since a are possibly be v0, vm, or a0, jaa0j2 = jv0v00j2, jvmv0mj2, or 0. Similarly we have samepossible values for jbb0j2. Also H(x; L) � H(x;C) and Q(y; C) � Q(y; L) by de�nition. Hencewe conclude that H(x; L) � max(Q(y; L); jv0v00j2; jvmv0mj2).Finally, we can combine all the results above, and can prove a bound on the directed Hausdor�distance from each edge of the simpli�ed polyline Ls to the original polyline L.Theorem 6.2 Let L be a polygonal line. Let Ls be the simpli�ed polygonal line by performinga sequence of edge contractions. Then for each edge e of Ls, H(e; L) is at most the maximumquadric error of the edge contractions performed.Proof: Let �2 be the maximum quadric error of the edge contractions performed. Let uv be anedge on the simpli�ed polygonal line Ls. Let Lu and Lv be the subchains of L associated withu and v respectively. By Theorem 6.1, we have H(u; Lu) � �2, and H(v; Lv) � �2. Let p andq be two points on Lu and Lv respectively such that jpuj2 = H(u; Lu) and jqvj2 = H(v; Lv).Then we immediately have jpuj � � and jqvj � �. Let L0 be the subchain of L between p andq. Let Cu and Cv be circles centered at u and v of radius � respectively. See Figure 6.16. So pand q must lie inside Cu and Cv respectively. Let l be the line through u and v. Let pl and qlbe the orthogonal projections of p and q onto l respectively. So pl and ql lie inside Cu and Cv33
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Figure 6.16:respectively. This implies that jpxj � jpuj � � for all point x on plu, and jqxj � jqvj � � for allpoint x on qlu.Now consider any point x on plql. Note that L0 � Lu [ Lv, and Lu and Lv overlap onone edge as uv is an edge on Ls. Let this overlapping edge be ab such that a is an end-point of Lu and b is an endpoint of Lv. Let a0 and b0 be the orthogonal projections of aand b onto l respectively. Let L0u be the subchain between p and a, and L0v be the sub-chain between q and b. Note that L0 = L0u [ L0v. Let (L0u)l and (L0v)l be the projections ofL0u and L0v onto l respectively. Consider any x on plql. Draw a line ?x perpendicular to lthrough x. Then ?x must intersect L0u or L0v. This means x is on (L0u)l or (L0v)l. If x is on(L0u)l, by Lemma 6.8, H(x; L0u) � max(Q(u; L0u); jpplj2; jaa0j2). Symmetrically, if x is on (L0v)l,H(x; L0v) � max(Q(v; L0v); jqqlj2; jbb0j2). Combining the two results, as H(x; L) � H(x; L0u) andH(x; L) � H(x; L0v), we have H(x; L) � max(Q(u; L0u); jpplj2; jaa0j2; Q(v; L0v); jqqlj2; jbb0j2).Suppose that a is not farther than b from l, that is, jaa0j2 � jbb0j2. Considering the farthestvertex (6= a), say vi, on L0u from l. If vi = p, then jbb0j2 � jpplj2. Otherwise, if vi 6= p, then viis an interior vertex on L0u. By applying Lemma 6.3 at vertex vi, jbb0j2 � Q(u; L0u). So we havejaa0j2, jbb0j2 � max(Q(u; L0u); jpplj2). Symmetrically, for jaa0j2 > jbb0j2, by considering subchainL0v, we have jaa0j2, jbb0j2 � max(Q(v; L0v); jqqlj2).So we have H(x; L) � max(Q(u; L0u); jpplj2; Q(v; L0v); jqqlj2). Since both Q(u; L0u) and Q(v; L0v)are at most the max quadric error �2, and both jpplj2 and jqqlj2 are at most �2 by our construc-tion, we have H(x; L) � �2.
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Chapter 7
Experimentation and Results

7.1 PreliminariesIn this chapter, we present the experimental results comparing the several variants of oursimpli�cation algorithm. They are:Q: no extra lines are added at sharp turns, no complementary lines are added, the next edgeto be contracted is chosen greedily based on its quadric error.QGG: extra lines at sharp turns and complementary lines are added, the matrix update at eachedge contraction is performed greedily, the next edge to be contracted is chosen greedily.(See Section 5.3.)QG: extra lines at sharp turns and complementary lines are added, the matrix update at eachedge contraction is performed according to a prescribed order of preference, the next edgeto be contracted is chosen greedily. (See Section 5.3.)QLG: extra lines at sharp turns and complementary lines are added, the matrix update at eachedge contraction is performed greedily, the leftmost edge with quadric error within �2 isto be contracted, where � is the input error tolerance. (See Section 5.3.)Note that main di�erence of QLG from Q, QG and QGG is that it requires an input errortolerance � to work. Although Q, QG and QGG are designed for simplifying the given polygonalline down to a user speci�ed size, one can equally specify a tolerance � and then run Q, QG orQGG until the quadric error of the next edge to be contracted is larger than �2.35



The implementations of Q, QG, QGG and QLG are based on the 3D surface simpli�cationimplementation by Garland and Heckbert [1]. For Q, QG and QGG, a heap is employed tosupport the greedy selection of the next edge to be contracted. The heap stores the edgesin the current simpli�ed line with their quadric error as key. After contracting an edge uu0,the quadric error for contracting the two edges adjacent to uu0 have to be updated. Thus,contracting an edge takes O(logm) time, where m is the size of the current simpli�ed line. Incontrast, QLG takes constant time for each edge contraction.We expect QGG to produce the best approximation, followed by QG, QLG and then Q. Butthe processing time of QGG is expected to be higher, particularly compared to QLG. Ourexperimental results generally agree with these expectations, but there are also exceptions. Wecannot really explain these exceptions and they may be data-dependent.We also compare the above algorithm with the Douglas and Peucker algorithm (DP) [6]. It isreputed to perform very well in practice in terms of the quality of approximation. Given aninput error tolerance �, the output simpli�ed polygonal line of algorithm DP has the propertythat the directed Hausdor� distance from the simpli�ed polygonal line to the original polygonalline is within �. The implementation of DP is from [32].Both DP and our algorithms can take given error tolerance as input parameter. However, DPdoes not provide an interactive and direct way to increase the simpli�cation, unlike QGG andQG. Thus, our algorithms can work for applications in di�erent contexts than DP. We emphasizethat our algorithms are not proposed as substitutes of DP but rather as a new method for doingthe simpli�cation task, which can work for other settings as well. Nevertheless, we use DP asa benchmark to check the quality of approximation obtained by our algorithms.7.2 Test data and measurementsWe use three categories of test data:1. 30 sets of coastlines (geographical data) from [30],2. One set of circle data (discretized as closed polygonal chains), and3. The Dow Jones HK index 1998 [31].The coastlines allow us to �nd out how our algorithms work for real data. For spiral chains,the working of DP uses only the vertices of the original polygonal line, which suggests that36



it may perform worse than quadric error based algorithms (which relocates new destinationvertices when doing edge contractions). We take the discretized circle data as an example forthis test case. The data set of Dow Jones HK index contains wild zigzags, which is a naturalextreme test case, and we suspect the straightforward quadric error algorithm (Q) will performthe worst for this test case. An example in each category is shown below.

Figure 7.1: A coastline (1787 edges).
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Figure 7.2: A circle (100 edges).

Figure 7.3: The Dow Jones HK index 1998 (274 edges).
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For each category, we measure two quantities that re
ect the approximation error: mean vertexdistance (MeanVD), and maximum vertex distance (MaxVD). Let L be the input polygonalline and let Ls be the simpli�ed line. MeanVD is de�ned to be:(Xv2LpH(v; Ls) + Xv2LspH(v; L))=total number of vertices in L and LsMaxVD is de�ned to be: maxfmaxv2LspH(v; L);maxv2L pH(v; Ls)gNote that MaxVD is to simulate/approximate the Hausdor� distance between L and Ls. Inorder to estimate the signi�cance of the approximation error relative to Ls, we also measurethe mean edge length of Ls (MeanSEL).7.3 Summary of experimental resultsWe performed two classes of experiments. In class I, for each data set in each category, weplotted MeanVD, MaxVD, and MeanSEL against the percentage of edges eliminated in thesimpli�ed line for each algorithm. In class II, for each data set in each category, we plottedMeanVD and MaxVD against �, the input error tolerance.Recall that both DP and QLG require an input error tolerance to work (for reasons as describedbefore). So for experiments in class I, we attempted by trial and error to obtain the tolerancefor DP to obtain a particular size of the output simpli�ed line. We repeat the same trial anderror process for QLG.For data sets in the same category, we obtain similar experimental results and we describe thegeneral trend in the following.7.3.1 Class I: Controlling the percentage of edges eliminatedThe coastlineFor the coastlines data, DP obtains the best MeanVD, compared to all the four quadric erroralgorithms. The di�erence among the quadric error algorithms are insigni�cant. See a typ-ical plot in Figure 7.4. DP also obtains the best MaxVD compared to all the quadric erroralgorithms. Q and QG yield larger MaxVD than QGG and QLG over a wide range (for ex-ample, from 30% to 80% of edges eliminated in Figure 7.5). In particular, it is more common39



for QG than Q to produce larger MaxVD than QGG and QLG. See Figure 7.5 and �gures inAppendix ??.Figure 7.6 shows the mean edge length of the simpli�ed line which is similar for all the algorithmstested from 0% to 90% of edges eliminated. It can be seen that the di�erence in MeanVDrelative to MeanSEL among Q, QG, QGG and QLG are insigni�cant from 0% to 90% of edgeseliminated. Though DP obtains the smallest MeanVD, it is no more than 5% of MeanSELsmaller than the others.
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The circleFor the circle data, the MeanVD of all the four quadric error algorithms are similar and slightlybetter than the MeanVD of DP. See a typical plot in Figure 7.7. The MaxVD of all the fourquadric error algorithms are also better than the MaxVD of DP. However, Q, QGG and QGyield the same MaxVD while the MaxVD of QLG is 25% to 50% less. See a typical plot inFigure 7.8. It is surprising that QLG produces much better MaxVD than Q, QGG and QG,which we cannot explain.Figure 7.9 shows the mean edge length in the simpli�ed line which is similar for all the algorithmstested from 0% to about 90% of edges eliminated. It can be seen that the di�erence betweenDP and all the four quadric error algorithms in MeanVD is very negligible relative to MeanSELbefore 90% of edges are eliminated, which is less than 2% of MeanSEL. For MaxVD, DP isup to 2.5% of MeanSEL larger than Q, QGG and QG, and up to 4% of MeanSEL larger thanQLG. The relative di�erence is again not signi�cant.
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The Dow Jones HK index 1998For the Dow Jones HK index 1998, DP again has the best MeanVD. The MeanVD of QG, QGGand QLG are similar and better than the MeanVD of Q. See a typical plot in Figure 7.10. Thesame trend is observed in MaxVD. Notice that Q performs very badly in MaxVD comparedwith QGG, QG and QLG. See a typical plot in Figure 7.11. Figure 7.12 shows that the meanedge lengths produced by our three improved algorithms (QGG, QG and QLG) are similar,while the mean edge length produced by DP becomes larger beyond 63% of edges eliminatedand signi�cantly larger beyond 80% of edges eliminated. >From 40% to 90% of edges eliminated,the mean edge length of Q is up to 23% smaller than that of QGG, QG and QLG. We will takethe MeanSEL of QGG, QG and QLG as the reference for us to analyze the signi�cance of theerror di�erences among all algorithms.The di�erences in MeanVD among Q, QG, QGG and QLG relative to MeanSEL are not sig-ni�cant (up to 1.5%). However, the MaxVD of Q can be 155% of MeanSEL larger than theMaxVD of QG, QGG and QLG.
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The above results on coastlines and the Dow Jones HK index 1998 lead us to conjecture thatour improved quadric error computation (adding extra lines at sharp turns and complementarylines) can make a di�erence in the Hausdor� distance between the simpli�ed line and the inputpolygonal line when compared to the basic quadric error algorithm.7.3.2 Class II: Controlling the input error toleranceThe coastlineThe performance of Q and QGG are almost the same in both graphs.Generally, with the same input error tolerance, DP has larger MeanVD and percentage of edgeseliminated. That means DP does more simpli�cation than the other four for the same inputerror tolerance. In particular, at 90% of edges eliminated, the input error tolerance of bothQGG and QG are about 4.5 times that of DP, Q about 4.3 times, and QLG about 3.3 times.It can be explained that DP only takes the distance from the farthest point to compare to theinput error tolerance whereas quadric error includes all related distances to the related edges.Among the quadric error algorithms, QLG is up to about 54% higher than Q and QGG inMeanVD under the same input error tolerance whereas only about 5.4% higher in percentage ofedges eliminated. This means that QLG does a little bit more simpli�cation but simultaneouslyintroduce much more error.Between 0% and 80% of edges eliminated, QLG is up to about 37% lower than Q and QGGin MeanVD under the same input error tolerance, and up to about 26% less in percentage ofedges eliminated. This means that QLG does less simpli�cation and thus introduces less errorat a particular input error tolerance.It is worthwhile to point out that the shapes of graphs of MeanVD against the input errortolerance for all algorithms follow linear relation such that the curve for DP has slope of about1=4, QLG about 1=8, while the other three about 1=12.
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The circleThe graphs of MeanVD and percentage of edges eliminated for Q, QGG and QG are identical.The reason is that no extra line is added since the input polygonal line is nice.The graphs of MeanVD and percentage of edges eliminated for QLG are than those for Q, QGGand QG. This is because QLG contracts more edges and introduces more error as it processescontractions from one end to the other sequentially in a single pass.The MeanVD obtained by the quadric error algorithms grows linearly with the input errortolerance. The slope of the graph for QLG is about 1=5 and the slopes of the graphs for Q,QGG and QG are about 1=7.
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The Dow Jones HK indexThe graphs of MeanVD and percentage of edges eliminated for QGG and QG are almostidentical.The graphs of MeanVD and percentage of edges eliminated for DP are almost vertical whencompared with the other four algorithms. This shows that it eliminates many vertices evenwhen the input error tolerance is extremely small. The reason is that DP is good in selectingcritical point and eliminating those small zigzags even if the input error tolerance is small. Incontrast, the zigzags introduce much quadric error for all quadric error algorithms.The MeanVD produced by Q is up to 6 times higher than QG, QGG, and QLG at a giveninput error tolerance. Q also eliminates up to 40% more edges than QG, QGG, and QLG at agiven input error tolerance. This is due to the extra lines added by QG, QGG, and QLG. Onone hand, these extra lines pull the new vertices produced by edge contractions closer to theoriginal polyline. On the other hand, these extra lines also drive the quadric error higher andso fewer edge contractions are performed.The MeanVD produced by QLG is up to 15% higher than QGG and QG at a given input errortolerance. The percentage of edges eliminated by QLG is also the same as QGG and QG forall input error tolerance. This means QLG does not contract more but introduces up to 15%more error in MeanVD.The MeanVD obtained by QG, QGG, and QLG grows linearly with the input error tolerance.The slope of the graph for QLG is about 1=21, and the slopes of the graphs for QGG and QGare about 1=25.
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7.4 Some examples of simpli�cation outputIn this section, we only take 3 algorithms, DP, Q, and QGG, for consideration. The outputs ofQG and QLG are similar to QGG.7.4.1 The coastline
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Figure 7.19: DP: Simpli�ed to 50 percent.

Figure 7.20: DP: Simpli�ed to 10 percent.

Figure 7.21: DP: Simpli�ed to 5 percent.
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Figure 7.22: Q: Simpli�ed to 50 percent.

Figure 7.23: Q: Simpli�ed to 10 percent.

Figure 7.24: Q: Simpli�ed to 5 percent.
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Figure 7.25: QGG: Simpli�ed to 50 percent.

Figure 7.26: QGG: Simpli�ed to 10 percent.

Figure 7.27: QGG: Simpli�ed to 5 percent.
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7.4.2 The circleTwo quadric error algorithms produce better results than DP when the circle is simpli�edto about 10%. This is due to DP's lack of freedom to position the vertices of the simpli�edpolygonal line.
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Figure 7.28: DP: Simpli�ed to 50 percent.

Figure 7.29: DP: Simpli�ed to 20 percent.

Figure 7.30: DP: Simpli�ed to 10 percent (with original circle).
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Figure 7.31: Q: Simpli�ed to 50 percent.

Figure 7.32: Q: Simpli�ed to 20 percent.

Figure 7.33: Q: Simpli�ed to 10 percent (with original circle).
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Figure 7.34: QGG: Simpli�ed to 50 percent.

Figure 7.35: QGG: Simpli�ed to 20 percent.

Figure 7.36: QGG: Simpli�ed to 10 percent (with original circle).
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7.4.3 The Dow Jones HK indexThis is an example of the worst case for algorithm Q. Some important sharp features havealready been eliminated even when the percentage of edges eliminated is relatively small. Whensimpli�ed to 10%, the output quality of QGG is still acceptable although it is inferior to DP.
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Figure 7.37: DP: Simpli�ed to 50 percent.

Figure 7.38: DP: Simpli�ed to 20 percent.
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Figure 7.39: DP: Simpli�ed to 10 percent.

Figure 7.40: Q: Simpli�ed to 50 percent.
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Figure 7.41: Q: Simpli�ed to 20 percent.

Figure 7.42: Q: Simpli�ed to 10 percent.
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Figure 7.43: QGG: Simpli�ed to 50 percent.

Figure 7.44: QGG: Simpli�ed to 20 percent.
64



Figure 7.45: QGG: Simpli�ed to 10 percent.
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Chapter 8
Conclusion

We propose an edge contraction approach for polyline simpli�cation. The position of the newvertex produced by each edge contraction is computed using the quadric error metric. The basicalgorithm Q using this approach does not guarantee any bound on the distance between thesimpli�ed polyline and the original polyline. We present improvements to this basic algorithmso that the quadric error actually bounds the directed Hausdor� distance from the simpli�edpolyline to the original one. We derive three improved algorithms QG, QGG, and QLG. QGand QGG use a min-heap to store the quadric error of candidate edge contractions and the onewith the minimum quadric error is to be performed next. Each edge contraction takes O(logm)time, where m is the size of the current simpli�ed polyline. QLG does not use any heap andbasically performs edge contractions from one end to the other. Each edge contraction takesconstant time. All of our algorithms are simple and easy to implement. Our approach allowsthe user to directly and interactively increase the simpli�cation.Although the Douglas and Peucker algorithm produces less error than our algorithms in mostof our experiments, the di�erence is usually insigni�cant when compared with the mean edgelength of the simpli�ed polyline. Among our algorithms, QLG and QGG show similar perfor-mance and QG seems to produce inferior output quality.
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Chapter 9
Future Work

In fact, we originally got the idea of quadric error metric from surface simpli�cation algorithmby Garland and Heckbert [1]. But their algorithm cannot make sure that there is an error boundfor the simpli�ed the surface. We use the same idea to apply the approach into 2-dimensionalpolyline simpli�cation. With some modi�cation of the algorithm, we �nally can result in anerror bounded algorithm. This gives us a hope that with some modi�cation of the originalsurface simpli�cation algorithm, we might be possible to come to an error bounded solution.This is the immediate extension of the research work of this thesis.In 2-dimensional plane, the distance from a point to a line can be represented by a 3�3 matrix.In 3-dimensional space, the distance from a point to a plane can be represented by a 4�4 matrix.And it is obvious that in k-dimensional space, the distance from a point to a hyperplane can berepresented by a (k+1)�(k+1) matrix. But whether our algorithm can be extended to a surfacefrom any dimension still is a question mark. But it might be an interesting problem. Surfacesimpli�cation in k-dimension is very useful in scienti�c visualization. Suppose given a functionof (k � 1) variables, which we can consider as a k-dimensional surface. Scientists from manydisciplines frequently would like to project to surface to one variable or two variables so thatthey can visualize the trend of the surface with respect to those variables. Surface simpli�cationin k-dimension can result in that we always can do the projection from the simpli�ed surfaceinstead of the original surface. This can save them much of the time and make visualization ofscienti�c data in a real time stance possible.Simpli�cation for a subdivision in a plane such that the topology does not change is an interest-ing topic. Furthermore, if a sets of points S also have been given, then it is very challenging task67



to simplify the subdivision such that not only the topology does not change, but also preventsthe point in S crossing over boundaries of the subdivision. However, whether our approachusing quadric error metric to do simpli�cation can be applied to the two problems stated aboveis still open.Apart from further extension of our algorithms, more thorough and extensive experimentationsneeds to be taken out to compare our algorithms with other algorithms, not only Douglas andPeucker algorithm.
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