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Abstract

We study the problem of polygonal line simplification. The objective is to seek a polygonal
line of smaller size that approximates the original one well. We present an algorithm that is
based on edge contraction. An edge contraction merges two adjacent vertices into a new vertex
and this new vertex will be made the new endpoint of the uncontracted edges incident to the
two vertices merged. Thus, repeated applications naturally yield a simplification algorithm.
We implemented three algorithms QG, QGG, and QLG based on this approach. QGG and QG
support each edge contraction in O(logm) time, where m is the size of the current polygonal
line, whereas QLG supports each edge contraction in O(1) time. The selection of the edge to
be contracted is based on the quadric error produced, which was introduced by Garland and

Heckbert in simplifying 3D polygonal surfaces. We use and improve their algorithm in 2D. If

iv



the quadric error of each edge contracted is at most €2, we can guarantee that the directed
Hausdorff distance from the simplified line to the original one is within e. We can supply an
error tolerance € to QG, QGG and QLG and let edges be contracted repeatedly until the current
minimum quadric error exceeds €2. On the other hand QGG and QG can also allow the user
to directly and interactively reduce the number of edges in the simplified line when deemed
necessary. We have conducted some experiments to measure the approximation error of the

simplified lines produced by our algorithms.



Chapter 1

Introduction

The automation of mapmaking, initiated during 1950s, has become increasingly popular in the
field of cartography. A major effort in automating the mapmaking process has been the de-
velopment of methods for generalizing digital data. There are four significant components of
automatic generalization which include simplification, smoothing, displacement, and enhance-
ment.

This thesis describes an edge contraction approach to do simplification. The remaining three
components are briefly described in the following. Detailed descriptions can be found in [4].
Smoothing routines relocate or shift coordinate pairs in an attempt to smooth out small pertur-
bations and capture only the significant trends of the polygonal lines. Displacement routines
are concerned about shifting between polygonal lines to prevent coalescence or overlap at a
reduced scale. Finally, enhancement routines allow detail to be added to the already simplified
data set. Recently some geographers have become interested in applying the theory of fractals
for the purpose of enhancement.

We now turn to have an overview on the component of simplification. Simplification algorithms
are concerned about identifying and eliminating superfluous coordinates. They are performed
by applying a variety of mathematical/statistical criteria, such as angular deviation or distance
between points/segments. We will summarize most of the existing simplification algorithms in

Chapter 2.



1.1 Thesis objectives and motivation

In this thesis, we use edge contraction based on quadric error to do the simplification. The
approach was originally designed for 3-dimensional surface simplification by Garland and Heck-
bert [1]. We found that their results preserved many important features of the original surface
even though the percentage of faces reduced was up to 80 or 90. We suspect that there is a
way to quantify the approximation error. Since a 3-dimensional surface can be very complex,
we turn to 2-dimension, and succeed in improving the edge contraction approach and prove an

approximation error bound.

1.2 Thesis organization

Chapter 2 reviews on the previous work on polygonal line simplification. In Chapter 3, we
present some preliminaries and define some basic concepts for our algorithms and proofs.

In Chapter 4, we describe an basic edge contraction algorithm, which in fact is the 2-dimensional
version of Garland and Heckbert’s edge contraction surface simplification algorithm [1]. Chap-
ter 5 points out the deficiencies of this basic algorithm, and proposes the remedies. We describe
three algorithms based on the improved edge contraction procedure. In Chapter 6, we prove
the bound on the directed Hausdorff distance from the simplified line to the original one.

In Chapter 7, we present the experimental results which compare the basic algorithms, the
three new algorithms and the Douglas and Peucker algorithm (DP), which is a the high-quality
algorithm used popularly in cartography. Unlike two of the new algorithms QG and QGG,
DP does not allow the user to directly and interactively increase the simplification. Thus,
our experiments are by no means to show that our algorithms can replace DP. In fact, DP
outperforms our algorithms for most of the cases in terms of approximation quality. Our
objective is to verify whether the output quality of our algorithms are close to that of DP.
Finally, we conclude the thesis in Chapter 8, and suggest some directions for future work in
Chapter 9.

In Appendix ??, we supplement the thesis by presenting the experimental graphs of more than

10 data sets for error analysis of the outputs of the algorithms.



Chapter 2

Previous Work on Polyline

Simplification

The polygonal line simplification problem is a well-studied problem in various disciplines includ-
ing geographical information systems (GIS) [4, 6, 7, 8, 9, 10], digital image analysis [11, 12, 13],
and computational geometry [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. We first summa-
rize the algorithms used in cartography. And then we will have a survey on the theoretical

algorithms in computational geometry.

2.1 Algorithms in cartography

There are various kinds of classifications for these many different methods. we will stick to the
classification proposed by McMaster [4], who claimed that some other classifications seemed
to be inadequate. Although the original classification has five categories, I will only use four
categories by combining two of them. The difference is that the third category described below
was further divided into two categories, called constrained and unconstrained ones.

The algorithms are divided into four categories: 1) Independent point algorithms, 2) Local

processing algorithms, 3) Extended local processing algorithms, and 4) Global algorithms.



2.1.1 Independent point algorithms

These routines are very simple in nature and do not, in any way, account for any meaningful
relationship with the neighboring points. The best example is the nth point routine where every
nth point (eg. 3rd, 6th, 9th, ...) is retained. Although this routine is simple and efficient, it is
useless in any application for high-quality approximation. However, it have some utility when

we are eliminating points on extremely dense polyline.

2.1.2 Local processing algorithms

Local processing routines utilize the characteristics of the immediate neighboring points to
determine whether to retain the points. For instance, an algorithm eliminates points if they are
closer together than a prescribed distance. Other examples are Tobler’s algorithm (1965) [4]

and Jenk’s algorithms [4].

2.1.3 Extended local processing algorithms

Unlike local routines, these algorithms search beyond the immediate neighboring points and
evaluate sections/parts of the polygonal line. In this category, some routines are less constrained
in their search, and others may be more constrained.

One example of extended processing routine with constraint is Lang’s routine (1969) [4]. It
uses a Euclidean distance measure for vertex removal. It operates on six consecutive vertices
Vg, U1, ... ,U5 at a time. First we connects vy to vs. Let £ be the supporting line of vgvs. If
the distance of any v;(1 < i < 4) from £ exceeds the input error tolerance e, ¢ is repositioned
from points vy to v4 and the distances from this line to the remaining intermediate points are
calculated. As soon as all perpendicular distances between the two end points are less than e,
the end point vy is retained, v4 becomes the new vy, and the next segment of the polygonal line
is processed.

Other examples are Reumann-Witkam’s routine (1974), Opheim’s routines (1981, 1982) and

Johannsen’s routine (1974) [4].

2.1.4 Global algorithms

This category, unlike others, considers the polyline in its entirety while processing. Another dif-

ference is that the algorithms in the previous categories are sequential. The global simplification



algorithm commonly used in cartography was developed by Douglas and Peucker (1973) [6]. It
is called the Douglas and Peucker Algorithm (DP). This method is summarized by the authors

as follows:

This method begins by defining the first point on the line as an anchor and the last
point as a floating point. These two points define a straight segment. The inter-
vening points along the curved line are examined to find the one with the greatest
perpendicular distance between it and the straight line defined by the anchor and
the floater. If this distance is less than the maximum tolerable distance, the straight
segment is deemed suitable to represent the whole line. in the case where the con-

dition is not met, the point lying furthest away becomes the new floating point [6].

For more details on this algorithm, please refer to [4, 6]. This algorithm has been reported
to be superior in choosing critical points [6, 26, 27]. The asymptotic time complexity has
been reduce to O(nlogn) by Hershberger and Snoeyink [9] from its original O(n?). The
routine uses the data structure of dynamic path hull to keep track of the farthest point from
a line. However, the overhead increases so much that the improved algorithm runs slightly
slower than the original version for the statistical properties of cartographic data [28]. Recently,
Hershberger and Snoeyink [25] further reduced the running time to O(nlog* n) again. However,

the improvement itself is more of theoretical interest.

2.2 Algorithms in computational geometry

The first category below, in fact, does not address polyline simplification directly. We put it

here because the algorithms in the categories following it will use some results of them.

2.2.1 Homotopic path and loop results

Hershberger and Snoeyink defined the concepts of homotopic path and loop in [14]. Two
paths among obstacles in the plane are homotopic if they are the same endpoints and they can
be deformed continuously to each other without leaving the plane. Similarly, two loops among
obstacles in the plane are homotopic if they can be deformed continuously to each other without
leaving the plane.

Given a path « inside a triangulated polygon possibly with holes, Hershberger and Snoeyink [14]



presented linear time algorithm to compute a shortest path homotopic to @ and a minimum-link
path (a path with minimum number of edges) homotopic to a. Note that the minimum-link
path returned may be self-intersecting. Similarly, given a loop « inside a triangulated polygon
possibly with holes, a shortest loop homotopic to & can be computed in linear time. However,
it is not known how to compute a homotopic loop with minimum edges. Hershberger and
Snoeyink [14] showed how to compute in linear time a homotopic loop with at most one more
than the minimum number of edges. Again, this homotopic loop may be self-intersecting.

In [16], Kahan and Snoeyink showed that representing the minimum-link path may require
O(n?logn) bits while the input polygon requires only O(nlogn) bits. Thus, all the linear-time
algorithms for minimum-link paths heavily depend on the theoretical assumption that storing
and carrying out a single arithmetic operation involving real numbers can be done in constant

time.

2.2.2 Approximating r-monotone polyline using uniform error metric

According to different requirements and error metric, different algorithms arouse. Generally,

researchers are interested in two versions of the simplification problem:
e min-# problem: given an input error tolerance €, minimize the number of edges, and

e min-€¢ problem: given a bound on the number of edges in the simplified line, minimize the

€rror e.

For a z-monotone polyline using uniform error metric, Hakimi and Schmeichel [15] solved the
min-# problem in O(n) time. The trick is to fatten the monotone line to a polygon, and then
apply a linear time algorithm similar to the minimum-link homotopic path algorithm. On the
other hand, the min-e¢ problem can be solved in O(n%logn) time. The trick is to identify all
“critical values” of € (i.e., for any no. of edges, the minimum error must be equal to one of
these critical values). There are O(n?) of these values. After sorting these values in increasing
order, the min-e problem can be solved by binary searching among these values and solving the
corresponding min-# problems. Later, Wang et al. [17] used a clever plane-sweep approach to
improve the running time to O(n?). The running time has subsequently been improved further

to to O(nlogn) by Goodrich [18] using parametric searching.



2.2.3 Approximating a general polyline

For general polyline, Imai and Iri [23] proposed a version of the problem in which vertices of
simplified line must be vertices of the original line, and the simplified line must visit these
vertices in the same order as they appear in the original line. Thus, the simplification can be
viewed as replacing a subchain between two vertices by a line segment between them. Imai and

Iri [23] proposed several error metrics. One of them has subsequently been studied by others:
Error of joining v;v; equals the maximum distance of v; from v,y for i < j <k.

Note that this error measure will finally guarantee a bound on the Hausdorff distance between
the simplified line and the original line.

Melkman and O’Rourke [24] solved the min-# problem in the above setting in O(n?logn)
time. Later, Chan and Chin [20] improved the running time to O(n?) time which also implied
an O(n? logn) time algorithm for the min-e problem. Chan and Chin [20] also studied the min-
# and min-e problems for simplifying a closed polygonal line. For a closed polyline, the min-#
problem can be solved in S(n) time where S(n) is the running time for solving the all-pairs
shortest path problem in an unweighted directed graph while the min-e problem can be solved
in S(n)logn time.

Guibas et al. [22] proposed other versions of the problem in which vertices of the simplified
line need not be vertices of the original line. They only dealt with the min-# problem. One
approach is to fatten the polygonal line to a “splinegon” first by convolving it with a disk of
radius e. Now the input line is a path within this splinegon. Then the splinegon is triangulated.
Afterwards, they apply the homotopic minimum-link path algorithm in [14] to compute the
simplified line. The fattening and triangulation are expensive operations in practice.

Guibas et al. [22] also proposed other versions of the min-# problem which place further re-
quirements on the ordering and locations of the vertices of the simplified line. The simplified
line is required to stab the fattened vertices (disks of radius e centered at the vertices), as well
as the fattened edges (convex hull of the adjacent fattened vertices) in order. New vertices of
the simplified line can either 1) lie anywhere (which implies that the directed Hausdorff dis-
tance is not bounded), 2) lie inside fattened edges, or 3) lie inside fattened vertices. If new
vertices can lie anywhere or must be inside fattened edges, the minimum-link path can be
found in O(n*logn) time. This also uses a graph approach like in [23]. If new vertices must

lie inside fattened vertices, a path with at most twice as many edges as the minimum-link path



can be computed in linear time using a simple greedy algorithm. If the fattened vertices are
disjoint, and new vertices can lie anywhere or inside fattened edges, a minimum-link path can

be computed in linear time using a greedy approach.

2.2.4 Negative results

Guibas et al. [22] proved two negative results in some settings. Given a subdivision S inside a
region R, computing a subdivision S’ with minimum-link so that S and S’ can be continuously
deformed into each other within R (homotopic) is NP-hard. Given a simple polygon curve a
inside a region R, computing a simple polygon curve o' with minimum-link so that o and o'
can be continuously deformed into each other within R (homotopic) is also NP-hard.

Thus the general problem of simplifying a map in GIS research is likely to be difficult. Also,
optimizing the size of the simplified line while enforcing simplicity is probably a difficult problem

too.



Chapter 3

Preliminaries and Definitions

A polygonal line or simply polyline L is a contiguous sequence of edges in the plane. We denote
L by a sequence of vertices vg...v, where v;_qv;, 1 <i < m, is an edge. A vertex v; is an
interior verter of L if it is adjacent to two vertices in L. An edge v;v;41 is an interior edge of
L if both v; and v; 41 are interior vertices. A subchain of L is a polygonal line represented by a
contiguous subsequence of vertices.

L is monotone if the intersection between L and any vertical line is a single contiguous interval,
which can degenerate to a single point. L is convex if L is monotone and for any two points
x and y on L, the line segment zy lies above the subchain between x and y. Similarly, L is
concave if L is monotone and for any two points z and y on L, the line segment zy lies below

the subchain between z and y. Traverse L from vy to vy, and orient the supporting lines [;

(a) (b) (c)

Figure 3.1: (a) A monotone polyline; (b) a concave polyline; and (c) a convex polyline.

for 1 < i < m consistently. The turning angle at an interior vertex v; is negative (positive) if
v;v;11 lies on the left (right) of the oriented /;. The magnitude of the turning angle at v; is the
smallest rotation angle for the oriented I; about v; to align with the oriented ;1. The turning
angle is zero if v;v;41 lies on [;. L is called a spiral if no two turning angles are of different

signs. L is a inflection polygonal line if it is not a spiral. In this case, L must contain an edge



v;v;41 such that v; and v;5;1 are interior vertices and the signs of the turning angles at v; and

vi+1 are different. We call v;v;41 an inflection edge. We call L nice if the magnitude of each

(a) (b)

Figure 3.2: (a) A spiral; and (b) A non-spiral where e is a inflection edge.

turning angle is at most /2.

Figure 3.3: A nice polyline where all turning angles aq, as, ... , a5 are < /2.

Each edge e in L induces a strip which is the region between the two perpendicular lines through
the endpoints of e. Each interior vertex v; of L induces a wedge defined as follows. Shoot two
rays from v; normal to v;—;v; and v;v;41 towards the larger angle at v;. The cone between
these two rays is the wedge induced by v;. See Figure 3.4 for an example.

The directed Hausdorff distance from a point v to an object O is the minimum Euclidean
distance from v to @. We use H (v, O) to denote the square of this distance. The directed
Hausdorff distance from O to O is the maximum directed Hausdorff distance from any point

vin O to O.
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strip
wedge

(a) (b)

Figure 3.4: (a) A strip induced by edge e; and (b) a wedge induced by interior vertex v;.
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Chapter 4

An Edge Contraction Algorithm

4.1 Quadric error

An edge contraction merges the two endpoints of an edge uu’ into a new vertex v, which is
called a destination vertex. Sometimes the edge contraction is denoted by (u,u') — v.The
figure below is an example of edge contraction. The uncontracted edges incident to v; and v;4 1

will become incident to v. This leaves us the issue of fixing the location of v which is related to

Before After

Figure 4.1: Contract edge uu’ to destination vertex v.

the objective that the simplified line should approximate the original one well. That is, an error
measurement should be developed. In the related work of simplifying 3D polygonal surfaces [1],
Garland and Heckbert defined a notion of quadric error. We translate that to 2D. In this case,
the quadric error of contracting v;v;11 to v is H(v,l;) + 2H (v,l;+1) + H(v,l;12). Thus, v is to
be fixed such that H (v,l;) + 2H (v,li+1) + H(v,li+2) is minimized.

We represent v using homogeneous coordinates (x,y,1). Let I; be the line a;x + by + ¢; = 0,
where a? + b7 = 1. We define a line matriz K, for I; to be

2

a; a; bz a;C;

a;C; bi C; C?
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Then H(v,l;) = (ajx + by + ¢;)? which can be written as (z,y,1)K;,(z,y,1)t. Thus, we want
to fix v such that I = (z,y,1)(K;, + 2K;,,, + K;,,,)(2,y,1)" is minimized. We define a vertex

matric M,, = K;, + K;,,, for each vertex v;. Thus, II can be rewritten as (z,y,1)(M,, +

it

My, )(z,y,1)". Furthermore, if we define M,, + M,, , to be the vertex matrix of the new

i+1

vertex v, then the quadric error II can be simplified to be (z,y, 1) M, (z,y, 1)t

Suppose that M, equals
mi1 Mi2 M3
mi2 MmM322 MM2a3
mi13 M23 M33
Then II becomes my1 22 +2my22y +2m 137 +masy> +2mazy +maz. At the minimum, 811/0x = 0

and OI1/Jy = 0. Thus, we have the following system of linear equations

mi1 M1z Ma3 x 0
M1z Moz Moy Y =10
0 0 1 1 1

whose solution yields the optimal location for v. Note that the last matrix is identical to M,
except that the last row is replaced by (0,0,1). To see that we indeed obtain the minimum
(instead of the maximum or other possibilities), let’s check the determinant of second order
derivatives

0°1/0x*  0°1/0ydx

0°11/0z0y O*11/0y?

which equals

2m11 2m12

2m12 2m22

The above determinant equals 4(m11mas — m3,). Observe that by using a multiset I = {i,i +

1,i + 1,7 + 2} of indices, (m11mas — m2,) can be written as

(Ziel a?)(Zz€I b?) (Ziel aibi)Q)
= Zz’#ez(a?bz — aibiab;)
= Zi<je]

(ajb3 — aibja;b; + a3bi — ajbja;b;)
= ijg(a b? — 2a;b;a;b; + a; 2b?)
(

= Zi<je] aibj — )2
= Zz<]€] a; b][l - (a]/b])(bl/al)]2

13



Thus, the determinant is always positive unless the supporting lines I;, for all i € I, are parallel.
We assume that this is not the case. (In the next chapter, we will improve upon this algorithm
and a side effect is that this assumption is always enforced.) Since we can assume some rotation
of the figure so that both a; and b; are nonzero for all i, we have (}_,a?) > 0 and (}_,b7) > 0.
These two conditions together with the positive determinant implies that the point (z,y) found
indeed minimizes the quadric error [33]. Incidentally, (m11mas — m?,) is also the determinant
of the system of equations representing 0II/0z = 0 and O0II/0y = 0. Therefore, we conclude

that this system is solvable with a unique solution.

4.2 Repeated edge contraction

The above completes the description of contracting one edge. How do we proceed afterwards?
In general, let S, be a multiset of lines associated with each vertex u in the current simplified
line. Initially, for each vertex v; of L, S,, contains l; and l;;1. In general, if we contract an
edge uu' to the new vertex v in the current simplified line, let S, = S, U Sy without removing
duplicates, and fix v so as to minimize the quadric error Zlesu H(v,l). The corresponding
edges of the lines in S, form a subchain C, = v;_q1v;...v; of L for some i and k. Note that
liv1,...,lg—1 appear twice in S, and [; and [, appear once in S,. Hence, the quadric error
Yies, H(v,1) equals H(v,1;) + 225;2.1+1 H(v,1j) + H(v, ).

In the implementation, it is not necessary to explicitly maintain the multisets S, because this
information is captured by the vertex matrix M,. Contracting an edge uu’ is carried out by
three simple steps. First, add M, and M, to form M, (which corresponds to S, = S, U Sy).
Second, replace the last row of M, by (0,0,1) to form a matrix M. Third, determine the z and
y coordinates of v by the equation (z,y,1)! = (M;)~'(0,0,1)t. Note that (z,y,1)M,(x,y,1)!
equals the quadric error ), .o H(v,1).

We can use the same argument in last section to verify that (M)~! exists and the v determined

indeed minimizes the quadric error, provided that not all the lines in S, are parallel.

4.3 A basic algorithm

Repeated application of the edge contraction above yields a basic algorithm, which is the 2-

dimensional version of Garland and Heckbert’s algorithm proposed in [1]. We denote this

14



algorithm by Q.
We use linked lists to represent lists of the vertices and edges of L, and use a heap to store the
quadric error of each possible edge contraction for current simplified polygonal line. We sketch

the algorithm Q below.

Algorithm @

Input. A polyline L, and an error tolerance e.

Output. A simplified polyline L = vgvy . .. Upp,.

1. Compute M,, = K;, + Kj, 41 for all interior vertices v; of L.

2. For each interior edge v;v;y1, set M, = M,, + M, and solve M} (z,y,1)! = (0,0,1)! for

i1
v = (z,y), and compute the quadric error (z,y,1)M,(z,y, 1)t.
3. Insert all the edges into a min-heap with their quadric errors as the key.

4. while the minimum quadric error in the heap is not larger than €2,

5. Remove from the heap the edge wu’ with minimum quadric error.

6. Contract uu' to v.

7. Update the adjacency information of v.

8. Update the quadric errors(in the heap) of the two edges incident to v.

Line 4 of the above algorithm can be replaced by

4. while size of the current simplified polyline > the input target size,

if the input parameter is the target size instead of the error tolerance e.

Clearly, each edge contraction takes O(logm) time where m is the size of the current simplified

polyline.
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Chapter 5

Our Improved Algorithms

5.1 Deficiencies

The basic algorithm stated in the last chapter suffers from the problem that the quadric error
used does not guarantee a bound on the distance of a new vertex v from the original polygonal
line. We describe two problematic scenarios below.

Figure 5.1 shows a spiral L = vg...0qUp41 ... 02p41 in which the edges v;_qv; for 1 <i < n,
and v;_1v; for n +2 < i < 2n + 1 lie on two lines I; and I, respectively. Let I3 be the line
through v,v,41. Let | be the line through v,y; perpendicular to I;. Suppose that we first
contract v,v,4+1 and then repeatedly contract edges without destroying vy or va,41. Then we
will eventually obtain a simplified line vgvva,4+1. We claim that the vertex v can lie very far to

the right while the maximum quadric error of any edge contraction performed is very small.

v
V2nt1eq Unil 2’1“\.
wo—o—:}. — *v
Vo Un, Vo
Before After

Figure 5.1: Contract vg . .. V3,41 down to vovvo,41.

By Lemma 6.1 in the next chapter, v must lie in the triangle bounded by [y, I, and l5. We
arrange the three lines such that this triangle is isosceles. See Figure 5.2. Let d; be the distance
of v from [;. Then the quadric error of producing v is (2n — 1)d? + (2n — 1)d3 + 2d3. At the
optimal location for v, dy and dy should be balanced. Let I5 be the line that is parallel to, at

distance d3 from, and below I3. For any fixed ds, the optimal location of v is the intersection

16



Van+1

Figure 5.2:

between 1§ and the bisector of angle 6.

If we increase n at this fixed ds, then the quadric error will increase. To reduce the quadric
error again, we have to decrease d; and ds which can only be achieved by increasing ds. Thus,
by increasing n, we can push v arbitrarily close to the right vertex of the isosceles triangle. Let
D be the half of the length of bottom of the triangle. So we can make the directed Hausdorff
distance from v to L arbitrarily close to D. Let 6 be the right angle of the isosceles triangle.
Then d3 < 2D sinf. The quadric error of the right vertex of the triangle is certainly an upper
bound on the minimum quadric error of producing v since v lies inside the triangle by Lemma 6.1
in the next chapter. The former quadric error is 8D?sin?>#. Hence, by decreasing 6, we can
make the quadric error of producing v small compared with D. The quadric error of other edge
contractions prior to the one producing v can only be smaller. This completes the example.
Another problematic scenario is that when we contract a inflection edge that is almost parallel
to the two adjacent edges, the new vertex produced can also be far from the original line.
Figure 5.3 shows a polygonal line vg...0,V541 ... V2541 in which v,v,41 is a inflection edge.
Note that the three lines containing the edges of the original polygonal line are arranged in the
same fashion as in Figure 5.2. Thus, when we repeatedly contract down to a polygonal line
VpVV2,41, the vertex v will also be very far from the original polygonal line while the maximum

quadric error of edge contractions performed is small.

Un+1 Van41
—> & .\ 'Y
U.o e M ﬂn Van+1 % v
Before After

Figure 5.3: Contract vg . .. vap41 down to vgvvapy41.
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5.2 Revised quadric error and its computation

We suggest methods for handling the two bad scenarios in the previous section. In the next
chapter, we will prove that they are sufficient to translate the quadric error to a bound on the
directed Hausdorff distance from the simplified line to the original line.

The basic idea is that we need not restrict ourselves to supporting lines of the edges of L for
quadric error computation. Thus, our approach is to add extra lines. For each interior vertex
v; of L such that the magnitude of the turning angle at v; is more than 7/2, we add a line [ that
locally touches L at v; and makes the same acute angle with v;_;v; and v;v;41. See Figure 5.4.
Doing so will constraint the corresponding contracted vertex to be within some distance around
v;, which we will prove it rigorously in Chapter 6. Correspondingly, S,, = {l;,l;+1,l}. The
vertex matrix M, of v; is set to be K, + K;,,, + K; (instead of K, + K, ., ), where Kj,, K;,_,,
and K are the line matrices of I;, l;11, and [ respectively. As in the previous chapter, whenever
we contract two edges uu’ in the current simplified line to produce a new vertex v, the vertex
matrix of v M, is set to be M, + M, and S, equals S, US, without removing duplicates. The
quadric error of contracting uu' is again (x,y, 1) M,(x,y, 1), where v = (z,y).

Suppose that the corresponding edges of the line in S, form the subchain C' = v;_1 ...vg. Then
the quadric error can be rewritten as of the last edge contraction producing v is H(v,l;) +
22?;1.1“ H(v,lj) + H(v,ly) + 3, H(v,1), where E is the set of extra lines added at sharp

turns at interior vertices of C'. As a shorthand, we denote this sum by Q(v, C).

Van+1 :: — Van+1 :: i Upt1

Vo Un Vo Un
Before After

Figure 5.4: Add an extra line to the sharp corner at v,41.

Upt1 Unt1

coe o ce o o o U211
v . n
Vo v, 2" g Uy,

Before After

Figure 5.5: Add a complementary line for the inflection edge v,vp41.

We also add extra lines for inflection edges or edges that are adjacent to two collinear edges.

For each such edge e, we add a line [ that passes through the midpoint of e and perpendicular
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to e. We call | the complementary line of e. See Figure 5.5. The effect of doing this will
again constraint the corresponding contracted vertex to be within some distance around the
midpoint of e, which we will prove it rigorously in Chapter 6. Unlike the extra lines added at
sharp turns, complementary lines are much less natural. Suppose that we are producing a new
vertex v that represents a subchain C, of the original polygonal line. We will see in the next
chapter that for our bound on the directed Hausdorff distance to hold, complementary lines of
edges in C, are only needed when C,, does not have any sharp turn at interior vertices. Also, in
this case, we only need one complementary line for the proof to work. Therefore, during edge
contraction, we should eliminate complementary lines to avoid increasing the quadric error of
future edge contractions unnecessarily (recall that the quadric error will bound the squared
directed Hausdorff distance from the simplified line to the original one).

To cater for complementary line, we keep an auxiliary vertex matrix M, in addition to M, for

each vertex v of the current simplified line. Initially, M is the zero matrix for each vertex of

Vi

the original polygonal line. In general, let C), be the subchain of the original polygonal line
that v represents. If an extra line has been added to a sharp turn at an interior vertex of C,,
then M, is set to be the zero matrix; otherwise, M, is the line matrix of the complementary
line of some inflection edge in C,. How do we select this inflection edge? This is done during
edge contraction.

Suppose that we contract an edge uu' to a new vertex v. Let K be the line matrix of the
complementary line of uu’ if uu' is a inflection edge, and let K be the zero matrix otherwise. If
an extra line has been added to a sharp turn at an interior vertex of Cy, U Cy, then we set M/
to be the zero matrix. Otherwise, if at most one of K, M, and M, is not the zero matrix, then
we set M to be it. Finally, if at least two of K, M|, and M, are not the zero matrix, then we
set M/ to be one of them. That is, we keep the complementary line of at most one inflection
edge in C, U Cy. After obtaining M), the quadric error for contracting uu’ to produce v is
(z,y,1)(M, + M})(z,y,1)". If we replace the last row of M, + M by (0,0, 1) to form a matrix
M}, then solving M} (x,y,1)t = (0,0,1)! yields the location of v. Clearly, one obtains different
edge contraction procedures by using a different selection criteria when at least two of K, M,
and M), are not the zero matrix. We describe several algorithms resulted in the next section.
In all, if v represents C, = v;_1 ... vy, then the quadric error of the edge contraction producing

v has been revised to be the sum of two terms Q(v,C,) + A, where
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e Q(v,Cy) = H(v,l;) + 225;2.1+1 H(v,l;) + H(v, ) + > "cp H(v,1), where E is the set of

extra lines added at sharp turns at interior vertices of C,, and

¢ A =0 if no complementary line is kept with C,, or A = H (v, 1) if | is the complementary

line kept with C,.

Q(v,Cy)+ A is the revised quadric error used by our simplification algorithm and it is computed

as (,y,1)(M, + M)(2,y,1)" where v = (2,y).

5.3 Three improved algorithms

First of all, our proof of the bound on the directed Hausdorff distance in the next chapter holds
independent of the edge contraction procedure chosen. In the experimentation, we implemented
two edge contraction procedures. In one procedure, we greedily select the nonzero matrix among
K, M} and M], depending on which yields the smallest quadric error for contracting vu'. In
the other procedure, we prefer M, first, then M,,, and then K, assuming that u appears before
u' in the representation of the current simplified line.

Finally, one still has freedom in selecting the next edge to be contracted. We experimented
with two methods. The first method is greedy in nature: choose the next edge that yields the
smallest quadric error. Since there are two edge contraction procedures as described in the
previous paragraphs, and each may produce a different quadric error for contracting the same
edge, the greedy method actually yields two simplification algorithms. In both of these two
algorithms, all quadric errors for contracting an edge of the current simplified polygonal line
are stored in a minimum heap. After each edge contraction, we have to update(in the heap)
the quadric errors of two edges incident to the vertex produced by the contraction. Outlines
of these two algorithms are similar to the basic algorithm presented in last chapter. So the
time needed for each edge contraction for both of these two versions is O(logm) where m is
the size of the current simplified polyline. We use QGG to denote the algorithm that picks the
next edge greedily and sets M, to obtain the smallest quadric error. We use QG to denote the
algorithm that picks the next edge greedily and sets M according to the order of preference
M), M],, and then K.

In the second edge selection method, we always choose the leftmost edge (according to the

representation of the current simplified line) subject to the constraint the resulting quadric
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error is below some prescribed threshold. The quadric error computation is based on setting
M to obtain the smallest quadric error. A heap is no longer needed and we just need to
keep track of the leftmost edge with quadric error without exceeding the threshold. each edge

contraction now takes constant time. We denote this algorithm by QLG.
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Chapter 6

Error Bound Analysis

Let Ls be a simplified polyline obtained from a polyline L by a sequence of edge contractions
of any of our improved algorithms. In this chapter, we will show that the directed Hausdorff
distance from L to L is bounded by the square root of the maximum quadric error of the edge
contractions performed. We prove our result in two steps. First, we prove that for each vertex

on L, it is bounded by that distance from L. Then we prove the same for each edge of L.

6.1 Bound for new vertices

We first prove two technical lemmas.

Lemma 6.1 Consider the arrangement of m > 2 lines, ly,... ,l,,, such that not all of them
are parallel. Let Sy be the union of all bounded cells, S; the union of all bounded edges, and
So the set of all vertices. If v is a point that minimizes Y., ¢;H (v,l;) for any positive integers

¢;, then v € Sy U S; U Ss.

Proof: Assume to the contrary that v € SoU Sy USs. Let v lie in the interior of an unbounded
cell U or on the two semi-infinite edges of U. See Figure 6.1.

Let the chain of boundary edges of U be ey, es,...e;, where e; and e; are semi-infinite. Let x
be the intersection point of the supporting lines of e; and e;. If e; and e; are parallel, then
their supporting lines intersect at two points at infinity and let z be the one that lie outside U

at infinity.
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Figure 6.1:

The ray r, emanating from v through z intersects the boundary of U, say at a point w. Let
ry be the ray emanating from w through z. For each line I; that does not contain v, since I;
avoids the interior of U, I; either intersects r,, or is parallel to r,. Thus, H(v,l;) > H(w,l;).
Moreover, by assumption, not all the lines are parallel and so there exists [}, such that [; in-

tersects ry, and so H(v, 1) > H(w,l;). This contradicts the given condition that v minimizes

Yy il (v, ).

Lemma 6.2 Let x be the intersection of two lines I, and ls. Let —y and —, be the perpen-
diculars to |y and ls at x respectively. If the smaller angle between —; and —» is acute, then

|vz|?> < H(v,l1) + H(v,l3) for any point v inside the angle.

Proof: Let vf; be the perpendicular from v to ;. See Figure 6.2. Extend the line segment v fo
to intersect Iy at f}. Since Zvafi = Zavfo+Lvfix, Zvafi > Zzvfs. Since dy = |vz|sin(ZLvz fi)

and |zfs| = |vz|sin(Lavfy), di > |z f2|. Hence, d} + d3 > |zvf2|? + d3 = |vz|?.

Lemma 6.3 If [}, lo, and | are three concurrent lines such that | stabs the smaller (break
ties arbitrarily) double wedge formed by Il and s, then H(v,l) < H(v,l;) + H(v,ls) for any

arbitrary point v.

Proof: Let d; = \/H(v,l;) and d = \/H(v,l). Let x be the common intersection of Iy, I,

and [. Let vf; be the perpendicular from v to [; and let vf be the perpendicular from v to
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Figure 6.2:

l. Let —; and —» be the perpendiculars to /1 and l> at z respectively. Suppose that v lies
inside the acute angle between —; and —». It is obvious that |vz| > d. By Lemma 6.2, we
have d} + d3 > |vz|?> > d*>. Suppose that v lies outside the acute angle between —; and —».

Without loss of generality, let v be in the region as shown in Figure 6.3. It is obvious that

Figure 6.3:

ZLvxfy > Loz f. Since d; = |vz|sin(Lvxfi) and d = |vz|sin(Lvzf), we have dy > d.

For the following lemmas, we let L be the subchain of the original polyline associated with a
vertex v of the current simplified polyline. Now if L is nice and concave/convex, we can prove

that the distance of v from L is within the square root of the quadric error for contracting L
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downto v.

Lemma 6.4 Let L = v ...vn,, m > 2, be a nice concave/convex polyline. If v is a point that

minimizes Q(v, L), then H(v,L) < Q(v, L).

Proof: We consider the case where L is convex as the other case is symmetric. See Figure 6.1.

Let l; be the supporting line of the edge v;_1v;. Consider the arrangement of the lines /;’s. Let

Figure 6.4:

U be the cell such that L is a subset of the boundary of U. Since L is convex, U is unbounded.
We have two situations depending on whether [y and [,,, are parallel or not. See Figure 6.1. By
Lemma 6.1, v lies inside the shaded region as the other cells are all unbounded. So v must lie
inside some strip or wedge induced by an edge or interior vertex of L. If v lies inside a strip,
then clearly H(v,L) < H(v,l;) for some ¢ which is less than Q(v,L). If v lies inside a wedge,

then since L is nice, then angle of the wedge is acute and so by Lemma 6.2, H (v, L) < Q(v, L).

Now we prove that the same result holds when L is a nice spiral.

Lemma 6.5 Let L = vy ...vy,, m > 2, be a nice spiral. If v is a vertex that minimizes Q (v, L),

then H(v,L) < Q(v, L).

Proof: Rotate the figure so that vy and v, are below v and they lie on opposite sides of a

vertical line £ through v. Without loss of generality, we assume that vy and v, lie on the left

25



and right of ¢ respectively. We call a vertex v; on L a local maximum if v; is not an endpoint
of L and v; is not below its two neighboring vertices. Local minimum is defined symmetrically.
Case 1: there is a concave subchain C of L that contains a local maximum and intersects £

above/below v.

Um

Figure 6.5: Case 1.

Suppose that C intersects £ above v. See Figure 6.5(a). Let ¢’ be the horizontal line tangential to
the local maximum in C'. The perpendicular from v to £’ must then intersect C. By Lemma 6.3,
the length of this perpendicular is at most \/m and so is the distance of v from C. Suppose
that C intersects £ below v. See Figure 6.5 (b). Then v lies inside some strip or wedge induced
by edges or interior vertices of C' and so H(v,L) < Q(v, L).

Case 2: there is a maximal concave subchain C of L such that C' contains a local maximum,
and vy, (vp) is not the left(right) endpoint of C' if C' lies on the right (left) of £. See Figure 6.6.
We can assume that case 1 does not apply and so C' lies on one side of £, say the right side. See
Figure 6.6(a). Let vy, be the left endpoint of C. Since vy, # v, by assumption, vy is incident
to another edge e not in C. Since C' is maximal and L is a spiral, e must lie on the right of v,
below the edge in C incident to vg. If v lies inside the strip induced by e or some edge in C,
or v lies inside the wedge induced by vy or some interior vertex of C, then we are done. If this
is not the case, then observe that both endpoints of e must lie above v and the strip induced
by e intersects [ above v. Let C' be the maximal convex subchain that contains e. Then either
C' contains a local minimum or C' contains v,, which lies below v. See Figure 6.7. In either

case, v must lie inside some strip or wedge induced by edges or interior vertices in C'. Hence,

H(v,L) < Q(v,L).
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Figure 6.7: Case 2 (a.1) & (a.2).

Case 3: there is a local minimum in L. Let C’ be the maximal convex subchain that contains

this local minimum. Suppose that C' intersects £. If C' intersects ¢ below v (See Figure 6.8(a)),

then by Lemma 6.3, the distance of v from the horizontal tangential line touching the local

minimum in C' is bounded by \/Q(v, L). So is the distance of v from C' then. If C' intersects

£ above v (See Figure 6.6(b)), then v must lie inside some strip or wedge induced by edges or

interior vertices in C' and so H (v, L) < Q(v, L). Suppose that C" does not intersect £. Without

loss of generality, assume that C' lies on the left of £. Let C be the maximal concave subchain

shares an endpoint with C' and separates C' from v,,. If the common endpoint of C’ and C is

the right endpoint of C| then it is clearly not vy as vy has degree one in L. Otherwise, since

C separates C' and v,,, the right endpoint of C' cannot be vg. If C' contains a local maximum
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Figure 6.8: Case 3 (a) & (b).
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Figure 6.9: Case 3 (c) & (d).

(See Figure 6.9(c)), then C satisfies cases 1 or 2 and we are done. If C' does not contain a
local maximum (See Figure 6.9(d)), then since L is a nice spiral, C' must be incident to the
left endpoint of C' and v,,, increasing from left to right, and cross ¢ below v and above the
local minimum in C’. Hence, the vertical distance from v to C is less than the distance from v
to the horizontal tangential line touching the local minimum in C’. The latter is bounded by
v/Q(v, L) by lemma 6.3 and so H(v,L) < Q(v, L).

Case 4: The remaining possibility is that L does not contain any local minimum. If L does
not contain any local maximum too, then L is actually a convex/concave chain with respect to
horizontal direction (See Figure 6.10(a)) and Lemma 6.4 applies. Suppose that L contains a

local maximum. Let C' be the maximal concave subchain containing this local maximum. Since
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Figure 6.10: Case 4 (a) & (b).

cases 1 and 2 do not apply, without loss of generality, we can assume that C' lies on the right
of £ and v, is the left endpoint of C. See Figure 6.10(b). S0 v;—1vs, is an edge in C. We
can also assume that v lies below the intersection between ¢ and the strip induced by vy, —1 v,

otherwise v must lie inside some strip or wedge induced by edges or interior vertices in C' and

Figure 6.11: Case 4 (b.1) & (b.2).

we are done. Let ¢, be the line through v orthogonal to vy,_1v,,. Note that vg and v,, lies on
the left and right of £, respectively. Sweep a line ¢' parallel to v,,_1v,, through v downward.
If /' N L is always connected throughout the sweeping (See Figure 6.11(b.1)), then L must be a
convex chain with respect to the leftward orientation of ¢'. Thus, Lemma 6.4 applies. If £/ N L
ever becomes disconnected during the sweeping, (See Figure 6.11(b.2)), then L contains a local

minimum with respect to the upward orientation of £,. Thus, we can rotate the whole figure
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so that £, becomes vertical and apply case 3 above.

Now we can prove a more general statement. That is for a general polyline L, we can prove
that the distance of v from L is within the square root of the quadric error for contracting L

downto v after performing a sequence of edge contractions.

Lemma 6.6 Let L = vgvy ... v, m > 2, be a polygonal line. If v is a vertex that minimizes
Q(v,L) + A, where A = 0 if no complementary line is associated with L, or A = H(v,l) if l is

the complementary line associated with L. Then H(v,L) < Q(v, L) + A.

Proof: Case 1: If L is not nice, then we have an extra line [ added at a sharp turn at vertex v;
and A = 0. Let Iy and I5 be the supporting lines of the two incident edges of v;. We denote [ by
I3 for uniformity. Then the six angles formed by l1, l2, and I3 are at most 7/2. Denote them by
0;,1=1,2,...,6. Let d; = \/H(v,l;). Assume that v lies inside angle 5. See Figure 6.12(a).

Let f; and fy be the feet of the perpendiculars from v to I; and Iy respectively. Without loss

ly
ndy o,
dq
x = h

(a) (b)

Figure 6.12: (a) A star for Case 2; and (b) a cross for Case 3.

of generality, suppose fi = v; or fi is on the left of v;. Since 62 < 7/2, fo must be above or on
line /;. By the same reasoning as in the proof of Lemma 6.2, |vv;|> < &% + d3 < Q(v, L).

Case 2: If L is nice but not a spiral, then A = H(v,l) where [ is the associated complementary
line of some edge v;v;+1. Let Iy be the supporting line of v;v;11. And we denote [ by [y for
uniformity. Note that Iy NIy is the midpoint of v;v;41, say z. Let d; = \/m Then
by Pythagoras’ Theorem, |vz|?> = d + d3. Since d} < Q(v,L) and d3 = H(v,l), |vz|* <

Y
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Q.L)+ H(v,L)=Q(v,L) + A.
Case 3: If L is a nice spiral, then by Lemma 6.5, H(v, L) < Q(v, L).

Up to here, we have proved a bound on the distance of v from the original polygonal line L.

We summarize as the following theorem.

Theorem 6.1 Let L be a polygonal line. Let Ls be the simplified polygonal line after per-
forming a sequence of edge contractions. Then for any vertex v on Ly, H(v, L) is at most the

maximum quadric error of the edge contractions performed.

Proof: By Lemma 6.6, H(v, L,) < Q(v, L,) + A, which is quadric error of the edge contraction

producing v.

6.2 Bound for new edges

We now prove a bound on the directed Hausdorff distance from each edge of Ls to the original
polygonal line L.

We first prove two technical lemmas.

Lemma 6.7 Let L = vgvy .. .0y, m > 1, be a polygonal line. Let ! be a line and let v}, v),,, and
L; be the orthogonal projections of vg, v,,, and L onto [l respectively. Suppose that L avoids | ex-
cept possibly at vy and vy,. Then for all point x in Ly, H(z, L) < max(Q(y, L), |vovy|?, |[vmvl,|?)

for any point y on l. Note that vjv,, C L;.

Proof: Since L avoids [, L is on one side of [. Let v; be a vertex of L with maximum distance
from line I. Through v;, draw a line I’ parallel to I. Let h be the distance between parallel lines
land l'.

Case 1: v; is neither vy nor v,,. See Figure 6.13.

If the turn at v; is not sharp, then I’ stabs the smaller double wedge formed by the supporting
lines of edges incident to v;. So by Lemma 6.3, h?> < Q(y, L). If the turn at v; is harp, then
an extra line " is added at v;. So I’ will stab the smaller double wedge formed by " and
the supporting line of an edge incident to v;. Hence, we again conclude that h? < Q(y, L) by

Lemma 6.3.
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Figure 6.13: Case 1: v; is neither vg nor v,,.

Draw the perpendicular —, from x to I’. Since x € L;, —, must intersect L at a point, say g,
before reaching line . Thus, we have |gz|*> < h? < Q(y, L).

Case 2: v; is vg or v,,. See Figure 6.14. Without loss of generality, assume that v; = v,,. In

- !
- T— l

Um—1

Y 1
Y ;) T v

Figure 6.14: Case 2: v; is vy OF ¥p,.

this case, h = |v,vl,| and |gz|* < h? = |v,vl,]°.

Therefore H(z, L) < max(Q(y, L), [vovg |2, [vmvl,|?).

Note that in Lemma 6.7, Q(y,L) is undefined when L has only one edge. For this case,
H(x, L) < max(|vgvg|?, [umvh, ).

We can generalize the previous lemma to the case when !/ does not avoid L.

Lemma 6.8 Let L = vgvy ... v, m > 1, be a polygonal line. Let | be any line and let v, v},
and L; be the orthogonal projections of vy, vy, and L on [l respectively. Then for all point © on

Ly, H(x, L) < max(Q(y, L), |vovh|?, |vmvl,|*) for any point y on 1.

Proof: Draw a line —, perpendicular to [ through z. Since z € L;, —, must intersect L at

some point, say ¢q. See Figure 6.15. Let C be a maximal subchain of L such that C' contains ¢
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Figure 6.15: Case 2: v; is vy OF ¥p,.

and avoids [ except possibly at its two endpoints. Let a and b be the endpoints of C' and let a’
and b’ be their orthogonal projections onto | respectively. Since C' contains ¢, x lies in the or-
thogonal projection of C onto [. By Lemma 6.7, we have H(z,C) < max(Q(y, C), |aa'|?, |bb'|?).
Since a are possibly be vg, v, or a', |ad'|? = |vovy|?, |vmvl,|?, or 0. Similarly we have same
possible values for |bb'|>. Also H(z, L) < H(z,C) and Q(y,C) < Q(y, L) by definition. Hence

we conclude that H(z, L) < max(Q(y, L), [vov|?, [vmvh, ).

Finally, we can combine all the results above, and can prove a bound on the directed Hausdorff

distance from each edge of the simplified polyline L to the original polyline L.

Theorem 6.2 Let L be a polygonal line. Let Ly be the simplified polygonal line by performing
a sequence of edge contractions. Then for each edge e of L, H(e, L) is at most the maximum

quadric error of the edge contractions performed.

Proof: Let €2 be the maximum quadric error of the edge contractions performed. Let uv be an
edge on the simplified polygonal line Lg. Let L, and L, be the subchains of L associated with
u and v respectively. By Theorem 6.1, we have H(u, L,) < €2, and H(v, L,) < €2. Let p and
q be two points on L, and L, respectively such that |pu|?> = H(u, L,) and |qu|> = H(v, L,).
Then we immediately have |pu| < € and |quv| < e. Let L' be the subchain of L between p and
q. Let C,, and C, be circles centered at u and v of radius e respectively. See Figure 6.16. So p
and ¢ must lie inside C,, and C,, respectively. Let [ be the line through v and v. Let p; and ¢

be the orthogonal projections of p and ¢ onto [ respectively. So p; and ¢; lie inside C, and C,
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Figure 6.16:

respectively. This implies that |pz| < |pu| < e for all point z on pju, and |gz| < |qu| < € for all
point x on qu.

Now consider any point = on p;q. Note that L' C L, U L,, and L, and L, overlap on
one edge as uv is an edge on L,. Let this overlapping edge be ab such that a is an end-
point of L, and b is an endpoint of L,. Let a’ and b’ be the orthogonal projections of a
and b onto [ respectively. Let L! be the subchain between p and a, and L! be the sub-
chain between ¢ and b. Note that L' = L), U L!. Let (L!), and (L), be the projections of
L!, and L! onto [ respectively. Consider any x on p;q;. Draw a line —, perpendicular to [
through z. Then —, must intersect L!, or L!. This means x is on (L!); or (L.);. If = is on
(L},)i, by Lemma 6.8, H(z, L)) < max(Q(u,L.,), |pp|*,|aa’|?). Symmetrically, if = is on (L});,
H(x, L) <max(Q(v, L)), |qq|?,|bb'|?). Combining the two results, as H(z, L) < H(x, L) and
H(x,L) < H(z,L!), we have H(z, L) < max(Q(u, L)), |ppi|?, |ad’|?, Q(v, L.),|qq|*, |bb'[?).
Suppose that a is not farther than b from [, that is, |aa’|?> < |bb'|?. Considering the farthest
vertex (# a), say v;, on L!, from . If v; = p, then |bb'|? < |pp;|>. Otherwise, if v; # p, then v;
is an interior vertex on L!,. By applying Lemma 6.3 at vertex v;, [bb'|> < Q(u, L!,). So we have
laa'|?, |bb'|? < max(Q(u, L), |ppm|?). Symmetrically, for |aa’|? > |bb'|?, by considering subchain
L', we have |aa'|?, [bb'|*> < max(Q(v, L), lqq|?).

So we have H(x, L) < max(Q(u, L.), lppi|*, Q(v, L.),|qq|*). Since both Q(u, L)) and Q(v, L)
2 |2 are at most €2 by our construc-

are at most the max quadric error €2, and both |pp;|? and |qq

tion, we have H(x, L) < €.
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Chapter 7

Experimentation and Results

7.1 Preliminaries

In this chapter, we present the experimental results comparing the several variants of our

simplification algorithm. They are:

Q: no extra lines are added at sharp turns, no complementary lines are added, the next edge

to be contracted is chosen greedily based on its quadric error.

QGG: extra lines at sharp turns and complementary lines are added, the matrix update at each
edge contraction is performed greedily, the next edge to be contracted is chosen greedily.

(See Section 5.3.)

QG: extra lines at sharp turns and complementary lines are added, the matrix update at each
edge contraction is performed according to a prescribed order of preference, the next edge

to be contracted is chosen greedily. (See Section 5.3.)

QLG: extra lines at sharp turns and complementary lines are added, the matrix update at each
edge contraction is performed greedily, the leftmost edge with quadric error within €? is

to be contracted, where € is the input error tolerance. (See Section 5.3.)

Note that main difference of QLG from Q, QG and QGG is that it requires an input error
tolerance e to work. Although Q, QG and QGG are designed for simplifying the given polygonal
line down to a user specified size, one can equally specify a tolerance € and then run Q, QG or

QGG until the quadric error of the next edge to be contracted is larger than €.
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The implementations of Q, QG, QGG and QLG are based on the 3D surface simplification
implementation by Garland and Heckbert [1]. For Q, QG and QGG, a heap is employed to
support the greedy selection of the next edge to be contracted. The heap stores the edges
in the current simplified line with their quadric error as key. After contracting an edge uu',
the quadric error for contracting the two edges adjacent to wu' have to be updated. Thus,
contracting an edge takes O(logm) time, where m is the size of the current simplified line. In
contrast, QLG takes constant time for each edge contraction.

We expect QGG to produce the best approximation, followed by QG, QLG and then Q. But
the processing time of QGG is expected to be higher, particularly compared to QLG. Our
experimental results generally agree with these expectations, but there are also exceptions. We
cannot really explain these exceptions and they may be data-dependent.

We also compare the above algorithm with the Douglas and Peucker algorithm (DP) [6]. It is
reputed to perform very well in practice in terms of the quality of approximation. Given an
input error tolerance e, the output simplified polygonal line of algorithm DP has the property
that the directed Hausdorff distance from the simplified polygonal line to the original polygonal
line is within e. The implementation of DP is from [32].

Both DP and our algorithms can take given error tolerance as input parameter. However, DP
does not provide an interactive and direct way to increase the simplification, unlike QGG and
QG. Thus, our algorithms can work for applications in different contexts than DP. We emphasize
that our algorithms are not proposed as substitutes of DP but rather as a new method for doing
the simplification task, which can work for other settings as well. Nevertheless, we use DP as

a benchmark to check the quality of approximation obtained by our algorithms.

7.2 Test data and measurements

We use three categories of test data:
1. 30 sets of coastlines (geographical data) from [30],
2. One set of circle data (discretized as closed polygonal chains), and
3. The Dow Jones HK index 1998 [31].

The coastlines allow us to find out how our algorithms work for real data. For spiral chains,

the working of DP uses only the vertices of the original polygonal line, which suggests that
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it may perform worse than quadric error based algorithms (which relocates new destination
vertices when doing edge contractions). We take the discretized circle data as an example for
this test case. The data set of Dow Jones HK index contains wild zigzags, which is a natural
extreme test case, and we suspect the straightforward quadric error algorithm (Q) will perform

the worst for this test case. An example in each category is shown below.

Figure 7.1: A coastline (1787 edges).
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Figure 7.2: A circle (100 edges).

Figure 7.3: The Dow Jones HK index 1998 (274 edges).



For each category, we measure two quantities that reflect the approximation error: mean vertez
distance (MeanVD), and mazimum vertex distance (MaxVD). Let L be the input polygonal
line and let Lg be the simplified line. MeanVD is defined to be:

(Z H(v,Lg) + Z v/ H (v, L))/total number of vertices in L and L

veEL vEL,

MaxVD is defined to be:

mac{max v/H (v, L), max v/H(v, L,)}

Note that MaxVD is to simulate/approximate the Hausdorff distance between L and Ls. In
order to estimate the significance of the approximation error relative to L, we also measure

the mean edge length of Ly (MeanSEL).

7.3 Summary of experimental results

We performed two classes of experiments. In class I, for each data set in each category, we
plotted MeanVD, MaxVD, and MeanSEL against the percentage of edges eliminated in the
simplified line for each algorithm. In class II, for each data set in each category, we plotted
MeanVD and MaxVD against ¢, the input error tolerance.

Recall that both DP and QLG require an input error tolerance to work (for reasons as described
before). So for experiments in class I, we attempted by trial and error to obtain the tolerance
for DP to obtain a particular size of the output simplified line. We repeat the same trial and
error process for QLG.

For data sets in the same category, we obtain similar experimental results and we describe the

general trend in the following.

7.3.1 Class I: Controlling the percentage of edges eliminated
The coastline

For the coastlines data, DP obtains the best MeanVD, compared to all the four quadric error
algorithms. The difference among the quadric error algorithms are insignificant. See a typ-
ical plot in Figure 7.4. DP also obtains the best MaxVD compared to all the quadric error
algorithms. Q and QG yield larger MaxVD than QGG and QLG over a wide range (for ex-

ample, from 30% to 80% of edges eliminated in Figure 7.5). In particular, it is more common
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for QG than Q to produce larger MaxVD than QGG and QLG. See Figure 7.5 and figures in
Appendix ?7.

Figure 7.6 shows the mean edge length of the simplified line which is similar for all the algorithms
tested from 0% to 90% of edges eliminated. It can be seen that the difference in MeanVD
relative to MeanSEL among Q, QG, QGG and QLG are insignificant from 0% to 90% of edges
eliminated. Though DP obtains the smallest MeanVD, it is no more than 5% of MeanSEL

smaller than the others.
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The circle

For the circle data, the MeanVD of all the four quadric error algorithms are similar and slightly
better than the MeanVD of DP. See a typical plot in Figure 7.7. The MaxVD of all the four
quadric error algorithms are also better than the MaxVD of DP. However, Q, QGG and QG
yield the same MaxVD while the MaxVD of QLG is 25% to 50% less. See a typical plot in
Figure 7.8. It is surprising that QLG produces much better MaxVD than Q, QGG and QG,
which we cannot explain.

Figure 7.9 shows the mean edge length in the simplified line which is similar for all the algorithms
tested from 0% to about 90% of edges eliminated. It can be seen that the difference between
DP and all the four quadric error algorithms in MeanVD is very negligible relative to MeanSEL
before 90% of edges are eliminated, which is less than 2% of MeanSEL. For MaxVD, DP is
up to 2.5% of MeanSEL larger than Q, QGG and QG, and up to 4% of MeanSEL larger than

QLG. The relative difference is again not significant.
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The Dow Jones HK index 1998

For the Dow Jones HK index 1998, DP again has the best MeanVD. The MeanVD of QG, QGG
and QLG are similar and better than the MeanVD of Q. See a typical plot in Figure 7.10. The
same trend is observed in MaxVD. Notice that Q performs very badly in MaxVD compared
with QGG, QG and QLG. See a typical plot in Figure 7.11. Figure 7.12 shows that the mean
edge lengths produced by our three improved algorithms (QGG, QG and QLG) are similar,
while the mean edge length produced by DP becomes larger beyond 63% of edges eliminated
and significantly larger beyond 80% of edges eliminated. ;From 40% to 90% of edges eliminated,
the mean edge length of Q is up to 23% smaller than that of QGG, QG and QLG. We will take
the MeanSEL of QGG, QG and QLG as the reference for us to analyze the significance of the
error differences among all algorithms.

The differences in MeanVD among Q, QG, QGG and QLG relative to MeanSEL are not sig-
nificant (up to 1.5%). However, the MaxVD of Q can be 155% of MeanSEL larger than the
MaxVD of QG, QGG and QLG.
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The above results on coastlines and the Dow Jones HK index 1998 lead us to conjecture that
our improved quadric error computation (adding extra lines at sharp turns and complementary
lines) can make a difference in the Hausdorff distance between the simplified line and the input

polygonal line when compared to the basic quadric error algorithm.

7.3.2 Class II: Controlling the input error tolerance
The coastline

The performance of Q and QGG are almost the same in both graphs.

Generally, with the same input error tolerance, DP has larger MeanVD and percentage of edges
eliminated. That means DP does more simplification than the other four for the same input
error tolerance. In particular, at 90% of edges eliminated, the input error tolerance of both
QGG and QG are about 4.5 times that of DP, Q about 4.3 times, and QLG about 3.3 times.
It can be explained that DP only takes the distance from the farthest point to compare to the
input error tolerance whereas quadric error includes all related distances to the related edges.
Among the quadric error algorithms, QLG is up to about 54% higher than Q and QGG in
MeanVD under the same input error tolerance whereas only about 5.4% higher in percentage of
edges eliminated. This means that QLG does a little bit more simplification but simultaneously
introduce much more error.

Between 0% and 80% of edges eliminated, QLG is up to about 37% lower than Q and QGG
in MeanVD under the same input error tolerance, and up to about 26% less in percentage of
edges eliminated. This means that QLG does less simplification and thus introduces less error
at a particular input error tolerance.

It is worthwhile to point out that the shapes of graphs of MeanVD against the input error
tolerance for all algorithms follow linear relation such that the curve for DP has slope of about

1/4, QLG about 1/8, while the other three about 1/12.
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The circle

The graphs of MeanVD and percentage of edges eliminated for Q, QGG and QG are identical.
The reason is that no extra line is added since the input polygonal line is nice.

The graphs of MeanVD and percentage of edges eliminated for QLG are than those for Q, QGG
and QG. This is because QLG contracts more edges and introduces more error as it processes
contractions from one end to the other sequentially in a single pass.

The MeanVD obtained by the quadric error algorithms grows linearly with the input error
tolerance. The slope of the graph for QLG is about 1/5 and the slopes of the graphs for Q,
QGG and QG are about 1/7.
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The Dow Jones HK index

The graphs of MeanVD and percentage of edges eliminated for QGG and QG are almost
identical.

The graphs of MeanVD and percentage of edges eliminated for DP are almost vertical when
compared with the other four algorithms. This shows that it eliminates many vertices even
when the input error tolerance is extremely small. The reason is that DP is good in selecting
critical point and eliminating those small zigzags even if the input error tolerance is small. In
contrast, the zigzags introduce much quadric error for all quadric error algorithms.

The MeanVD produced by Q is up to 6 times higher than QG, QGG, and QLG at a given
input error tolerance. Q also eliminates up to 40% more edges than QG, QGG, and QLG at a
given input error tolerance. This is due to the extra lines added by QG, QGG, and QLG. On
one hand, these extra lines pull the new vertices produced by edge contractions closer to the
original polyline. On the other hand, these extra lines also drive the quadric error higher and
so fewer edge contractions are performed.

The MeanVD produced by QLG is up to 15% higher than QGG and QG at a given input error
tolerance. The percentage of edges eliminated by QLG is also the same as QGG and QG for
all input error tolerance. This means QLG does not contract more but introduces up to 15%
more error in MeanVD.

The MeanVD obtained by QG, QGG, and QLG grows linearly with the input error tolerance.
The slope of the graph for QLG is about 1/21, and the slopes of the graphs for QGG and QG

are about 1/25.
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7.4 Some examples of simplification output

In this section, we only take 3 algorithms, DP, Q, and QGG, for consideration. The outputs of
QG and QLG are similar to QGG.

7.4.1 The coastline
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Figure 7.19: DP: Simplified to 50 percent.

Figure 7.20: DP: Simplified to 10 percent.

Figure 7.21: DP: Simplified to 5 percent.
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Figure 7.22: Q: Simplified to 50 percent.

Figure 7.23: Q: Simplified to 10 percent.

Figure 7.24: Q: Simplified to 5 percent.
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Figure 7.25: QGG: Simplified to 50 percent.

Figure 7.26: QGG: Simplified to 10 percent.

Figure 7.27: QGG: Simplified to 5 percent.
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7.4.2 The circle

Two quadric error algorithms produce better results than DP when the circle is simplified

to about 10%. This is due to DP’s lack of freedom to position the vertices of the simplified

polygonal line.
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Figure 7.28: DP: Simplified to 50 percent.

Figure 7.29: DP: Simplified to 20 percent.

Figure 7.30: DP: Simplified to 10 percent (with original circle).
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Figure 7.31: Q: Simplified to 50 percent.

Figure 7.32: Q: Simplified to 20 percent.

Figure 7.33: Q: Simplified to 10 percent (with original circle).
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Figure 7.34: QGG: Simplified to 50 percent.

Figure 7.35: QGG: Simplified to 20 percent.

Figure 7.36: QGG: Simplified to 10 percent (with original circle).
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7.4.3 The Dow Jones HK index

This is an example of the worst case for algorithm Q. Some important sharp features have
already been eliminated even when the percentage of edges eliminated is relatively small. When

simplified to 10%, the output quality of QGG is still acceptable although it is inferior to DP.
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Figure 7.37: DP: Simplified to 50 percent.
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Figure 7.38: DP: Simplified to 20 percent.
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Figure 7.39: DP: Simplified to 10 percent.
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Figure 7.40: Q: Simplified to 50 percent.
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Figure 7.41: Q: Simplified to 20 percent.
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Figure 7.42: Q: Simplified to 10 percent.
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Figure 7.43: QGG: Simplified to 50 percent.

Figure 7.44: QGG: Simplified to 20 percent.
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Figure 7.45: QGG: Simplified to 10 percent.
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Chapter 8

Conclusion

We propose an edge contraction approach for polyline simplification. The position of the new
vertex produced by each edge contraction is computed using the quadric error metric. The basic
algorithm Q using this approach does not guarantee any bound on the distance between the
simplified polyline and the original polyline. We present improvements to this basic algorithm
so that the quadric error actually bounds the directed Hausdorff distance from the simplified
polyline to the original one. We derive three improved algorithms QG, QGG, and QLG. QG
and QGG use a min-heap to store the quadric error of candidate edge contractions and the one
with the minimum quadric error is to be performed next. Each edge contraction takes O(log m)
time, where m is the size of the current simplified polyline. QLG does not use any heap and
basically performs edge contractions from one end to the other. Each edge contraction takes
constant time. All of our algorithms are simple and easy to implement. Our approach allows
the user to directly and interactively increase the simplification.

Although the Douglas and Peucker algorithm produces less error than our algorithms in most
of our experiments, the difference is usually insignificant when compared with the mean edge
length of the simplified polyline. Among our algorithms, QLG and QGG show similar perfor-

mance and QG seems to produce inferior output quality.
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Chapter 9

Future ork

In fact, we originally got the idea of quadric error metric from surface simplification algorithm
by Garland and Heckbert [1]. But their algorithm cannot make sure that there is an error bound
for the simplified the surface. We use the same idea to apply the approach into 2-dimensional
polyline simplification. With some modification of the algorithm, we finally can result in an
error bounded algorithm. This gives us a hope that with some modification of the original
surface simplification algorithm, we might be possible to come to an error bounded solution.
This is the immediate extension of the research work of this thesis.

In 2-dimensional plane, the distance from a point to a line can be represented by a 3 x 3 matrix.
In 3-dimensional space, the distance from a point to a plane can be represented by a 4 x4 matrix.
And it is obvious that in k-dimensional space, the distance from a point to a hyperplane can be
represented by a (k+1) x (k+1) matrix. But whether our algorithm can be extended to a surface
from any dimension still is a question mark. But it might be an interesting problem. Surface
simplification in k-dimension is very useful in scientific visualization. Suppose given a function
of (k — 1) variables, which we can consider as a k-dimensional surface. Scientists from many
disciplines frequently would like to project to surface to one variable or two variables so that
they can visualize the trend of the surface with respect to those variables. Surface simplification
in k-dimension can result in that we always can do the projection from the simplified surface
instead of the original surface. This can save them much of the time and make visualization of
scientific data in a real time stance possible.

Simplification for a subdivision in a plane such that the topology does not change is an interest-

ing topic. Furthermore, if a sets of points S also have been given, then it is very challenging task
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to simplify the subdivision such that not only the topology does not change, but also prevents
the point in S crossing over boundaries of the subdivision. However, whether our approach
using quadric error metric to do simplification can be applied to the two problems stated above
is still open.

Apart from further extension of our algorithms, more thorough and extensive experimentations
needs to be taken out to compare our algorithms with other algorithms, not only Douglas and

Peucker algorithm.
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