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Abstract. A set of points shown on the map usually represents special
sites like cities or towns in a country. If the map in the interactive geo-
graphical information system (GIS) is browsed by users on the computer
screen or on the web, the points and their labels can be viewed in a query
window at different resolutions by zooming in or out according to the
users’ requirements. How can we make use of the information obtained
from different resolutions to avoid doing the whole labeling from scratch
every time the zooming factor changes? We investigate this important
issue in the interactive GIS system. In this paper, we build low-height
hierarchies for one and two dimensions so that optimal and approximat-
ing solutions for adaptive zooming queries can be answered efficiently.
To the best of our knowledge, no previous results have been known on
this issue with theoretical guarantees.
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1 Introduction

Point set labeling is a classical and important issue in the geographic informa-
tion systems (GIS). An extensive bibliography about the map labeling can be
found in [13]. The ACM Computational Geometry Impact Task Force report [5]
identifies the label placement as an important research area. Nowadays, user
interactivity is extremely crucial in such systems, especially for those systems
available on the web. For the success of the interactivity and real-time navi-
gation on maps in the system, the internal paradigm of the database needs to
be carefully designed so that the system adjusts accordingly to satisfy the user
requirements and efficiently answer the user queries.

Several aspects of the interactivity and adaption for GIS have been studied
in [2, 3, 11, 16]. In [11, 9, 14], it is pointed out that the zooming operation in the
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interactive GIS is an important issue. Petzold et al. [11] considered the problem
of zooming the map by using a data structure called the reactive conflict graph.
Its purpose is to minimize the dynamic query time after extensive preprocessing.
At the preprocessing stage, they created a complete graph between any pair of
points. Each edge of the graph stores the scaling ratio when the labels of the
two points start to overlap. Firstly this process is definitely slow. Secondly at
any specific zooming factor, this process cannot guarantee the size of the query
output when comparing to the optimal size at that resolution. The obvious reason
is that this data structure does not store any clue about the optimal solution at
a specific resolution.

At any resolution, we consider the following problem. Given n distinct points
P = {pi : 1 ≤ i ≤ n} in the plane, each pi is associated with a constant number,
say κ, of axis-parallel rectangular labels of unit height and of width ωi such that
pi lies on the left boundary of its κ labels. The goal is to maximize the num-
ber of non-overlapping labels for P . We call this problem the κ-fixed-position
problem. We note that the one dimensional version of this problem considers all
the points of P lying on the x-axis. Even the 1-fixed problem in two dimen-
sions is NP-complete [7] although Roy et al. [12] showed that a special variant
of the one-fixed-position problem can be solved in O(n log n) time. Moreover,
several variants of the above stated problem are proven to be NP-complete [7,
8, 10]. Agarwal, van Kreveld and Suri [1] showed that a 2-approximation of the
κ-fixed-position problem can be computed in O(n log n) time, and a (1 + ε)-

approximation of the problem for any ε > 0 can be computed in O(n log n+n
2

ε
−1)

time. Chan [4] improved the running time for finding a (1 + ε)-approximation

to O(n log n + n∆
1

ε
−1), where ∆ ≤ n denotes the maximum number of labels a

point lies inside. Moreover, several sliding versions of this problem were exten-
sively studied in [15]. In this paper, we define the zooming problem properly and
precisely, and the we build a low-height hierarchy for efficient adaptive queries
with theoretically guaranteed output.

A zooming on a set of point means that while the point-to-point distances
are scaled by a constant factor, the label sizes of the points remain fixed. The
zooming query within a rectangular query window W is that given any zooming
scale, we want to find the optimal solution for the κ-fixed-position solution for
the labels completely inside the query window W . Instead of directly considering
the zooming problem, we consider another equivalent problem. Now suppose we
do not perform any zooming, meaning that we fix the point-to-point distances,
and we instead scale the font-size of the label texts by a constant scaling factor.
The font-scaling query within a rectangular query window W is that by applying
any scaling factor on the font of the label texts, we want to find the optimal
solution for the κ-fixed-position solution for those labels completely inside the
query window W . It is clear that our original zooming problem is equivalent to
the font-scaling problem. For the simplicity of notations, we will only consider
the font-scaling problem for the rest of the paper. See Figure 1 for an example
of labels in two different font sizes, in which optimal sets of labels are drawn
with solid lines. We denote the scaling factor at a resolution γ by ργ . The point
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Fig. 1. An example when κ = 2. The font size/scaling factor in the right figure (b) is
twice as larger as that in the left figure (a). Note that the collections of all the solid
labels in both figures are optimal solutions.

set is said to be at the coarser resolution and has a larger scaling factor if it
has a relatively larger font size; otherwise the point set is said to be at finer
resolution and has a smaller scaling factor. We will use these two terminologies
interchangeably to mean the same thing. For example, in Figure 1, the point set
in Figure 1 (a) lies at a resolution α finer than the resolution β at which the
point set in Figure 1 (b) lies. This means that the left figure has a scaling factor
ρα smaller than the scaling factor ρβ of the right figure.

In this paper, in order to achieve efficient adaptive zooming querying, the
main backbone structure we build is a hierarchy of O(log n) levels, where each
level represents one resolution, the lowest level has the finest resolution, and the
resolutions become coarser and coarser when the levels in the hierarchy increase.
On each level of the hierarchy, we store some data structures so that we can effi-
ciently find the optimal or approximating solutions for adaptive zooming queries
for the resolutions between any pair of consecutive levels. In one dimension, we
build an O(log n)-height hierarchy in O(n log n) time and in O(n) space as stated
in Theorem 1, and we can answer a zooming query for optimal solution efficiently
as stated in Theorem 2. In two dimensions, we build an O(log n)-height hierar-
chy in O(n2) time and in O(n log n) space as stated in Theorem 3, and we can
answer a zooming query for approximating solution efficiently as stated in Theo-
rem 4. In Section 2, we investigate the one-dimensional zooming problem. The
two-dimensional version is studied in Section 3. Finally we conclude in Section 4.

2 Adaptive zooming in one dimension

Consider all the points pi in P lie on x-axis. Each point pi can choose to take
any label say σi from its κ fixed-position choices. Label σi at point pi can be
represented as an interval [pi, pi + ωi]. Now finding the maximum number of
non-overlapping labels is equivalent to finding the maximum independent set
of the intervals [pi, pi + ωi] where ωi is the width of σi. The optimal solution
can be computed using a greedy algorithm as described below. First, sort the
right endpoints pi + ωi of the labels. Then select the label successively whose



right endpoint is leftmost and moreover which does not intersect the label just
selected. This algorithm runs in O(n log n) time. For any subset S of P , let
OPT γ(S) denote the optimal solution at resolution γ obtained by running the
above greedy algorithm on the labels at points in S. We denote OPT γ(P ) by
simply OPT γ . Using the same greedy fashion, we describe a way to find the
optimal solution at some resolution β by making use of the optimal solution at a
finer resolution α in the following section. It will later serve as a main subroutine
to build the hierarchy and to answer the zooming queries.

2.1 Computing OPTβ(S) from OPTα

Assume that the label at pi is represented as intervals [pi, p
′
i,α] and [pi, p

′
i,β ] on

x-axis at resolutions α and β respectively. It is clear that p′
i,β > p′i,α as ρβ > ρα.

Let [qk, q′k] denote the kth label of OPTα in the order from left to right. The
algorithm to construct OPT β(S) in a greedy fashion by using OPT α is presented
in Algorithm ComputeOPT . In the algorithm, Bk denotes the subset of labels
for points in S at resolution β such that the right endpoints (in sorted order) of
the labels lie inside the interval [q′k, q′k+1) for some 1 ≤ k ≤ |OPTα|. Note that
Bk includes [qk, q′k] itself. We assume q′|OPTα|+1 = ∞. Moreover, σ denotes the

most recently selected label in the solution OPT β(S) by the algorithm.

Algorithm ComputeOPT (S)
Input. OPT α and a set S ⊂ P .
Output. OPTβ(S).
1. for each label [pi, p

′
i,β ] for points in S,

2. do Put [pi, p
′
i,β] into Bk if p′i,β ∈ [q′k, q′k+1) for some k.

3. Initialize OPT β(S) = ∅, and σ = nil.
4. for each Bk by incrementing k iteratively,
5. do Select the label σ′ from Bk such that σ′ does not overlap σ and has

the leftmost right endpoint among the labels of Bk.
6. Put σ′ into OPTβ(S).
7. Set σ = σ′.

The idea is simply that as all the labels in Bk intersect q′k, there is at most
one label in Bk can be selected to put into OPT β(S). Note that binary search
is used to put [pi, p

′
i,β ] into Bk in the first for-loop. The algorithm runs in

O(|S| log |OPTα|) time.

Lemma 1. ComputeOPT (S) computes the optimal solution OPT β(S) at reso-
lution β by making use of OPT α in O(|S| log |OPT α|) time.

2.2 Building O(log n)-height hierarchy

At each level of the hierarchy, we store the optimal solution at the resolution of
the current level. The lowest level corresponds to the finest resolution, at which
no labels can overlap, and the highest level corresponds to the coarsest resolution,



at which the optimal solution has only a constant size. Between any pair of
consecutive levels with resolutions α, β where ρβ > ρα, we have to determine a
scaling factor ρ = ρβ/ρα so that the size of the optimal solution |OPT β | drops
significantly, say by a constant factor, from |OPT α|. If this can be done for each
pair of consecutive levels, it results in an O(log n)-height hierarchy. We show
below how this can be done.

Building the lowest level. We need to decide a resolution, at which no labels
overlap. Observe that |pi+1 − pi|/ωi is the minimum scaling ratio for the label
at pi to intersect the label at pi+1. Let ρ = mini{|pi+1 − pi|/ωi}. If we scale all
labels by a factor a little smaller than ρ, no labels can overlap anymore. Thus
we set ρ − ε (where ε > 0 is small) to be the scaling factor for the lowest level.
This step takes O(n log n) time as we need to first sort the points in P .

Building one level higher. As we have just discussed, to construct a level higher
with resolution β from a level with finer resolution α, we need to decide a scaling
factor ρ = ρβ/ρα such that |OPT β | is a constant fraction of |OPTα|.

Let σk = [qk, q′k] be the kth label of OPTα in the order from left to right. We
associate Ak to σk, where Ak is the subset of labels of points in P at resolution α
such that their right endpoints lie inside interval [q′k, q′k+1). Note that Ak includes
σk itself. For convenience, we set q′|OPTα|+1 = ∞. For each label σ = [p, p′] in

Ak, observe that ρk(σ) = (q′k+1 − p)/(p′ − p) is the smallest scaling ratio for σ
to intersect q′k+1. Thus ρk = maxσ∈Ak

ρk(σ) for Ak is the smallest scaling ratio
such that all labels in Ak intersect q′k+1. Note that as σk ∈ Ak, ρk(σ) ≤ ρk. We
call the label of Ak which constitutes ρk the dominating label of Ak. Then it is
clear that the following observation holds.

Lemma 2. Consider Ak associated with a label σk = [qk, q′k] ∈ OPTα. If ∆k =
[δk, δ′k] is the dominating label of Ak, then qk ≤ δk.

The above observation says that the dominating label of Ak has its left
endpoint in the right of qk. We set ρ (= ρβ/ρα) to be the median value of all the
ρk’s. Then we claim that there are constants c1 and c2 such that c1|OPTα| ≤
|OPT β| ≤ c2|OPTα| as stated in the following lemma. Remark that we will
assume all ρk’s are different for simplicity to convey our idea. In fact, if some
ρk’s are the same, the following arguments still hold although the constants
would deviate slightly.

Lemma 3. 1
4 |OPTα| ≤ |OPTβ | ≤

3
4 |OPTα|.

Proof. We first prove the former part of the inequality. Let L = {Ak|ρk > ρ},
where we suppose the elements of L are ordered from left to right. Then |L| =
|OPTα|/2 as by definition ρ is the median value of all the ρk. Note that at
most one label from Ak ∈ L can be selected for any labeling. Now we claim
that the dominating labels of every other sets Ak in L do not overlap. Suppose
Ai, Aj , Ak (i < j < k) be three consecutive sets in L. Let ∆i = [δi, δ

′
i] and

∆k = [δk, δ′k] be the dominating labels of Ai and Ak respectively. At resolution



β, Let ∆i,β = [δi, δ
′
i,β ] and ∆k,β = [δk, δ′k,β ] be the scaled labels of ∆i and

∆k at resolution β respectively. We claim that ∆i,β does not intersect ∆k,β .
It suffice for us to prove δ′i,β < δk. As Ai ∈ L, δi,β ≤ q′i+1 ≤ q′j . On the
other hand, by Lemma 2, qk ≤ δk as ∆k is dominating Ak. Also it is clear
q′j < qj+1 ≤ qk. Thus we have δi,β < qk. This implies if we select all the
dominating labels of every other sets Ak in L from left to right, they cannot
overlap. Hence |OPT β | ≥ |L|/2 ≥ 1

4 |OPTα|.
We then prove the latter part of the inequality. Let S = {Ak|ρk ≤ ρ}. Then

|S| = |OPTα|/2, and |OPTα| = |S| + |L|. Let us also divide the OPT β into
two subsets L′ and S′ where L′ = {σ ∈ OPT β | σ ∈ Ak for some Ak ∈ L}, and
S′ = {σ ∈ OPTβ | σ ∈ Ak for some Ak ∈ S}. Then |OPT β | = |L′| + |S′|. As a
label σ in Ak ∈ S′ must overlap q′k+1, which means that σ overlaps all the labels
in Ak+1. Thus if a label σ in Ak ∈ S′ lies in OPTβ , then no labels in Ak+1 can lie
in OPTβ . We call Ak+1 is abandoned when σ is selected in OPT β . Now we put
all the abandoned sets Ak+1 (due to those labels from all the Ak in S′ selected
into OPTβ) into sets La or Sa such that La ⊂ L and Sa ⊂ S. Then we have that
|S′| ≤ |La|+ |Sa| as each Ak ∈ S can contribute at most one label in OPT β. Also
it holds that |L′| + |La| ≤ |L| = |OPT α|/2 and |S′|+ |Sa| ≤ |S| = |OPTα|/2. If
|Sa| ≥ |OPT α|/4, then |OPT β | = |L′| + |S′| ≤ |L′| + (|S| − |Sa|) ≤ |L| + (|S| −
|Sa|) ≤ |OPT α|/2 + |OPT α|/4 = 3

4 |OPTα|. Otherwise when |Sa| < |OPTα|/4,
|OPT β| = |L′| + |S′| ≤ |L′| + (|La| + |Sa|) ≤ |L| + |Sa| ≤

3
4 |OPTα|.

Building the whole hierarchy. Build the lowest level takes O(n log n) time. We
then construct the levels one by one upwards. To construct one level higher with
resolution β from the level with resolution α, we need to first determine the
scaling factor ρ = ρβ/ρα as described previously so that 1

4 |OPTα| ≤ |OPT β | ≤
3
4 |OPTα|. This takes O(n log n) time. Then we can construct OPT β in time
n log |OPTα| by using ComputeOPT (P ). We compute levels upwards until we
reach a level at which the size of the optimal solution is a constant, and we stop.
This gives us a O(log n)-height hierarchy. It needs O(n log2 n) time and O(n)
space in total. We summarize these in the following theorem.

Theorem 1. A hierarchy of height O(log n) for the adaptive zooming query
problem in one dimension can be built in time O(n log2 n) using O(n) space.

2.3 Adaptive querying

With the low-height hierarchy, it is possible for us to answer zooming queries
efficiently at any resolution.

Theorem 2. Given a zooming query Q with window W = [q, q′] at resolution γ.
Let OPT γ be the optimal set of non-overlapping labels for points in P at resolu-
tion γ by running the greedy algorithm. Then with the O(log n)-height hierarchy,
the optimal solution for Q can be computed in O(|ΦW

γ | log(|OPT γ |) + log log n)

time, where ΦW
γ is the set of labels intersecting the window W at resolution γ.



Proof. First by binary search, use ργ to locate the consecutive levels of resolutions
α and β (where ρα < ργ < ρβ) in the hierarchy. As the height of the hierarchy
is O(log n), the location is done in O(log log n) time.

Then we search for q and q′, the endpoints of W . Suppose q′1, q
′
2, . . . , q

′
|OPTα|

be the right endpoints of the greedy solution at resolution α. We need to locate
q and q′ in these right endpoints. This needs O(log |OPT α|) = O(log |OPT γ |)
time. Suppose q lies in [q′i, q

′
i+1] and q′ lies in [q′j , q

′
j+1].

For each label whose right endpoints lying inside [q′k, q′k+1] (where i + 1 ≤

k ≤ j), check whether it completely lies inside W . So we can collect the set ΞW
γ

of all the labels completely lying inside W at resolution γ. This needs O(|ΦW
γ |)

time.

Finally we use ΞW
γ to compute the optimal set of non-overlapping labels in

W at resolution γ by using ComputeOPT (ΞW
γ ). This takes O(|ΞW

γ | log |OPTα|)

= O(|ΦW
γ | log |OPT γ |) time.

3 Adaptive zooming in two dimensions

We then extend our idea to build the low-height hierarchy in two dimensions
for efficient adaptive zooming queries. At each level of the hierarchy, we store
the stabbing line structures as used in [1, 4]. This helps us build the hierarchy
and efficiently answer adaptive zooming queries. Let OPT γ denote the optimal
solution the labels of P at resolution γ.

Suppose all the labels have unit height at the current resolution α. We sup-
pose a label does not include its lower boundary for convenience. We can stab all
the labels by a set of horizontal lines `1, `2, . . . , `k, ordered from top to bottom,
satisfying three conditions: (i) each `i must stab at least one label; (ii) a label
must intersect exactly one stabbing line; and (iii) two consecutive stabbing lines
are separated with distance at least one. Let Ai be the set of labels stabbed
by `i, and let OPTα(Ai) be optimal labeling for labels Ai by running the one
dimensional greedy algorithm on {σ ∩ `i|σ ∈ Ai}. We define the stabbing line
structure Lα at resolution α to be the set all the stabbing lines `i at resolution
α together with Ai and OPTα(Ai).

Unlike in one dimension, OPTα cannot be derived easily from the stab-
bing line data structure Lα in two dimensions. However, a 2-approximation to
OPTα can be obtained easily from Lα. Let Xodd

α (resp., Xeven
α ) be the union

of OPTα(Ai) for odd i (resp., for even i). As any pair of consecutive stabbing
lines is separated by a distance at least one, the labels in Xodd

α never overlap
those in Xeven

α and vice versa. Thus if we take the maximum-size labeling of
OPT (Xodd

α ) and OPT (Xeven
α ), it is a 2-approximation for OPT α. Moreover, Lα

can help us find the (1 + ε)-approximation [1, 4]. We then describe a way to find
Lβ at resolution β (which is coarser than α) by making use of Lα. This will serve
as the main subroutine to build the hierarchy.



3.1 Computing Lβ from Lα

For convenience, we assume ρα = 1, ρβ = ρ, and labels at resolution α has unit
height. Let ` be any horizontal line at resolution β with y-coordinate y(`). Let
B` be the set of labels that intersect ` at resolution β. Let H be the horizontal
strip bounded by the horizontal lines at y(`) − ρ and at y(`) + ρ. Suppose that
{`i, . . . , `j}(i < j) is the set of the stabbing lines at resolution α lying inside H .
Observe that the labels in B` can only be members of Ai, . . . , Aj at resolution
α. Now suppose that S` is the ordered sequence of the right endpoints of the
intervals in OPTα(Ai), . . . ,OPTα(Aj) projected onto `. Then we can obtain the
optimal labeling OPT β(B`) for the labels in B` by executing ComputeOPT (B`)
using the points in S` as separators to partition the labels in groups. This takes
O(|B`| log |S`|) time.

Now we describe how we draw the stabbing lines `′1, `
′
2, . . . from top to bottom

to stab all the labels at resolution β. First, we draw the first line `′1 = `1, and
collect B`′

1
and compute OPT β(B`′

1
) as described in the previous paragraph. We

then draw the second stabbing line `′2 with y-coordinate y(`′1)− ρ if it intersects
some labels at resolution β. Otherwise we set `′2 to be the stabbing line `i below
and nearest to the y-coordinate y(`′1) − ρ. We continue this process until all
labels at resolution β are stabbed. Note that the right endpoints of labels in
OPTα(Ai) at resolution α may be used twice to compute OPT β(B`) for two
consecutive stabbing lines at resolution β. In total, it takes O(n log |OPT α|) time
to compute Lβ . We summarize the result as the following lemma.

Lemma 4. Given Lα at resolution α. Then Lβ at a coarser resolution β can be
computed from Lα in O(n log |OPTα|) time.

3.2 Building O(log n)-height hierarchy

Building the lowest level. We build the lowest level at which the labels at distinct
points do not overlap. By considering the projections of the labels onto x- and
y-axes respectively, it is not hard to decide a resolution such that for each pair
of points, either the x-projections or the y-projections of their labels do not
overlap. This can be done in O(n log n) time.

Building one level higher. We have known how to construct the stabbing line
structure Lβ for a resolution β by making use of Lα at a finer resolution α if the
scaling factor ρ = ρβ/ρα is known. In order to have a low-height hierarchy, it
suffices for us to find a scaling factor ρ such that |OPT β | is a constant fraction
of |OPTα|. For convenience, we assume that the height of labels at resolution
α is unit.

At resolution α, a set A` of labels that intersect a stabbing line ` is par-
titioned into several groups by labels in OPT α(A`) (as in the one-dimensional
case). Each of the groups consists of labels whose right endpoints lie between
the right endpoints of two consecutive labels in OPT α(A`). The intersection of
labels in such a group in A` is called a kernel (denoted by Kα), and those labels



in that group are said to be associated with the kernel Kα. Let Kodd
α and Keven

α

be the collections of all the kernels intersecting odd and even stabbing lines at
resolution α, respectively. Let Kα = Kodd

α ∪Keven
α . Let Aodd and Aeven be the set

of all labels intersecting odd and even stabbing lines at resolution α, respectively.
We then use the interactions of the scaled versions of the kernels in Kα to decide
the scaling factor ρ.

The labels at resolution β are obtained by scaling the labels of resolution α by
factor ρ. The kernels in Kodd

α and Keven
α are enlarged to the kernels at resolution

β and we denote the corresponding sets of enlarged kernels at resolution β simply
by Kodd and Keven respectively. Let K = Kodd ∪ Keven. The labels in Aodd and
Aeven become Bodd and Beven respectively. We also denote the scaled version of
kernel Kα by K. Two kernels (resp. labels) are said to be of the same parity if
they are contained in the same kernel (resp. label) collection Kodd or Keven (resp.
Aodd or Aeven). For each kernel Kα at resolution α, scale it until it intersects the
left sides of first three other kernels of the same parity. We denote this scaling

ratio for Kα by ρ(Kα). We set the scaling factor ρ to be the ( 10|Kα|
11 )-th smallest

value of ρ(Kα) for all kernels Kα ∈ Kα. With this ratio ρ, we claim that the
optimal labeling at resolution β is a constant fraction of that at resolution α.
Note that as the one-dimensional case, we will assume all the ρ(Kα) are distinct
for convenience to convey our idea.

For a kernel K, let R(K) be a label whose right side constitutes the right
side of K. We call R(K) the right representative of K. We denote the height and
width of a kernel or label by τ(·) and ω(·) respectively. Also we denote by xl(K)
and xr(K) the x-coordinates of the left and right sides of a kernel K respectively.
First of all, the following two observations are clear.

Lemma 5. Suppose K ∈ K at resolution β is obtained by scaling ρ times a
kernel Kα at resolution α. Then its height τ(Kα) ≤ τ(K) ≤ τ(Kα) + (ρ − 1),

and its width ω(K) ≥ ω(Kα) +
(

ρ−1
ρ

)

ω(R(K)). Moreover if R(K) is different

from R(Kα), then xl(R(K)) > xl(R(Kα)).

Lemma 6. Let J, K be two non-intersecting kernels on the same stabbing line
ordered from left to right at resolution β, where J, K are obtained by scaling ρ
times the kernels Jα, Kα at resolution α respectively. Then xr(R(J)) < xr(K)
and xl(J) < xl(R(K)).

Let Sodd (resp. Lodd) be the subset of kernels K in Kodd with ρ(Kα) smaller
(resp. not smaller) than ρ. Similarly, we define Seven and Leven. Let S = Sodd ∪
Seven and L = Lodd ∪ Leven. The following lemma tells us that there is a large
set of non-intersecting kernels in Lodd or Leven.

Lemma 7. For any i ∈ {odd, even}, each kernel in Li can intersect at most
1.5ρ + 12 kernels in Li.

Proof. Let K be any kernel in Li. For a kernel J in Li intersecting K, we put it
into I1 if xl(J) ≤ xl(K) and into I2 otherwise. As K intersects the left sides of
all kernels in I2, |I2| ≤ 3.



To determine |I1|, we divide I1 into three subsets depending on whether the
kernels in I1 intersect the supporting lines `t and `b of the top and bottom sides
of K. If those kernels intersects `t (resp., `b), then put them into It

1 (resp. Ib
1).

Otherwise, i.e., if they lie between `t and `b, they are put into Im
1 . We first claim

that |It
1| ≤ 3. Suppose for the contradiction that |I t

1| ≥ 4. All the kernels in
It
1 must contain the top-left corner of K. This means that the kernel J in I t

1

with the smallest xl(J) would intersect the left sides of at least four kernels of
same parity. This implies that J 6∈ Li, which is a contradiction. Thus |I t

1| ≤ 3.
A similar argument proves |Ib

1 | ≤ 3.
Then we bound |Im

1 |. As the height of K is at most ρ. There are at most
ρ
2 + 1 stabbing lines with the same parity between `t and `b. As on any of these
stabbing line, there are at most three non-intersecting kernels in Li stabbed
before K, |Im

1 | ≤ 3(ρ
2 + 1) = 1.5ρ + 3.

Considering all together, |I1| + |I2| ≤ 1.5ρ + 12.

Let Ni be any maximal subset of non-intersecting kernels in Li for i ∈
{odd, even}. By Lemma 7, we have |Ni| ≥ |Li|/(1.5ρ + 13). Although no two
kernels in Ni intersect each other, their right representatives may intersect. The
following lemma proves that the number of those right representatives which
intersect R(K) for a kernel K ∈ Ni is bounded above by O(ρ). The argument
is similar to Lemma 7 by packing kernels and labels around R(K). This in turn
implies that there are at least Ω(|Li|) non-intersecting labels in Bi as stated in
Lemma 9.

Lemma 8. Let K ∈ Ni be the kernel with its right representative label R(K) of
the shortest width among all other kernels in Ni. Then R(K) can intersect the
right representative labels of less than 6ρ + 4 kernels in Ni.

Lemma 9. There are at least |Li|
(3ρ+2)(3ρ+26) non-intersecting labels in Bi for any

i ∈ {odd, even}.

Now we are well-equipped to show the main lemma, whose proof uses the
similar idea as Lemma 3 in one dimensional case.

Lemma 10. There exist constants 0 < c1, c2 < 1 such that c1|OPTα| ≤ |OPTβ | ≤
c2|OPTα|.

Note that the details of the proofs of Lemma 8, 9 and 10 are omitted in
this preliminary version. We then describe the algorithm to compute the scaling
factor ρ, and analyze its running time.

For each kernel Kα, ρ(Kα, K ′
α) can be determined in |Kα| · |K ′

α| time, where
|Kα| is the number of the associated labels of Kα. For a fixed Kα, to compute all
ρ(Kα, K ′

α) for different K ′
α, it takes n|Kα| time. To determine the third smallest

value ρ(Kα) out of all ρ(Kα, K ′
α), it requires at most 3|Kα| time. In total, to

determine ρ(Kα), it takes at most n(|Kα| + 3) time.
To determine all ρ(Kα) for all Kα, it takes time n(|Kα|+3) summing over all

kernels Kα ∈ Kα. This takes time O(n2) to determine all ρ(Kα). Furthermore,
the 10

11m-th value ρ of all ρ(Kα) can be determined in O(n log n) time. In all, ρ
can be computed in O(n2) time.



Auxiliary structures for efficient querying. In order to efficiently locate all the
labels intersecting a specific window, we associate a range tree Rα with each
hierarchy level say at resolution α. We collect all the intersection points S of
the boundaries of all kernels with all the stabbing lines. We then build a 2-
dimensional range tree Rα on the point set S. This takes O(|S| log(|S|)) =
O(|OPT α| log |OPTα|) time and space [6]. The query time to report all the
points from S inside a rectangular window W is O(log(|S|)+k) = O(log(|OPT α|)+
k) where k is the number of points inside W . Remark that we suppose the tech-
nique of fractional cascading is applied to the range tree; otherwise, the query
time can go up to O(log2(|S|) + k).

Building the whole hierarchy. Combining the above statements, we have the
following theorem.

Theorem 3. A hierarchy of height O(log n) for the adaptive zooming query
problem in two dimensions can be built in O(n2 log n) time using O(n log n)
space.

3.3 Adaptive querying

Theorem 4. Given any zooming query Q with window W = [x, x′] × [y, y′] at
resolution γ. Let OPT γ be the optimal set of non-overlapping labels for points
in P at resolution γ. Let ΦW

γ be the set of labels intersecting the window W at
resolution γ. Suppose the O(log n)-height hierarchy is given. Then

(i) The 2-approximation for Q can be computed in O(|ΦW
γ | log(|OPT γ |)+log log n)

time.

(ii) The (1+ε)-approximation for Q can be computed in O(|ΦW
γ |

1

ε +log(|OPT γ |)+
log log n) time.

Proof. First by binary search, use ργ to locate the consecutive levels of resolutions
α and β where ρα < ργ < ρβ in the hierarchy. As the height of the hierarchy is
O(log n), the location is done in O(log log n) time.

Search the auxiliary range tree Rα at resolution α to find all points lying
inside W . This takes O(log(|OPTα|) + k) time, where k is the number of points
of Rα inside W . Note that log(|OPT α|) = O(log(|OPT γ |)). As the labels inter-
secting W at resolution α will continue intersecting W at resolution γ, we have
k = O(|ΦW

γ |). For groups of labels corresponding to these k kernels, we check
one by one whether they are inside W or not. So we can collect all the labels
ΞW

γ completely lying inside W at resolution γ in O(|ΦW
γ |) time.

(i) We use ΞW
γ to compute the 2-approximation solution for Q by apply-

ing the one-dimensional greedy algorithm on related stabbing lines. This takes
O(|ΞW

γ | log |OPT α|) = O(|ΦW
γ | log |OPT γ |) time.

(ii) We use ΞW
γ to compute the (1+ ε)-approximation for Q by applying the

algorithm by Chan [4]. This takes O(|ΞW
γ |

1

ε ) = O(|ΦW
γ |

1

ε ) time.



4 Conclusion & Discussion

In this paper, we build low-height hierarchies for one and two dimensions for
answering adaptive zooming queries efficiently. In the model we have considered,
the labels at any point are restricted to several fixed positions lying on the right
of the point. One interesting research direction is to extend our results to point
labeling for more general models, for example sliding models. Can some notion of
point importance be added into the data structure? Can we build a hierarchy for
a subdivision map to help us query the map area in a window at any resolution?
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