
Kinetic Collision Detection
for Convex Fat Objects�

M. A. Abam, M. de Berg, S.-H. Poon, and B. Speckmann

Department of Mathematics and Computing Science,
TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{mabam,mdberg,spoon,speckman}@win.tue.nl

Abstract. We design compact and responsive kinetic data structures
for detecting collisions between n convex fat objects in 3-dimensional
space that can have arbitrary sizes. Our main results are:

(i) If the objects are 3-dimensional balls that roll on a plane, then we
can detect collisions with a KDS of size O(n log n) that can han-
dle events in O(log n) time. This structure processes O(n2) events
in the worst case, assuming that the objects follow constant-degree
algebraic trajectories.

(ii) If the objects are convex fat 3-dimensional objects of constant com-
plexity that are free-flying in R

3, then we can detect collisions with
a KDS of O(n log6 n) size that can handle events in O(log6 n) time.
This structure processes O(n2) events in the worst case, assuming
that the objects follow constant-degree algebraic trajectories. If the
objects have similar sizes then the size of the KDS becomes O(n)
and events can be handled in O(1) time.

1 Introduction

Collision detection is a basic computational problem arising in all areas of com-
puter science involving objects in motion—motion planning, animated figure
articulation, computer-simulated environments, or virtual prototyping, to name
a few. Very often the problem of detecting collisions is broken down into two
phases: a broad phase and a narrow phase. The broad phase determines pairs
of objects that might possibly collide, frequently using (hierarchies of) bound-
ing volumes to speed up the process. The narrow phase then uses specialized
techniques to test each candidate pair, often by tracking closest features of the
objects in question, a process that can be sped up significantly by exploiting
spatial and temporal coherence. See [19] for a detailed overview of algorithms
for such collision and proximity queries.

Algorithms that deal with objects in motion traditionally discretize the time
axis and compute or update their structures based on the position of the objects

� M.A. and S.-H.P. were supported by the Netherlands’ Organisation for Scientific Re-
search (NWO) under project no. 612.065.307. M.d.B. was supported by the Nether-
lands’ Organisation for Scientific Research (NWO) under project no. 639.023.301.

at every time step. But since collisions tend to occur rather irregularly it is
nearly impossible to choose the perfect time-step: too large an interval between
sampled times will result in missed collisions, too small an interval will result in
unnecessary computations (and still there is no guarantee that no collisions are
missed). Event-driven methods, on the other hand, compute the event times of
significant changes to a system of moving objects, store those in a priority queue
sorted by time, and advance the system to the event at the front of the queue.
The kinetic-data-structure framework initially introduced by Basch et al. [4]
presents a systematic way to design and analyze event-driven data structures
for moving objects.

A kinetic data structure (KDS) is designed to maintain or monitor a discrete
attribute of a set of moving objects, where each object has a known motion
trajectory or flight plan. A KDS contains a set of certificates that constitutes
a proof of the property of interest. These certificates are inserted in a priority
queue (event queue) based on their time of expiration. The KDS then performs
an event-driven simulation of the motion of the objects, updating the structure
whenever a certificate fails. A KDS for collision detection finds a set of geomet-
ric tests (elementary certificates) that together provide a proof that the input
objects are disjoint—see the survey by Guibas [11, 12] for more details.

Kinetic data structures and their accompanying maintenance algorithms can
be evaluated and compared with respect to four desired characteristics. A good
KDS is compact if it uses little space in addition to the input, responsive if the
data structure invariants can be restored quickly after the failure of a certificate,
local if it can be updated easily when the flight plan for an object changes, and
efficient if the worst-case number of events handled by the data structure for a
given motion is small compared to some worst-case number of “external events”
that must be handled for that motion.

Kinetic data structures for collision detection. One of the first papers on kinetic
collision detection was published by Basch et al. [3], who designed a KDS for
collision detection between two simple polygons in the plane. Their work was
extended to an arbitrary number of polygons by Agarwal et al. [1]. Kirkpatrick
et al. [17] and Kirkpatrick and Speckmann [18] also described KDS’s for kinetic
collision detection between multiple polygons in the plane. These solutions all
maintain a decomposition of the free space between the polygons into “easy”
pieces (usually pseudo-triangles). Unfortunately it seems quite hard to define a
suitable decomposition of the free space for objects in 3D, let alone maintain it
while the objects move—the main problem being, that all standard decomposi-
tion schemes in 3D can have quadratic complexity. Hence, even though collision
detection is the obvious application for kinetic data structures, there has hardly
been any work on kinetic collision detection in 3D.

There are only a few papers that deal directly with (specialized versions of)
kinetic 3D collision detection. Guibas et al. [13], extending work by Erickson et
al. [10] in the plane, show how to certify the separation of two convex polyhedra
moving rigidly in 3D using certain outer hierarchies. Basch et al. [5] describe
a structure for collision detection among multiple convex fat objects that have

almost the same size. The structure of Basch et al. uses O(n log2 n) storage and
events can be processed in O(log3 n) time. Coming and Staadt [9] kineticize the
sweep-and-prune approach to find candidate pairs of objects that might collide.
Their method has a quadratic worst-case bound and they give only experimental
evidence for its performance. If all objects are spheres of similar sizes Kim et
al. [15] present an event-driven approach that subdivides space into cells and
processes events whenever a sphere enters or leaves a cell. This approach was
later extended [16] to accommodate spheres with unknown trajectories but still
similar sizes. There is only experimental evidence for the performance of this
method. Finally, Guibas et al. [13] use the power diagram of a set of arbitrary
balls in 3D to kinetically maintain the closest pair among them. The worst-
case complexity of this structure is quadratic and it might undergo more than
cubically many changes.

Results. The main goal of our paper is to develop KDS’s for 3D collision detection
that have a near-linear number of certificates for multiple convex fat objects of
varying sizes. As discussed above, none of the existing solutions achieves all these
goals simultaneously. Our KDS’s can be viewed as structures that perform the
broad phase of the global collision-detection approach sketched above; one still
has to detect collisions between the candidate pairs of objects produced by the
KDS. Assuming the objects have constant complexity, this can trivially be done
in constant time per pair; how to do this for complex objects is beyond the scope
of this paper. Thus the challenge is to get a near-linear number of certificates,
so that the number of candidate pairs is reduced from quadratic to near-linear.

We start in Section 2 with the special case of n balls of arbitrary sizes rolling
on a plane. Here we present an elegant and simple KDS that uses O(n log n) stor-
age and processes O(n2) events in the worst case if the objects follow constant-
degree algebraic1 trajectories. Processing an event takes O(log n) time.

In Section 3 we turn our attention to free-flying convex fat objects. Note
that we do not assume the objects to be polyhedral. We first study fat objects
that have similar sizes. We give an almost trivial KDS that has O(n) size and
processes O(n2) events; handling an event takes O(1) time. This improves both
the storage and the event-handling time of the KDS of Basch et al. [5] by several
logarithmic factors. Next we consider the much more difficult general case, where
the fat objects can have vastly different sizes. Here we present a KDS that
uses O(n log6 n) storage and processes O(n2) events; handling an event takes
O(log6 n) time. This is the first collision-detection KDS for multiple objects
in 3D that has a near-linear number of certificates and does not require the
1 In fact, the bound on the number of events holds in a more general setting: We

maintain lists of certain x- and y-coordinates—for instance the coordinates of the
tangency points of the disks with the plane on which they roll—whose values change
according to the motions of the objects. The number of events is bounded by the
number of changes (swaps) in these sorted lists. The O(n2) bound thus holds if we
assume that any pair of coordinates swaps O(1) times (which is for example the case
if the motions are constant-degree algebraic). A similar remark holds for the other
KDS’s that we develop.

objects to have similar sizes. Even though our KDS for this case uses O(n log6 n)
storage, it maintains only a linear number of candidate pairs of objects to test for
collisions; the additional storage is used in various supporting data structures.
Our structure is based on the following idea: we put a number of points—we
call them guards—around each object in such a way that if two objects collide,
one must contain a guard from the other. Because the objects are fat, we can
show that a constant number of guards per object suffices. The idea of reducing
problems on fat objects to problems on suitably chosen points has been used
before. In our context, however, it is far from straightforward to apply since
detecting collisions between objects and guards is nearly as difficult as detecting
collisions between the objects themselves. Nevertheless, using several additional
ideas, we show how to make this approach work.

In the reminder of the paper we present the main idea behind our results.
For lack of space, most of the proofs are omitted.

2 Balls rolling on a plane

Assume that we are given a set B of n 3-dimensional balls which are rolling on a
2-dimensional plane T , that is, the balls in B move continuously while remaining
tangent to T . In this section we describe a responsive and compact KDS that
detects collisions between the balls in B.

The basic idea behind our KDS is to construct a collision tree recursively as
follows:

– If |B| = 1, then there are obviously no collisions and the collision tree is just
a single leaf.

– If |B| > 1, then we partition B into two subsets, BS and BL. The subset
BS contains the �n/2� smallest balls and the subset BL contains the �n/2�
largest balls from B, where ties are broken arbitrarily. The collision tree now
consists of a root node that has an associated structure to detect collisions
between any ball from BS and any ball from BL, and two subtrees that are
collision trees for the sets BS and BL, respectively.

To detect all collisions between the balls in B it suffices to detect collisions
between the two subsets maintained at every node of the collision tree. Let BS

and BL denote the two subsets maintained at a particular node. The remainder
of this section focusses on detecting collisions between the balls in BS and those
in BL. In particular, we describe a KDS of size O(|BS | + |BL|) that can handle
events in O(1) time—see Lemma 4. The structure processes O((|BS | + |BL|)2)
events in the worst case, assuming that the balls follow constant-degree algebraic
trajectories. Since the same event can occur simultaneously at O(log n) nodes of
the collision tree, we obtain the following theorem:

Theorem 1. For any set B of n 3-dimensional balls that roll on a plane, there
is a KDS for collision detection that uses O(n log n) space and processes O(n2)
events in the worst case, assuming that the balls follow constant-degree algebraic
trajectories. Each event can be handled in O(log n) time.

2.1 Detecting collisions between small and large balls

As mentioned above, we can restrict ourselves to detecting collisions between
balls from two disjoint sets BS and BL where the balls in BL are at least as
large as the balls in BS . Recall that all balls are rolling on a plane T . Our basic
strategy is the following: we associate a region Di on T with each Bi ∈ BL such
that if the point of tangency of a ball Bj ∈ BS and T is not contained in Di,
then Bj cannot collide with Bi. The regions associated with the balls in BL need
to have two important properties: (i) each point in T is contained in a constant
number of regions and (ii) we can efficiently detect whenever a region starts or
stops to contain a tangency point when the balls in BL and BS move. We first
deal with the first requirement, that is, we consider BL to be static. For a ball Bi

let ri denote its radius and let ti be the point of tangency of Bi and T .

The threshold disk. We define the distance of a point q in the plane T to a ball
Bi as follows. Imagine that we place a ball B(q) of initial radius 0 at point q. We
then inflate B(q) while keeping it tangent to T at q, until it collides with Bi. We
define the distance of q and Bi, which we denote by dist(q,Bi), to be the radius
of B(q). More precisely, dist(q,Bi) is the radius of the unique ball that is tangent
to T at q and tangent to Bi. It is easy to show that dist(q,Bi) = d(q, ti)2/4ri

where d(q, ti) denotes the Euclidean distance between q and ti.
Since we have to detect collisions only with balls from BS we can stop inflating

when B(q) is as large as the smallest ball in BL. Based on this, we define the
threshold disk Di of a ball Bi ∈ BL as follows: a point q ∈ T belongs to Di if
and only if dist(q,Bi) ≤ rmin where rmin is the radius of the smallest ball in BL.
It is straightforward to show that Di is a disk whose radius is 2

√
ri · rmin and

whose center is ti.
Clearly a ball Bj ∈ BS cannot collide with a ball Bi ∈ BL as long as tj

is outside Di. In the following, we prove that a point q ∈ T can be contained
in at most a constant number of threshold disks. We start by proving a more
general result, which we will need later when we replace the threshold disks by
threshold boxes. For a given constant c ≥ 0, let c ·Di denote the disk with radius
c · radius(Di) and center ti.

Lemma 1. The number of threshold disks Dj that are at least as large as a given
threshold disk Di and for which c ·Di ∩ c ·Dj
= ∅, is at most (8 c2 +2 c+1)2 +1.

Proof. Let D(i) be the set of all threshold disks Dj that are at least as large
as Di and for which c · Di ∩ c · Dj
= ∅. First we prove that there are no two
balls Bj and Bk such that rk ≥ rj > 16 c2 ri and Dj ,Dk ∈ D(i). Assume, for
contradiction, that there are two balls Bj and Bk such that rk ≥ rj > 16 c2 ri

and Dj ,Dk ∈ D(i). Since Bj and Bk are disjoint, we have d(tj , tk) ≥ 2√rj · rk >
8 c

√
rk · ri . We also know that d(tj , tk) ≤ d(tj , ti) + d(ti, tk) ≤ 8 c

√
rk · ri which

is a contradiction. Hence, there is at most one ball Bj such that rj > 16 c2 ri

and Dj ∈ D(i).
It remains to show that the number of balls Bj whose radii are not greater

than 16 c2 ri and for which Dj ∈ D(i) is at most (8 c2 + 2 c + 1)2. Let Bj be one

of these balls and let x be a point in c · Dj ∩ c · Di. Since

d(ti, tj) ≤ d(ti, x) + d(tj , x) ≤ 2 c
√

ri · rmin + 2 c
√

rj · rmin ≤ (2 c + 8 c2) ri ,

tj must lie in a disk whose center is ti and whose radius is (2 c + 8 c2) ri. We
also know that d(tj , tk) ≥ 2√rj · rk ≥ 2 ri for any two such balls Bj and Bk.
Thus the set D′(i) of disks centered at tj with radius ri for all Dj ∈ D(i) are
disjoint. Note that any disk in D′(i) lies inside the disk centered at ti with radius
((2 c + 8 c2) + 1) ri. Thus |D(i)| = |D′(i)| ≤ (2 c + 8 c2 + 1)2. �

Lemma 2. Each point q ∈ T is contained in at most a constant number of
threshold disks.

The threshold box. The threshold disks have the important property that each
point in T is contained in a constant number of disks. But unfortunately, as the
balls in BL and BS move, it is difficult to detect efficiently whenever a tangency
point enters or leaves a threshold disk. Hence we replace each threshold disk
by its axis-aligned bounding box. The bounding box of a threshold disk Di

associated with a Bi ∈ BL is called a threshold box and is denoted by TB(Bi).
The following lemma states that the threshold boxes retain the crucial property
of the threshold disks, namely, that each point q ∈ T is contained in at most a
constant number of threshold boxes. It follows fairly easily from Lemma 1.

Lemma 3. Each point q ∈ T is contained in at most a constant number of
threshold boxes.

Kinetic maintenance. Recall that to detect collisions between BS and BL, for
each ball Bj ∈ BS we determine which threshold boxes of balls in BL contain the
tangency point tj . Note that according to Lemma 3, tj is contained in a constant
number of threshold boxes. For each Bj ∈ BS we maintain the set of threshold
boxes that contain tj and certificates that guarantees disjointness of Bj and the
balls from BL whose threshold boxes contain tj .

To maintain our structure we only need to detect when a tangency point tj
enters or leaves a threshold box. To do so, we maintain two sorted lists on the x-
and y-coordinates of the tangency points of BS and the extremal points of the
threshold boxes associated with the balls in BL. If the objects follow constant-
degree algebraic trajectories, the number of events processed by our structure is
quadratic in the size of of BS and BL. Moreover, each event can be processed in
constant time.

Lemma 4. Let BS and BL be two disjoint sets of balls that roll on a plane where
the balls in BL are at least as large as the balls in BS. There is a KDS for collision
detection between the balls of BS and those of BL that uses O(|BS |+ |BL|) space,
and that processes O((|BS | + |BL|)2) events if the balls follow constant-degree
algebraic trajectories. Each event can be handled in O(1) time.

3 Free-flying fat objects in 3-space

We now turn our attention to collision detection for a set K of n free-flying
objects in 3-space. We will show how to obtain a compact and responsive KDS
when K consists of convex, constant-complexity ρ-fat objects. Note that we do
not require the objects to be polyhedral.

We will use the following definition of fatness [14]. An object K is called
ρ-fat, for some ρ ≥ 1, if there are two concentric balls B−(K) and B+(K) such
that B−(K) ⊂ K ⊂ B+(K) and

radius(B+(K))/ radius(B−(K)) ≤ ρ .

Since we are dealing with convex objects, this definition is equivalent up to
constant factors to other definitions of fatness that have been used [7]. We call
radius(B−(K)) and radius(B+(K)) the inner radius and outer radius of K,
respectively, and we call the common center of B−(K) and B+(K) the center
of K. We say that an object K is larger than another object K ′ if the inner
radius of K is larger than the inner radius of K ′.

Unfortunately the approach of the previous section does not work for free-
flying objects, not even if we are dealing with balls. The problem is that the ra-
dius of the threshold ball of a ball Bi will now be ri + rmin instead of 2

√
ri · rmin

and this invalidates the proof of Lemma 1 for c > 1 and thus invalidates
Lemma 3.

3.1 Similarly sized objects

We first consider the case where the objects have similar sizes. More precisely,
let σ be the scale factor of the scene, that is, the ratio between the sizes of the
largest and the smallest inner ball:

σ =
maxK∈K radius(B−(K))
minK∈K radius(B−(K))

It follows from the results of Zhou and Suri [21] that the number of pairs of
intersecting bounding boxes of the objects in K is at most O(ρ

√
ρ3σ3n) =

O(ρ2σ
√

ρσn). (A similar but slightly weaker result also follows directly from
results in Van der Stappen’s thesis [20].) Hence, if σ is a constant, we can simply
maintain the set of pairs of intersecting bounding boxes, and for each such pair
add a certificate to test for disjointness of the corresponding objects.

To maintain the pairs of intersecting bounding boxes, we maintain three
sorted lists: one on the minimum and maximum x-coordinates of the boxes,
one on the minimum and maximum y-coordinates of the boxes, and one on
the minimum and maximum z-coordinates of the boxes. Whenever there is a
swap in one of these lists, two boxes may intersect or become apart. If two boxes
intersect, we add a certificate for the corresponding objects. If they become apart,
we remove the corresponding certificate. This leads to the following theorem.

Theorem 2. For any set K of n convex, constant-complexity ρ-fat objects with
scale factor σ, there is a KDS for collision detection that uses O(ρ2σ

√
ρσn)

storage and processes O(n2) events in the worst case, assuming the objects follow
constant-degree algebraic trajectories. Each event can be handled in O(1) time.

3.2 Arbitrarily sized objects

When the sizes of the objects vary greatly, then there can be a quadratic number
of intersecting bounding boxes even when the objects are fat. Hence, a more
sophisticated approach is needed. Our global strategy for this case is as follows.
We place a number of so-called guarding points—or guards, for short—around
each object K ∈ K. The guards for K are defined in a local reference frame for
K, so they follow the motion of K. We choose the guards in such a way that
when two objects collide, the larger object must contain at least one guard from
the smaller object. This reduces the collision-detection problem to maintaining
for each guard which object contains it. The next lemma states that we can
always find a small guarding set because the objects are fat.

Lemma 5. For any ρ-fat object K, there is a set G(K) of O(ρ6) guarding points
such that any ρ-fat object K ′ that collides with K and is at least as large as K
contains a point from G(K).

Our KDS for collision detection thus works as follows. For each object K ∈ K
we compute a set G(K) of guards according to Lemma 5. Our goal is now to
maintain for each g ∈ G(K) the object K(g) containing g (if such an object
exists). Let Cand(K) := {K(g) : g ∈ G(K)}; the set Cand(K) contains the
candidates with which we check for collisions. More precisely, for each object
K(g) ∈ Cand(K), our KDS has a certificate testing for the disjointness of K
and K(g).

Fig. 1. A guard can be contained in
many bounding boxes.

Unfortunately, it seems difficult to
maintain the set Cand(K) directly.
This would require us to detect when
an object K ′ starts to contain a guard
g, which is difficult to do efficiently.
Hence, we replace the objects by their
bounding boxes. Because the bounding
boxes are axis-aligned, it will be easier
to check whether any of them starts (or
stops) to contain a guard of some other
object. This introduces a new problem,
however; a guard can be contained in many bounding boxes—see Figure 1.
Clearly, we cannot afford to maintain for each guard g all the bounding boxes
that contain it. Next we describe how to deal with this problem.

Consider a guard g. As noted earlier, there can be many disjoint objects whose
bounding boxes contain g. When this happens, however, the objects must become
larger and larger, as shown in Figure 1, with the larger objects being “behind” the

smaller ones. Thus the smaller objects are the candidates for containing g. Hence,
the idea is to maintain for g not all objects whose bounding boxes contain g,
but only the smallest k such objects for some suitable constant k.

To make this idea work, we first partition the space around g into cones, as
follows. Let U be the unit cube, centered at the origin. Draw a grid on each
face of U , such that the grid cells have edge length 1/(2

√
2ρ). Triangulate each

grid cell. We have now partitioned the surface of U into O(ρ2) triangles. Each
triangle defines, together with the origin, an (infinite) cone γ. The set of cones
for a guard g is obtained by translating these cones such that their apices—the
origin in the construction—coincide with g. We denote this set by Γ (g).

The next lemma implies that we can indeed restrict our attention to the
smallest objects whose bounding box contains a guard g. For an object K, let
bb(K) denote its (axis-aligned) bounding box.

Lemma 6. Let K(γ) be the set of all objects K whose centers lie in a cone γ
and such that bb(K) contains the apex g of the cone. Suppose that one of these
objects, K(g), contains g. Then K(g) must be among the 8ρ3(

√
3ρ+1)3 smallest

objects in K(γ).

To summarize, our KDS works as follows. For each object K ∈ K we compute
a set G(K) of guards according to Lemma 5. For each guard g we construct a
collection Γ (g) of infinite cones with apex g. For each cone γ ∈ Γ (g) we maintain
the 8ρ3(

√
3ρ+1)3 smallest objects whose center is inside γ and whose bounding

box contains g, and we have a certificate testing for disjointness for each such
object with the object for which g is a guard. Next we describe a KDS that
maintains all this information efficiently.

Details of the KDS. Let G(K) := {G(K) : K ∈ K} denote the set of all
guards over all objects, let Γ (K) denote the collection of all the cones, that is,
Γ (K) := {Γ (g) : g ∈ G(K)}, and let bb(K) denote the set of bounding boxes of
the objects.

Detecting events. We wish to maintain for each γ ∈ Γ (g) the collection K∗(γ)
of the 8ρ3(

√
3ρ + 1)3 smallest objects whose centers are inside γ and whose

bounding boxes contain g. Such a collection can change only when one of the
following two events happens:

Box event: a bounding box starts or stops to contain a guard.
Center event: a center moves into or out of a cone.

To detect box events, we maintain three sorted lists. The first list is sorted on
x-coordinate and contains the guards in G(K) as well as the bounding boxes,
where each bounding box occurs twice (according to its maximum and minimum
x-coordinates). We have similar lists sorted on y- and z-coordinates.

To detect center events, we observe that each cone is a translate of one of the
O(ρ2) cones defined for the unit cube. Hence, the facets of the cones have only
O(ρ2) distinct orientations. In fact, it is not difficult to see that there are only

O(ρ) orientations, because many orientations are re-used. Hence, we can detect
center events using O(ρ) sorted lists, each containing the object centers and the
guards according to one of those orientations. Since we have O(ρ6) guards per
object, we get the following lemma.

Lemma 7. The box and center events can be detected with a KDS that uses
O(ρ7n) storage and that processes O(ρ13n2) events in total, assuming the objects
follow constant-degree algebraic trajectories. Updating the KDS at such an event
takes O(1) time.

Handling events. When we have detected a center event, we may have to update
the set K∗(γ) of at most two cones. Next we describe how to handle the event
involving an object K and some cone γ defined for a guard g.

When bb(K) starts to contain g, or when the center of K moves into γ,
things are easy: When K∗(γ) contains less than 8ρ3(

√
3ρ + 1)3 objects, we add

K to K∗(γ); otherwise, we check whether K is smaller than the largest object
in K∗(γ) and, if so, let it replace that object.

Handling the case where bb(K) stops to contain g, or when the center of K
moves out of γ, is more difficult. For this we need a supporting data structure
that can answer the following query:

Given a cone γ with apex g, report the k smallest objects whose centers
are in γ and whose bounding boxes contain g, where k := 8ρ3(

√
3ρ+1)3.

Recall that the set of cones can be partitioned into O(ρ2) subsets, where the
cones in each subset are translates of some “standard” cone. We construct a
data structure for each subset separately. Because the facets of the cones in a
subset have only three distinct orientations, we can find all centers inside a query
cone in with a three-level range tree. Finding the bounding boxes containing the
apex of the query cone can be done with a three-level segment tree, and filtering
out the k smallest objects requires a sorted list on the size of the objects. Hence,
our total data structure will be a seven-level tree. Answering a query can be done
in O(log6 n + k) time—the query time is not O(log7 n + k) because in the last
level we only need to report the k smallest objects—and the amount of storage
is O(n log6 n). To kinetize the structure, we simply use the kinetic variants of
range trees [5] and segment trees [6]. The number of events processed is O(n2).

Lemma 8. When a center or box event occurs, we can update the collections
K∗(γ) in O(log6 n + ρ6) time, using a supporting KDS that uses O(ρ2n log6 n)
storage. The supporting KDS processes O(n2) events in the worst case, assuming
the objects follow constant-degree algebraic trajectories.

This leads to our main result.

Theorem 3. For any set K of n convex, constant-complexity ρ-fat objects, there
is a KDS for collision detection that uses O(ρ2n log6 n + ρ7n) storage and that
processes O(ρ13n2) events in the worst case, assuming the objects follow constant-
degree algebraic trajectories. Each event can be handled in O(log6 n + ρ6) time.

Our KDS is compact and responsive, but unfortunately it is not local: a large
object K with many small objects around can be involved in many certificates,
because it may contain guards for each of the small objects. However, we can
show that the locality of our KDS depends on the ratio of the size of the biggest
object and the smallest object in K.

Lemma 9. Each object in the KDS of Theorem 3 is involved in O(ρ14 + ρ9σ3)
certificates, where σ is the ratio of the largest inner radius to the smallest inner
radius of the objects in K.

4 Conclusion

We presented the first KDS’s for collision detection between multiple convex fat
3D objects that use a near-linear number of certificates and do not require the
objects to have similar sizes. We believe that this is an important step forward
in the theoretical investigation of KDS’s for 3D collision detection. Our KDS
for balls rolling on a plane is simple, and may perform well in practice. Our
general KDS for free-flying objects of varying sizes, however, is complicated and
the dependency on the fatness parameter ρ is large. Thus our result should be
seen as a proof that good bounds are possible in theory—whether a simple and
practical solution exists that achieves similar worst-case bounds is still open.

As remarked above, our structures are not local: a single object can be in-
volved in a linear number of certificates. Unfortunately, this seems very hard
(if not impossible) to avoid if there is a single large object that is closely sur-
rounded by many tiny objects. Thus we do not expect to see a local KDS that
can deal with arbitrarily sized objects. (We have shown though that a local KDS
is possible for convex fat objects when their sizes are similar.)

Finally, a challenging open problem is to obtain results on non-convex and/or
non-fat objects.

Acknowledgements. The last author would like to thank David Kirkpatrick for
valuable discussions on the presented subject.

References

1. P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang. Deformable
free space tilings for kinetic collision detection. International Journal of Robotics
Research, 21:179–197, 2002.

2. F. Aurenhammer and H. Edelsbrunner. An optimal algorithm for constructing the
weighted Voronoi diagram in the plane. Pattern Recognition, 17(2):251–257, 1984.

3. J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic colli-
sion detection for two simple polygons. In Proc. 10th ACM-SIAM Symposium on
Discrete Algorithms, pages 102–111, 1999.

4. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data. Journal
of Algorithms, 31:1–28, 1999.

5. J. Basch, L. Guibas, and L. Zhang. Proximity problems on moving points. In Proc.
13th Symposium on Computational Geometry, pages 344–351, 1997.

6. M. de Berg, J. Comba, and L. Guibas. A segment-tree based kinetic bsp. In Proc.
17th Symposium on Computational Geometry, pages 134–140, 2001.

7. M. de Berg, M. Katz, F. van der Stappen, and J. Vleugels. Realistic input models
for geometric algorithms. Algorithmica, 34:81–97, 2002.

8. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer Verlag, Berlin, Germany, 2nd
edition, 2000.

9. D. Coming and O. Staadt. Kinetic Sweep and Prune for Collision Detection. In
Proc. Workshop on Virtual Reality Interactions and Physical Simulations, pages
81-90, 2005.

10. J. Erickson, L. Guibas, J. Stolfi, and L. Zhang. Separation-sensitive collision de-
tection for convex objects. In Proc. 10th ACM-SIAM Symposium on Discrete
Algorithms, pages 327–336, 1999.

11. L. Guibas. Kinetic data structures: A state of the art report. In Proc. 3rd Workshop
on Algorithmic Foundations of Robotics, pages 191–209, 1998.

12. L. Guibas. Motion. In J. Goodman and J. O’Rourke, editors, Handbook of Discrete
and Computational Geometry, pages 1117–1134. CRC Press, 2nd edition, 2004.

13. L. Guibas, F. Xie, and L. Zhang. Kinetic collision detection: Algorithms and
experiments. In Proc. International Conference on Robotics and Automation, pages
2903–2910, 2001.

14. M. Katz. 3-D vertical ray shooting and 2-D point enclosure, range searching, and
arc shooting amidst convex fat objects. Computational Geometry: Theory and
Applications, 8:299–316, 1998.

15. D. Kim, L. Guibas, and S.Y. Shin. Fast collision detection among multiple moving
spheres. IEEE Transactions on Visualization and Computer Graphics, 4(3):230–
242, 1998.

16. H.K. Kim, L. Guibas, and S.Y. Shin. Efficient collision detection among moving
spheres with unknown trajectories. Algorithmica, 43:195–210, 2005.

17. D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for sim-
ple polygons. International Journal of Computational Geometry and Applications,
12(1&2):3–27, 2002.

18. D. Kirkpatrick and B. Speckmann. Kinetic maintenance of context-sensitive hierar-
chical representations for disjoint simple polygons. In Proc. 18th ACM Symposium
on Computational Geometry, pages 179–188, 2002.

19. M. Lin and D. Manocha. Collision and proximity queries. In J. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, pages
787–807. CRC Press, 2nd edition, 2004.

20. A. van der Stappen. Motion planning amidst fat obstacles. PhD thesis, Utrecht
University, Utrecht, the Netherlands, 1994.

21. Y. Zhou and S. Suri. Analysis of a bounding box heuristic for object intersection.
In Proc.10th ACM-SIAM Symposium on Discrete Algorithms, pages 830–839, 1999.

