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A polygonal chain is a sequence of consecutively joined edges embedded in
space. A k-chain is a chain of k edges. A polygonal tree is a set of edges joined
into a tree structure embedded in space. A unit tree is a tree with only edges of
unit length. A chain or a tree is simple if non-adjacent edges do not intersect.

We consider the problem about the reconfiguration of a simple chain or tree
through a series of continuous motions such that the lengths of all tree edges are
preserved and no edge crossings are allowed. A chain or tree can be straightened

if all its edges can be aligned along a common straight line such that each edge
points “away” from a designed leaf node. Otherwise it is called locked. Graph
reconfiguration problems have wide applications in contexts including robotics,
molecular conformation, rigidity and knot theory. The motivation for us to study
unit trees is that for instance, the bonding-lengths in molecules are often similar,
as are the segments of robot arms.

A chain in 2D can always be straightened [4, 5]. In 4D or higher, a tree can
always be straightened [3]. There exist trees [2] in 2D and 5-chains in 3D that
can lock. Alt et al. [1] showed that deciding the reconfigurability for trees in
2D and for chains in 3D is PSPACE-complete. However the problem of deciding
straightenability for trees in 2D and for chains in 3D remains open.

It is easy to verify that a tree of diameter at most 3 in 2D or 3D can always
be straightened. In this paper, we show that some tree of diameter 4 in 2D or
3D can lock, and a unit tree of diameter 4 in 2D can always be straightened.

In 2D, even a tree with diameter as low as 6 can lock [2] as shown in Fig-
ure 1 (a). We present a locked tree of diameter 4 in Figure 1 (b), which simulates
the tree in (a). It can be shown locked using the same technique as the proof
for (a) by assigning the corresponding equilibrium stresses to the tree edges. In
3D, a 5-chain can lock [2]. We present a 3D locked tree of diameter 4, which is
shown in Figure 1 (c).

We now consider the straightenability of a unit tree T of diameter 4 in 2D.
The center of tree T , denoted by o, is the middle vertex of any 4-chain in T . We
call a path connecting the center to a leaf a branch of T . A direct straightening

of branch B = ouv in T means to rotate v around u until ouv is straightened by
passing through the smaller angle. We denote the sweeping region for directly
straightening B by S(B). The direct straightening of B is interfered by another
branch B′ if S(B) ∩ B′ 6= ∅. There are two kinds of interferences depending on
whether B and B′ are of the same turn. We say that B′ follows (resp. covers) B
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Fig. 1. (a), (b) 2D locked trees. (c) A 3D locked tree of diameter 4, where d(o, ui) = 1 & d(ui, vi) ≥

2. (d) Straightening unit-tree version of (c). (e) B′ follows B. (f) B′ covers B. (g) B′′ covers B′ &
B′ covers B. (h) Straightening uncovered branch B and all its following branches.

if B is interfered by B′ of the same (resp. opposite) turn. See Figure 1 (e), (f)
for illustration.

Our algorithm to straighten T relies heavily on the observation of a nice
nesting structure on covering relation. Suppose B′′ covers B′ which in turn
covers B. Then B is nested inside the area enclosed by B and B ′′, which is the
shaded area as shown in Figure 1 (g). Therefore the last branch in a maximal
covering sequence is always uncovered. Our algorithm proceeds by successively
straightening an uncovered branch and all its following branches. The procedure
to straighten a uncovered branch is shown in Figure 1 (h). The whole algorithm
can be designed to run in O(n) moves and O(n log n) time, where n is the number
of tree edges.

In 3D, we conjecture that a unit tree of diameter 4 can always be straightened.
In particular, it is not hard to see that the unit-tree version of Figure 1 (c) can
be straightened. We first rotate v1 around u1 until u1v1 is very close to ou3, and
then rotate v3 around u3 until v3 is very close to o. Consequently we can rotate
u2 around o to draw ou2v2 out. We further conjecture that a unit tree of any
diameter in 2D or 3D can always be straightened.
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