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Abstract

We present an algorithm to reconstruct a collection of disjoint smooth closed curves

from noisy samples. Our noise model assumes that the samples are obtained by first draw-

ing points on the curves according to a locally uniform distribution followed by a uniform

perturbation in the normal directions. Our reconstruction is faithful with probability ap-

proaching 1 as the sampling density increases. We expect that our approach can lead to

provable algorithms under less restrictive noise models and for handling non-smooth fea-

tures.

1 Introduction

The combinatorial curve reconstruction problem has been extensively studied recently by com-

putational geometers. The input consists of sample points on a collection of unknown disjoint

smooth closed curves denoted by F . The problem calls for computing a set of polygonal curves

that are provably faithful. That is, as the sampling density increases, the polygonal curves

should converge to F .

Amenta et al. [3] obtained the first results in this problem. They proposed a 2D crust

algorithm whose output is provably faithful if the input satisfies the ε-sampling condition for

any ε < 0.252. For each point x on F , the local feature size f(x) at x is defined as the distance

from x to the medial axis of F . For 0 < ε < 1, a set S of samples is an ε-sampling of F if for

any point x ∈ F , there exists a sample s ∈ S such that ‖s − x‖ ≤ ε · f(x) [3]. The algorithm

by Amenta et al. invokes the computation of a Voronoi diagram or Delaunay triangulation

twice. Gold and Snoeyink [11] simplified the algorithm and invokes the computation of Voronoi
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diagram or Delaunay triangulation only once. Later, Dey and Kumar [4] proposed a NN-crust

algorithm for this problem. Since we will use the NN-crust algorithm, we briefly describe it.

For each sample s in S, connect s to its nearest neighbor in S. Afterwards, if a sample s is

incident on only one edge e, connect s to the closest sample among all samples u such that su

makes an obtuse angle with e. The output curve is faithful for any ε ≤ 1/3 [4].

Dey, Mehlhorn, and Ramos [5] proposed a conservative-crust algorithm to handle curves

with endpoints. Funke and Ramos [9] proposed an algorithm to handle curves that may have

sharp corners and endpoints. Dey and Wenger [6, 7] also described algorithms and implemen-

tation for handling sharp corners. Giesen [10] discovered that the traveling salesperson tour

through the samples is a faithful reconstruction, but this approach cannot handle more than

one curve. Althaus and Mehlhorn [2] showed that such a traveling salesperson tour can be

constructed in polynomial time.

Noise often arises in collecting the input samples. For example, when the input samples are

obtained from 2D images by scanning. The noisy samples are typically classified into two types.

The first type are samples that cluster around F but they generally do not lie on F . The second

type are outliers that lie relatively far from F . No combinatorial algorithm is known so far that

can compute a faithful reconstruction in the presence of noise. In this paper, we propose a

method that can handle noise of the first type for a set of disjoint smooth closed curves. We

assume that the input does not contain outliers. Proving a deterministic theorem seems difficult

as arbitrary noisy samples can collaborate to form patterns to fool any reconstruction algorithm.

Instead, we assume a particular model of noise distribution and prove that our reconstruction is

faithful with probability approaching 1 as the number of samples increases. For simplicity and

notational convenience, we assume throughout this paper that minx∈F f(x) = 1 and F consists

of a single smooth closed curve, although our algorithm works when F contains more than one

curve.

In our model, a sample is generated by drawing a point from F followed by randomly

perturbing the point in the normal direction. Let L =
∫

F
1

f(x)dx. The drawing of points from F

follows the probability density function 1
L·f(x) . That is, the probability of drawing a point from

a curve segment η is equal to
∫

η
1

f(x)dx divided by L. A point p drawn from F is then perturbed

in the normal direction. The perturbation is uniformly distributed within an interval that has

p as the midpoint, width 2δ, and aligns with the normal direction at p. The distribution of each

sample is independently identical. δ is the noise amplitude and we assume that δ ≤ 1/(9ρ2)

where ρ ≥ 4 is a constant chosen a priori by our algorithm. We assume throughout this paper

that δ > 0. We emphasize that the value of δ is unknown to our algorithm. Although the

perturbation along the normal direction is restrictive, it isolates the effect of noise from the

distribution of samples on F . This facilities an initial study of curve reconstruction in the

presence of noise.

We prove that our algorithm returns a reconstruction which is faithful with probability at

least 1 − O(n−Ω( ln
ω n

fmax
−1)), where n is the number of input samples, ω is an arbitrary positive

constant, and fmax = maxx∈F f(x). Our algorithm works for noisy samples from a collection of

disjoint smooth closed curves. The novelty of our algorithm is a method to cluster samples so
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that each cluster comes from a relatively flat portion of F . This allows us to estimate points

that lie close to F . We believe that this clustering approach will also be useful for less restrictive

noise models and recognizing non-smooth features. We also expect that this clustering approach

can be generalized to 3D for surface reconstruction problems.

The rest of the paper is organized as follows. Section 2 describes our algorithm. Section 3

introduces two decompositions of the space around F which is the main tool in our proba-

bilistic argument. Sections 4 and 5 prove that our reconstruction is faithful with probability

approaching 1. Section 6 discusses extension to handling non-smooth features.

2 Algorithm

We first highlight the key ideas. Our algorithm works by growing a disk neighborhood around

each sample p until the samples inside the disk fit in a strip whose width is small relative to

the radius of the disk. The final disk is the coarse neighborhood of p denoted by coarse(p).

coarse(p) provides a first estimate of the curve locally and of its normal. A better estimation

is possible. We shrink coarse(p) by a certain factor. We take a slab bounded by two parallel

tangent lines of the shrunken coarse(p). The slab is the refined neighborhood of p denoted by

refined (p). We rotate refined(p) around p to minimize the spread of the samples in refined (p)

along the direction of refined (p). The final orientation of refined (p) provides a good normal

estimation and it also allows us to estimate a center point close to F in place of p. Next, we

Figure 1: On the left, a smooth curve segment with a noise cloud. In the middle, a sufficiently

large neighborhood identifies a strip with relatively large aspect ratio, which can provide pre-

liminary point and normal estimates. On the right, concentrating on smaller neighborhoods, a

better estimate of point and normal is possible.

decimate the center points as follows. We scan the center points in decreasing order of the

widths of their corresponding refined neighborhoods. When we add the current center point

p∗ to the decimated set, we delete the other center points that are too close to p∗. Finally, we

can run any reconstruction algorithm that is correct for a noise free sampling on the remaining

center points. For example, the NN-Crust algorithm by Dey and Kumar [4].

We provide the details of the algorithm in the following. Let n be the total number of input

samples. Let ω > 0 and ρ ≥ 4 be two predefined constants.

Point Estimation: For each sample s, we estimate a point as follows.
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Coarse neighborhood: Let D be the disk that is centered at s and contains ln1+ω n

samples. Let initial(s) be the disk centered at s with radius
√

radius(D). We

initialize coarse(s) = initial(s) and compute an infinite strip strip(s) of minimum

width that contains all samples inside coarse(s). We grow coarse(s) and maintain

strip(s) until radius(coarse(s))
width(strip(s)) ≥ ρ. The final disk coarse(s) is the coarse neighborhood

of s.

Refined neighborhood: LetNs be a direction perpendicular to the long side of strip(s).

The refined neighborhood refined (s) is the slab that contains s in the middle, parallel

to Ns, and has width equal to min{
√

radius(initial (s)), radius(coarse(s))/3}. We en-

close the samples in refined (s) by two parallel lines that are orthogonal to Ns. These

two lines form a rectangle rectangle(s) with the boundary lines of refined (s). We ro-

tate refined (s) around s in the clockwise and anti-clockwise directions and maintain

rectangle(s) . The range of the rotation is [0, π/10]. Within this range, we position

refined (s) such that the height of rectangle(s) in the direction Ns is minimized. We

return the center point s∗ of the final rectangle(s).

Pruning: We sort the center points s∗ in decreasing order of width(refined (s)). Then we

scan the sorted list and select a subset of center points: when we select the current

center point s∗, we delete all center points u∗ from the sorted list such that ‖s∗ − u∗‖ ≤
width(refined (s))1/3.

Output: We run the NN-crust algorithm on the selected center points and return the output

curve.

3 Decompositions

For each point x ∈ R
2 that does not lie on the medial axis of F , we use x̃ to denote the point

on F closest to x. That is, x̃ is the projection of x onto F . (We are not interested in points on

the medial axis.)

We call the bounded region enclosed by F the inside of F and the unbounded region the

outside of F . For 0 < α ≤ δ, F+
α (resp. F−

α ) is the curve that passes through the points q inside

(resp. outside) F such that ‖q− q̃‖ = α. We use Fα to mean F+
α or F−

α when it is unimportant

to distinguish between inside and outside. The normal segment at a point p ∈ F is the line

segment consisting of points q on the normal of F at p such that ‖p− q‖ ≤ δ. Given two points

x and y on F , we use F (x, y) to denote the curved segment traversed from x to y in clockwise

direction. We use |F (x, y)| to denote the length of F (x, y).

We will use two types of decompositions, β-partition and β-grid. Let 0 < β < 1 be a

parameter. We identify a set of cut-points on F as follows. We pick an arbitrary point c0 on

F as the first cut-point. Then for i ≥ 1, we find the point ci such that ci lies in the interior

of F (ci−1, c0), |F (ci−1, ci)| = β2f(ci−1), and |F (ci, c0)| ≥ β2f(ci). If ci exists, it is the next

cut-point and we continue. Otherwise, we have computed all the cut-points and we stop. The

β-partition is the arrangement of the normal segments at the cut-points, F +
δ , and F−

δ . Figure 2
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shows an example. We call each face of the β-partition a β-slab. The β-partition consists of a

row of slabs stabbed by F .

F

}c1
c2 c3 c4

β
2

Fδ
−

+Fδ

c3f ( )

Figure 2: β-partition.

The cut-points for a β-grid are picked differently. We pick an arbitrary point c0 on F as the

first cut-point. Then for i ≥ 1, we find the point ci such that ci lies in the interior of F (ci−1, c0),

|F (ci−1, ci)| = βf(ci−1), and |F (ci, c0)| ≥ βf(ci). If ci exists, it is the next cut-point and we

continue. Otherwise, we have computed all the cut-points and we stop. The β-grid is the

arrangement of the following:

• The normal segments at the cut-points.

• F , F+
δ , and F−

δ .

• F+
α and F−

α where α = iβδ and i is an integer between 1 and b1/βc − 1.

The β-grid has a grid structure. Figure 3 shows an example. We call each face of the β-grid a

β-cell. There are O(1/β) rows of cells “parallel to” F .

−

Fδ

f(c  )3

F

}

}

βδ

c1
c2 c3 c4

β

Fδ

+

Figure 3: β-grid.

In Section 3.1, we prove several properties of Fα for any α. These properties will be used in

Section 3.2 to bound the diameter of a β-cell. These properties will also be useful later in the

paper. In Section 3.3, we analyze the probabilities of a β-slab and a β-cell containing certain

numbers of samples. These probabilities are essential for the probabilistic analysis later.

3.1 Properties of Fα

Lemma 3.1 Any point p on Fα has two tangent disks with radii f(p̃) − α whose interior do

not intersect Fα.
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Proof. Let Mα be the medial disk of Fα touching a point p ∈ Fα. By the definition of Fα,

there is a medial disk M of F touching p̃ such that M and Mα have the same center and

radius(Mα) = radius(M) − α ≥ f(p̃) − α. Let D be a disk of radius f(p̃) − α that touches Fα

at p. If Fα intersects the interior of D, the medial axis of Fα intersects the interior of D. So

radius(Mα) < radius(D) = f(p̃) − α, contradiction.

For each point p on Fα, define cocone(p, θ) as the double cone that has apex p and angle θ

such that the normal of Fα at p is the symmetry axis of the double cone that lies outside the

double cone. The next lemma shows that Fα lies inside cocone(p, θ) for a small θ in a small

neighborhood of p.

Lemma 3.2 Let p be a point on Fα. Let D be a disk centered at p with radius at most 2(1 −
α)f(p̃).

(i) For any point q ∈ Fα ∩D, the distance of q from the tangent at p is at most ‖p−q‖2

2(1−α)f(p̃) .

(ii) Fα ∩D ⊆ cocone(p, 2 sin−1 radius(D)
2(1−α)f(p̃)).

Proof. Assume that the tangent at p is horizontal. Consider (i). Refer to Figure 4(a). Let B be

the tangent disk at p that lies above p and has center x and radius (1 − α)f(p̃). Let C be the

circle centered at p with radius ‖p− q‖. Since ‖p− q‖ < 2(1 − α)f(p̃), C crosses B. Let r be a

point in C∩∂B. Let d be the distance of r from the tangent at p. By Lemma 3.1, d bounds the

distance from q to the tangent at p. Observe that ‖p−q‖ = ‖p−r‖ = 2(1−α)f(p̃) sin(∠pxr/2)

and d = ‖p− r‖ · sin(∠pxr/2). Thus, d = 2(1 − α)f(p̃) sin2(∠pxr/2) = ‖p−q‖2

2(1−α)f(p̃) .

r

~f ( )

Fα

Fα

tangent to
pat

p

x
d

(1−α)
B

C

p

θ

α

p

D

F

(a) (b)

Figure 4: Illustration for Lemma 3.2.

Consider (ii). Refer to Figure 4(b). By (i), the distance between Fα ∩D and the tangent at

p is bounded by radius(D)2

2(1−α)f(p̃) . Let θ be the smallest angle such that cocone(p, θ) contains Fα ∩D.

Then sin θ
2 ≤ radius(D)2

2(1−α)f(p̃) · 1
radius(D) = radius(D)

2(1−α)f(p̃) .

6



The next lemma shows that the normal deviation is very small in a small neighborhood of

any point in Fα.

Lemma 3.3 Let p be a point on Fα. Let D be a disk centered at p with radius at most
(1−α)f(p̃)

4 . For any point u ∈ Fα ∩ D, the acute angle between the normals at p and u is at

most 2 sin−1 ‖p−u‖
(1−α)f(p̃) ≤ 2 sin−1 radius(D)

(1−α)f(p̃) .

Proof. Take any point u on Fα ∩D. Let ` be the tangent to Fα at u. Let `′ be the line that is

perpendicular to ` and passes through u. Let C be the circle centered at p with radius ‖p−u‖.
Let A and B be the two tangent circles at p with radius (1−α)f(p̃)

2 . Let x be the center of A.

Without loss of generality, we assume that the tangent to Fα at p is horizontal, A is below B,

u lies to the left of p, and the slope of ` is positive or infinite. (We ignore the case where the

slope of ` is zero as there is nothing to prove then.) It follows that the slope of ` ′ is zero or

negative. Refer to Figure 5.

l’

l

u

p

A

B

q

C

x

l’

w

p

l

A

B

q

C
u

x l

q

u

l’C
p

A

B

x

(a) (b) (c)

Figure 5: Illustration for Lemma 3.3.

By Lemma 3.1, u lies outside A and B. Let q be the intersection point between C and A

on the left of p. Since ‖p − q‖ = ‖p − u‖ ≤ (1−α)f(p̃)
4 = radius(A)/2, q lies above x. Also,

∠pxq = 2 sin−1 ‖p−u‖
(1−α)f(p̃) .

Suppose that `′ does not lie above x, see Figure 5(a). Since u lies above the support line of

qx, the angle between `′ and the vertical is less than or equal to ∠pxq = 2 sin−1 ‖p−u‖
(1−α)f(p̃) .

Suppose that `′ lies above x but not above p, see Figure 5(b). We show that this case is

impossible. Let w the intersection point between A and `′ on the right of p. Note that p lies

between u and w and ∠upw > π/2. If we grow a disk that lies below l and remains tangent to

l at u, the disk will hit Fα at some point different from u when the disk passes through p or

earlier. It follows that there is a medial disk Mu of Fα that touches u and lies below l. Observe

that the center of Mu lies on the half of `′ on the right of u. Furthermore, the center of Mu
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lies on the line segment uw; otherwise, since ∠upw > π/2, Mu would contain p, contradiction.

Thus, the distance from p̃ to the center of Mu is less than max{‖p− u‖, ‖p− w‖} + ‖p− p̃‖ ≤
2 · radius(A) + α = (1 − α)f(p̃) + α ≤ f(p̃). But the center of Mu is also a point on the medial

axis of F which implies that f(p̃) < f(p̃), contradiction.

The remaining case is that `′ lies above p, see Figure 5(c). Since u lies outside B and the

slope of `′ is zero or negative, `′ lies between p and the center of B. The situation is similar to

the previous case where `′ lies between p and x. So a similar argument shows that this case is

also impossible.

3.2 Diameter of a β-cell

In this section, we prove an upper bound on the diameter of a β-cell. First, we need a utility

lemma.

Lemma 3.4 Assume that β ≤ 1/4. Let p and q be two points on Fα such that |F (p̃, q̃)| ≤
2βf(p̃). Then ‖p− q‖ ≤ ‖p̃− q̃‖ + 5βδ.

Proof. Refer to Figure 6. Let r be the point q − q̃ + p̃. Without loss of generality, assume

that ∠p̃pr ≤ ∠p̃rp. Lemma 3.3 implies that ∠p̃pr ≤ 2 sin−1 2β. Therefore, ∠p̃rp ≥ π/2 −

α

+1c

p

~

r q

~p qci

F

F
i

Figure 6: Illustration for Lemma 3.4.

sin−1 2β. By sine law, ‖p − r‖ = ‖p−p̃‖·sin∠pp̃r
sin∠p̃rp ≤ δ sin(2 sin−1 2β)

cos(sin−1 2β)
. Note that sin(2 sin−1 2β) ≤

2 sin(sin−1 2β) = 4β and cos(sin−1 2β) ≥ cos(sin−1(1/2)) > 0.86. So ‖p − r‖ ≤ 4βδ/(0.86) <

5βδ. By triangle inequality, we get ‖p−q‖ ≤ ‖q−r‖+‖p−r‖ = ‖p̃− q̃‖+‖p−r‖ < ‖p̃− q̃‖+5βδ.

Lemma 3.5 Assume that β ≤ 1/4. Let C be any β-cell that lies between the normal segments

at the cut-points ci and ci+1. Then the diameter of C is at most 11βf(ci).

Proof. Let s and t be two points in C. Let p be the projection of s onto a side of C in the

direction towards s̃. Similarly, let q be the projection of t onto the same side of C in direction

towards t̃. Note that p̃ = s̃ and q̃ = t̃. The triangle inequality and Lemma 3.4 imply that

‖s− t‖ ≤ ‖p− q‖ + ‖p− s‖ + ‖q − t‖
≤ ‖p̃− q̃‖ + 5βδ + ‖p− s‖ + ‖q − t‖.
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Since ‖p̃− q̃‖ = ‖s̃− t̃‖ ≤ 2βf(ci) and both ‖p− s‖ and ‖q − t‖ are at most 2βδ, the diameter

of C is at most 2βf(ci) + 9βδ ≤ 11βf(ci).

3.3 Number of samples in cells and slabs

In this section, we analyze the probabilities of a β-slab and a β-cell containing certain numbers

of samples. We first need a lemma that estimates the probability of a sample point lying inside

a β-cell and a β-slab.

Lemma 3.6 Let λk =

√

k2 ln1+ω n
n for some positive constant k. Let r ≥ 1 be a parameter. Let

C be a (λk/r)-slab or (λk/r)-cell. There exist constants κ1 and κ2 such that if n is so large that

λk ≤ 1/4, then κ2λ
2
k/r

2 ≤ Pr(s ∈ C) ≤ κ1λ
2
k/r

2.

Proof. Recall that L =
∫

F
1

f(x)dx. Assume that C lies between the normal segments at the

cut-points ci and ci+1. We use η to denote F (ci, ci+1) as a short hand. By our assumption

on λk, for any point x ∈ η, if C is a λk-cell, then ‖x − ci‖ ≤ 2λkf(ci)/r ≤ f(ci)/2; if C

is a λk-slab, then ‖x − ci‖ ≤ 2λ2
kf(ci)/r

2 ≤ f(ci)/8. The Lipschitz condition implies that

f(ci)/2 ≤ f(x) ≤ 3f(ci)/2. If C is a λk-slab, then Pr(s ∈ C) = Pr(s̃ lies on η), which is
1
L ·

∫

η
1

f(x)dx ∈ [
2λ2

k
3Lr2

,
4λ2

k
Lr2

]. If C is λk-cell, then Pr(s̃ lies on η) = 1
L ·

∫

η
1

f(x)dx ∈ [ 2λk
3Lr ,

4λk
Lr ]. Since

Pr(s ∈ C | s̃ lies on η) ∈ [λkδ/(2δr), 2λkδ/(2δr)] = [λk/(2r), λk/r], Pr(s ∈ C) ∈ [
λ2

k
3Lr2

,
4λ2

k
Lr2

].

The following Chernoff bound [8] will be needed.

Lemma 3.7 Let the random variables X1, X2, . . . , Xn be independent, with 0 ≤ Xi ≤ 1 for

each i. Let Sn =
∑n

i=1Xi, and let E(Sn) be the expected value of Sn. Then for any σ > 0,

Pr(Sn ≤ (1 − σ)E(Sn)) ≤ exp(−σ2E(Sn)
2 ), and Pr(Sn ≥ (1 + σ)E(Sn)) ≤ exp(− σ2E(Sn)

2(1+σ/3) ).

We are ready to analyze the probabilities of a β-slab and a β-cell containing certain numbers

of samples.

Lemma 3.8 Let λk =
√

k2 ln1+ω n
n for some positive constant k. Let r ≥ 1 be a parameter. Let

C be a (λk/r)-slab or (λk/r)-cell. Let κ1 and κ2 be the constants in Lemma 3.6. Whenever n

is so large that λk ≤ 1/4, the following hold.

(i) C is non-empty with probability at least 1 − n−Ω(lnω n/r2).

(ii) Assume that r = 1. For any constant κ > κ1k
2, the number of samples in C is at most

κ ln1+ω n with probability at least 1 − n−Ω(lnω n).

(iii) Assume that r = 1. For any constant κ < κ2k
2, the number of samples in C is at least

κ ln1+ω n with probability at least 1 − n−Ω(lnω n).

9



Proof. Let Xi(i = 1, . . . , n) be a random binomial variable taking value 1 if the sample point si

is inside C, and value 0 otherwise. Let Sn =
∑n

i=1Xi. Then E(Sn) =
∑n

i=1 E(Xi) = n ·Pr(si ∈
C). This implies that

E(Sn) ≤
κ1nλ

2
k

r2
=
κ1k

2 ln1+ω n

r2
, E(Sn) ≥

κ2nλ
2
k

r2
=
κ2k

2 ln1+ω n

r2
.

By Lemma 3.7,

Pr(Sn ≤ 0) = Pr(Sn ≤ (1 − 1)E(Sn))

≤ exp(−E(Sn)

2
)

≤ exp(−Ω(
ln1+ω n

r2
)).

Consider (ii). Let σ = κ
κ1k2 − 1 > 0. Since r = 1, we have

κ ln1+ω n = κ1nλ
2
k(1 + σ) ≥ (1 + σ)E(Sn).

By Lemma 3.7,

Pr(Sn > κ ln1+ω n) ≤ Pr(Sn > (1 + σ)E(Sn))

≤ exp(−σ2E(Sn)

2 + 2σ/3
)

= exp(−Ω(ln1+ω n)).

Consider (iii). Let σ = 1 − κ
κ2k2 > 0. Since r = 1, we have

κ ln1+ω n = κ2nλ
2
k(1 − σ) ≤ (1 − σ)E(Sn).

By Lemma 3.7,

Pr(Sn < κ ln1+ω n) ≤ Pr(Sn < (1 − σ)E(Sn))

≤ exp(−σ
2E(Sn)

2
)

= exp(−Ω(ln1+ω n)).

4 Coarse neighborhood

In this section, we bound the radii of initial(s) and coarse(s) for each sample s. Then we

show that strip(s) provides a rough estimate of the slope of the tangent to F at s̃. Recall that

λk =
√

k2 ln1+ω n
n .
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4.1 Radius of initial(s)

We first need a utility lemma that bounds the distance between two normal segments from

below.

Lemma 4.1 Assume that δ ≤ 1/8 and λk ≤ 1/4. Let ci and ci+1 be two consecutive cut-points

of a λk-partition. For any point on the normal segment at ci+1, its distance from the support

line of the normal segment at ci is at least |F (ci, ci+1)|/6.

Proof. Take any point q ∈ Fα on the normal segment at ci+1. Let p be the point on Fα such

that p̃ = ci. Let r be the orthogonal projection of q onto the tangent at p to Fα. Observe that

the distance of q from the support line of the normal segment at ci is ‖p− r‖. We are to prove

that ‖p− r‖ ≥ |F (ci, ci+1)|/6.
For any point x ∈ Fα(p, q), we use θx to denote the non-obtuse angle between the normals

at x̃ and ci. By Lemma 3.3, we have θx ≤ 2 sin−1 |F (ci,ci+1)|
f(ci)

. By our assumption on λk,
|F (ci,ci+1)|

f(ci)
≤ 2λ2

k < 1/2. It follows that sin−1 |F (ci,ci+1)|
f(ci)

< 1.1|F (ci,ci+1)|
f(ci)

. Therefore,

θx ≤ 2.2|F (ci, ci+1)|
f(ci)

(1)

≤ 4.4λ2
k. (2)

This implies that Fα(p, q) is monotone along the tangent to Fα at p; otherwise, there is a point

x ∈ Fα(p, q) such that θx = π/2 > 4.4λ2
k, contradiction. It follows that F (ci, ci+1) is also

monotone along the tangent to F at ci.

Refer to Figure 7. Assume that the tangents at p and ci are horizontal, p lies below ci, and

q lies to the right of p. Let r′ be the orthogonal projection of ci+1 onto the tangent to F at ci.

Let s (resp. s′) be the intersection between the normal at q and the tangent at p (resp. ci).

The monotonicity of F (ci, ci+1) implies that

‖ci − r′‖ =

∫

F (ci,ci+1)
cos θx dx

(2)

≥ |F (ci, ci+1)| · cos(4.4λ2
k) > 0.9|F (ci, ci+1)|, (3)

as cos(4.4λ2
k) ≥ cos(0.275) > 0.9. Similarly, we get

‖p− r‖ > 0.9|Fα(p, q)|. (4)

If the support line of the normal at ci+1 has non-positive slope (see Figure 7(a)), then

‖p− r‖ ≥ ‖ci − r′‖. Since ‖ci − r′‖ > 0.9|F (ci, ci+1)| by (3), we are done.

Suppose that the support line of the normal at ci+1 has positive slope, see Figure 7(b).

(Despite the illustration in Figure 7(b), r may not lie between p and s and r ′ may not lie

between ci and s′.) Starting with triangle inequality, we get

‖p− r‖ ≥ ‖p− s‖ − ‖r − s‖ = ‖p− s‖ − ‖q − r‖ · tan θq (5)

We are to prove an upper bound for ‖q − r‖ · tan θq and a lower bound for ‖p − s‖. This will

yield a lower bound for ‖p− r‖. By (2), θq ≤ 4.4λ2
k ≤ 0.275, so we have

tan θq < 1.03θq
(1)
<

3|F (ci, ci+1)|
f(ci)

. (6)
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Figure 7: Illustration for Lemma 4.1.

By Lemma 3.4 and our assumption on λk, ‖p−q‖ ≤ ‖ci− ci+1‖+5λkδ ≤ 2λ2
kf(ci)+5λkf(ci) ≤

1.375f(ci). Thus, by our assumption that δ ≤ 1/8, ‖p− q‖ < 2(1− δ)f(ci) ≤ 2(1−α)f(ci) and

so Lemma 3.2(i) applies. We get

‖q − r‖ ≤ ‖p− q‖2

2(1 − α)f(ci)
<

‖p− q‖2

f(ci)
≤ |Fα(p, q)|2

f(ci)
.

If |Fα(p, q)| ≥ |F (ci, ci+1)|, then by (4), ‖p − r‖ > 0.9|F (ci, ci+1)| and we are done. The

remaining case is that |Fα(p, q)| < |F (ci, ci+1)|. By our assumption on λk, we get

‖q − r‖ ≤ |F (ci, ci+1)|2
f(ci)

≤ 4λ4
kf(ci) < 0.02f(ci).

Plugging (6) into the above, we obtain

‖q − r‖ · tan θq < 0.06|F (ci, ci+1)|. (7)

Similarly, we get

‖ci+1 − r′‖ < 0.02f(ci),

‖r′ − s′‖ = ‖ci+1 − r′‖ · tan θq < 0.06|F (ci, ci+1)|. (8)

Next, we bound ‖p − s‖ from above. Let i be the intersection point of the normals at ci and

ci+1. Consider the similar triangles ips and icis
′. We have

‖p− s‖ = ‖ci − s′‖ · ‖p− i‖
‖ci − i‖ = ‖ci − s′‖ · (1 − ‖p− ci‖

‖ci − i‖ ).

Observe that ‖p− ci‖ ≤ δ and ‖ci − s′‖ = ‖ci − i‖ · tan θq. Thus,

‖p− s‖ ≥ ‖ci − s′‖ · (1 − δ tan θq
‖ci − s′‖) (9)

= ‖ci − s′‖ − δ tan θq (10)

≥ ‖ci − r′‖ − ‖r′ − s′‖ − δ tan θq (11)

(3), (8) & (6)

≥ 0.84|F (ci, ci+1)| − 3δ|F (ci, ci+1)|. (12)

12



Plugging (12) and (7) into (5), we obtain

‖p− r‖ ≥ (0.84 − 3δ − 0.06)|F (ci, ci+1)|
≥ (0.84 − 0.375 − 0.06)|F (ci, ci+1)|

>
|F (ci, ci+1)|

6
.

We are ready to bound the radius of initial(s).

Lemma 4.2 Let h be a constant less than
√

1
3κ1

and let m be a constant greater than
√

2
κ2

,

where κ1 and κ2 are the constants in Lemma 3.6. Let ψh = λh/3 and ψm =
√

11λm. Let s be

a sample. If δ ≤ 1/8, λh ≤ 1/32, and λm ≤ 1/4, then

ψh
√

f(s̃) ≤ radius(initial(s)) ≤ ψm
√

f(s̃)

with probability at least 1 −O(n−Ω(lnω n)).

Proof. Let D be the disk centered at s that contains ln1+ω samples. We first prove the upper

bound. Take a λm-grid such that s lies on the normal segment at the cut-point c0. Let C be

the λm-cell between the normal segments at c0 and c1 that contains s. By Lemma 3.8(iii), C

contains at least 2 ln1+ω n samples with probability at least 1 − n−Ω(lnω n). Since D contains

ln1+ω n samples, radius(D) is less than the diameter of C with probability at least 1−n−Ω(lnω n).

By Lemma 3.5, radius(D) ≤ 11λmf(c0) = 11λmf(s̃). It follows that radius(initial(s)) =
√

radius(D) ≤
√

11λmf(s̃).

Next, we prove the lower bound. Take a λh-partition such that s lies on the normal segment

at the cut-point c0. Consider the cut-points cj for −1 ≤ j ≤ 1. (We use c−1 to denote the

last cut-point picked.) We have ‖c−1 − c0‖ ≤ |F (c−1, c0)| ≤ 2λ2
hf(c−1) < 0.1f(c−1) by our

assumption on λh. The Lipschitz condition implies that

0.9f(c0) < f(c−1) < 1.2f(c0). (13)

Let `−1 and `1 be the support lines of the normal segments at c−1 and c1. Let d−1 and d1

be the distances from s to `−1 and `1, respectively. We first prove lower bounds on d−1 and d1.

By Lemma 4.1,

d−1 ≥ |F (c−1, c0)|
6

≥ λ2
hf(c−1)

6

(13)
>

λ2
hf(c0)

7
.

Assume that s ∈ Fα. Let x be the point on Fα such that x̃ = c1. By Lemma 3.4 and our

assumption on λh,

‖s− x‖ ≤ ‖c0 − c1‖ + 5λhδ

≤ 2λ2
hf(c0) + 5λhf(c0)

< 0.16f(c0).
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Figure 8: Illustration for Lemma 4.2.

Since δ ≤ 1/8, 2(1 − α) ≥ 2(1 − δ) > 0.16, by Lemma 3.2(ii), x ∈ cocone(s, 2 sin−1 0.16
2(1−α) ) ⊆

cocone(s, 2 sin−1(0.1)). Since ‖c0 − c1‖ ≤ 2λ2
hf(c0) < 0.002f(c0), by Lemma 3.3, the angle

between the normal segments at c0 and c1 is at most 2 sin−1(0.002). Refer to Figure 8. So

d1 ≥ ‖s − x‖ · cos(sin−1(0.1) + 2 sin−1(0.002)) > 0.9 · ‖s − x‖. By Lemma 4.1, ‖s − x‖ ≥
|F (c0, c1)|/6 ≥ λ2

hf(c0)/6. We get

d1 >
λ2
hf(c0)

7
.

We apply the lower bounds for d−1 and d1 to bound radius(initial (s)) from below. By Lemma 3.8(ii),

the slab between c−1 and c0 and the slab between c0 and c1 contain at most ln1+ω n/3 points

each with probability at least 1 − O(n−Ω(lnω n)). Hence, for D to contain ln1+ω n points,

radius(D) > max{d−1, d1} ≥ λ2
hf(c0)/7. Note that f(s̃) = f(c0) as s̃ = c0 by construction. It

follows that radius(initial(s)) =
√

radius(D) > λh
√

f(s̃)/3.

4.2 Radius of coarse(s)

In this section, we prove an upper bound and a lower bound on the radius of coarse(s).

Lemma 4.3 Assume ρ ≥ 4 and δ ≤ 1/(25ρ2). Let m be the constant and ψm be the parameter

in Lemma 4.2. Let s be a sample. If λm ≤ 1/(396ρ2), then

radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃)

with probability at least 1 −O(n−Ω(lnω n)).

Proof. Let s1 and s2 be points on F+
δ and F−

δ such that s̃1 = s̃2 = s̃. Let D be the disk

centered at s with radius 5ρδ + ψm
√

f(s̃). By Lemma 4.2, ψm
√

f(s̃) ≥ radius(initial(s)), so

D contains initial(s) with probability at least 1 − O(nΩ(lnω n)). We are to show that coarse(s)

cannot grow beyond D. First, since λm ≤ 1/(396ρ2),

ψm =
√

11λm ≤ 1/(6ρ) ≤ 1/24.

Observe that both s1 and s2 lie inside D. Since 5ρδ ≤ 1/(5ρ) ≤ 1/20 and ψm ≤ 1/24,

radius(D) < (1 − δ)f(s̃). Thus, the distance between any two points in D ∩ F +
δ is at most

2(1 − δ)f(s̃). By Lemma 3.2(i), the maximum distance between D ∩ F +
δ and the tangent
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to F+
δ at s1 is at most (5ρδ+ψm)2

2(1−δ) < 0.51(5ρδ + ψm)2 as δ ≤ 1/(25ρ2). The same is also

true for D ∩ F−
δ . It follows that the samples inside D lie inside a strip of width at most

2δ+1.1(5ρδ+ψm)2 = 2δ+1.1(5ρ)2δ2+2.2(5ρ)ψmδ+1.1ψ2
m. Since δ ≤ 1/(25ρ2) and ψm ≤ 1/(6ρ),

we have 1.1(5ρ)2δ2 ≤ 1.1δ, 2.2(5ρ)ψmδ < 1.84δ, and 1.1ψ2
m < ψm/ρ. We conclude that the

strip width is no more than 2δ + 1.1δ + 1.84δ +ψm/ρ < 5δ+ψm/ρ ≤ radius(D)/ρ. This shows

that coarse(s) cannot grow beyond D.

Next, we bound radius(coarse(s)) from below. We use fmax to denote maxx∈F f(x).

Lemma 4.4 Assume that δ ≤ 1/8 and ρ ≥ 4. Let h be the constant in Lemma 4.2. Let s be a

sample. If λh ≤ 1/32, then

radius(coarse(s)) ≥ max{2√ρδ, radius(initial(s))}

with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. Since coarse(s) is grown from initial(s), radius(coarse(s)) ≥ radius(initial(s)). We

are to prove that radius(coarse(s)) ≥ 2
√
ρδ. Let D be the disk that has center s and radius

radius(coarse(s))/
√
ρ. Let X be the disk centered at s̃ with radius δ. Note that s ∈ X and X

is tangent to F+
δ and F−

δ . Since δ ≤ 1/8, f(s̃) − δ > δ and so Lemma 3.1 implies that X lies

inside the finite region bounded by F+
δ and F−

δ .

Suppose that radius(coarse(s)) < 2
√
ρδ. Then radius(D) < 2δ. If D contains X, X is a

disk inside D∩X with radius at least radius(D)/2. If D does not contain X, then since s ∈ X,

D ∩X contains a disk with radius radius(D)/2. The width of strip(s) is less than or equal to

radius(coarse(s))/ρ = radius(D)/
√
ρ. Thus, (D ∩X) − strip(s) contains a disk Y such that

radius(Y ) ≥ (
1

4
− 1

4
√
ρ
) · radius(D) ≥ radius(D)

8
.

Note that Y is empty and Y lies inside the finite region bounded by F +
δ and F−

δ . Take a point

p ∈ Y . Since p ∈ Y ⊆ D and radius(D) < 2δ, ‖p̃ − s̃‖ ≤ ‖p − p̃‖ + ‖s − s̃‖ + ‖p − s‖ ≤
4δ ≤ 1/2 as δ ≤ 1/8. The Lipschitz condition implies that f(p̃) ≤ 3f(s̃)/2. Observe that

radius(D) = radius(coarse(s))/
√
ρ ≥ radius(initial(s))/

√
ρ. Thus, Lemma 4.2 implies that

radius(Y ) ≥ radius(D)/8 ≥ λh
√

f(s̃)/(24
√
ρ) > λh

√

f(p̃)/(30
√
ρ) with probability at least

1 − O(n−Ω(lnω n)). Let β = λh/(330
√
ρfmax). Then radius(Y ) ≥ 11βf(p̃). By Lemma 3.5, Y

contains a β-cell. By Lemma 3.8(i), this β-cell is empty with probability at most n−Ω(lnω n/fmax).

This implies that radius(coarse(s)) < 2
√
ρδ occurs with probability at most O(n−Ω(lnω n/fmax)).

4.3 Rough tangent estimate: strip(s)

In this section, we prove that the slope of strip(s) is a rough estimate of the slope of the

tangent at s̃. We first prove a utility lemma about various properties of coarse(s) and Fα inside

coarse(s). Although the lemma contains a long list of properties, their proofs are short.
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Lemma 4.5 Assume ρ ≥ 5 and δ ≤ 1/(25ρ2). Let m be the constant and ψm be the parameter

in Lemma 4.2. Let s be a sample. If 2
√
ρδ ≤ radius(coarse(s)) ≤ 5ρδ + ψm

√

f(s̃) and ψm ≤
1/100, then for any Fα and for any point x ∈ Fα ∩ coarse(s), the following hold:

(i) 5ρδ + ψm ≤ 0.05, 5ρδ+ψm

2(1−δ) ≤ 0.03, and 5ρδ+ψm+2δ
2(1−δ) ≤ 0.03,

(ii) Fα ∩D consists of one connected component,

(iii) the angle between the normals at s and x is at most 2 sin−1 5ρδ+ψm+2δ
(1−δ) ≤ 2 sin−1(0.06),

(iv) x ∈ cocone(s1, 2 sin−1 5ρδ+ψm+2δ
2(1−δ) ) ⊆ cocone(s1, 2 sin−1(0.03)) where s1 is the point on Fα

such that s̃1 = s̃.

(v) 0.9f(s̃) < f(x̃) < 1.1f(s̃),

(vi) if x lies on the boundary of coarse(s), the distance between s and the orthogonal projection

of x onto the tangent at s is at least 0.8 · radius(coarse(s)), and

(vii) for any y ∈ Fα ∩ coarse(s), the acute angle between xy and the tangent at x is at most

sin−1(6ρδ + 1.2ψm)) ≤ sin−1(0.06).

Proof. A straightforward calculation shows (i).

If Fα ∩D consists of more than one connected component, the medial axis of Fα intersects

the interior of D. Since F and Fα have the same medial axis, the distance from s̃ to the medial

axis is at most 2 radius(coarse(s)) ≤ 2(5ρδ + ψm
√

f(s̃)) ≤ 2(5ρδ + ψm)f(s̃) < f(s̃) by (i),

contradiction. This proves (ii).

Let s1 be the point on Fα such that s̃1 = s̃. The distance ‖s1 − x‖ ≤ ‖s− x‖ + ‖s− s1‖ ≤
(5ρδ + ψm + 2δ)f(s̃). By Lemma 3.3, the angle between the normals at s1 and x is at most

2 sin−1 ‖s1−x‖
(1−δ)f(s̃) ≤ 2 sin−1 5ρδ+ψm+2δ

(1−δ) ≤ 2 sin−1(0.06) by (i). This proves (iii).

By Lemma 3.2(ii), x ∈ cocone(s1, 2 sin−1 ‖s1−x‖
2(1−δ)f(s̃) ) ⊆ cocone(s1, 2 sin−1(0.03)). This proves

(iv).

The distance ‖s̃− x̃‖ ≤ ‖s− s̃‖+ ‖s−x‖+ ‖x− x̃‖ ≤ (5ρδ+ψm + 4δ)f(s̃) < 0.1f(s̃). Then

the Lipschitz condition implies (v).

2sin   (0.03)
1

−1sin   (0.5)
s

x
−1

s

Figure 9:

Consider (vi). Refer to Figure 9. Assume that the tangent at s is horizontal. By sine law,

sin∠sxs1 = ‖s−s1‖·sin∠ss1x
‖s−x‖ ≤ 2δ

radius(coarse(s)) as ‖s− s1‖ ≤ 2δ and ‖s− x‖ = radius(coarse(s)).

Since radius(coarse(s)) ≥ 2
√
ρδ and ρ ≥ 4, we have ∠sxs1 ≤ sin−1 1√

ρ ≤ sin−1(0.5). By (iv),
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∠s1sx ≥ π−∠sxs1− (π/2+sin−1(0.03)) ≥ π/2− sin−1(0.5)− sin−1(0.03). Thus, the horizontal

distance between s and x is equal to ‖s−x‖·sin∠s1sx ≥ ‖s−x‖·cos(sin−1(0.5)+sin−1(0.03)) >

0.8 · ‖s− x‖.
Consider (vii). Since y ∈ Fα∩coarse(s), ‖x−y‖ ≤ 2 radius(coarse(s)) ≤ 2(5ρδ+ψm)f(s̃) <

0.1f(s̃) by (i). So Lemma 3.2(ii) applies and the acute angle between xy and the tangent at x

is at most sin−1 ‖x−y‖
2(1−δ)f(x̃) ≤ sin−1 (5ρδ+ψm)f(s̃)

(1−δ)f(x̃) . Since f(x̃) ≥ 0.9f(s̃) by (v) and δ ≤ 1/(25ρ2),

the acute angle is less than sin−1(1.2(5ρδ + ψm)), which is less than sin−1(0.06) by (i).

We are ready to analyze the slope of strip(s). We highlight the key ideas before giving the

proof. Let B be the region between F+
δ and F−

δ inside coarse(s). If strip(s) makes a large angle

with the tangent at s̃, strip(s) would cut through B in the middle. In this case, if B ∩ strip(s)

is narrow, there would be a lot of areas in B outside strip(s). But these areas must be empty

which occur with low probability. Otherwise, if B ∩ strip(s) is wide, we show that strip(s) can

be rotated to reduce its width further, contradiction. We give the detailed proof below.

Lemma 4.6 Assume that ρ ≥ 5 and δ ≤ 1/(25ρ2). Let m be the constant and ψm be the

parameter in Lemma 4.2. Let s be a sample. For sufficiently large n, the acute angle between

the tangent at s̃ and the direction of strip(s) is at most 3 sin−1 5ρδ+ψm+2δ
(1−δ) +sin−1(6ρδ+1.2ψm) ≤

4 sin−1(0.06) with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. Let `1 and `2 be the lower and upper bounding lines of strip(s). Without loss of

generality, we assume that the normal at s̃ is vertical, the slope of strip(s) is non-negative,

F−
δ ∩ coarse(s) lies below F+

δ ∩ coarse(s), and ψm ≤ 1/100 for sufficiently large n. Let h and

m be the constants and ψh and ψm be the parameters in Lemma 4.2. We first assume that

max{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃) and take the probability of its

occurrence into consideration later. As a short hand, we use η1 to denote 5ρδ+ψm+2δ
(1−δ) and η2 to

denote 6ρδ + 1.2ψm.

Observe that both `1 and `2 must intersect the space that lies between F+
δ and F−

δ inside

coarse(s). Otherwise, we can squeeze strip(s) and reduce its width, contradiction. If `1 in-

tersects Fα ∩ coarse(s) twice for some α, then `1 is parallel to the tangent at some point on

Fα ∩ coarse(s). By Lemma 4.5(iii), the direction of strip(s) makes an angle at most 2 sin−1 η1

with the horizontal and we are done. Similarly, we are done if `2 intersects Fα∩ coarse(s) twice

for some α. The remaining case is that both `1 and `2 intersect Fα ∩ coarse(s) for any α at

most once. Suppose that the acute angle between the direction of strip(s) and the horizontal

is more than 3 sin−1 η1 + sin−1 η2. We show that this occurs with probability O(n−Ω(lnω n)).

Let q be the right intersection point between F −
δ and the boundary of coarse(s). If `1

intersects F−
δ ∩coarse(s), let p denote the intersection point; otherwise, let p denote the leftmost

intersection point between F−
δ and the boundary of coarse(s). Refer to Figure 10(a). We claim

that F−
δ (p, q) lies below `1. If `1 does not intersect F−

δ ∩ coarse(s), then this is clearly true.

Otherwise, by Lemma 4.5(iii), the magnitude of the slope of the tangent at p is at most 2 sin−1 η1.

Since the slope of `1 is more than 3 sin−1 η1 +sin−1 η2, F
−
δ crosses `1 at p from above to below.

So F−
δ (p, q) lies below `1.
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Figure 10:

We show that ‖p− q‖ ≤ ψh
√

f(s̃)/2 with probability at least 1−n−Ω(lnω n). Notice that pq

is parallel to the tangent to F−
δ at some point on F−

δ (p, q). By Lemma 4.5(iii), the tangent to

F−
δ (p, q) turns by an angle at most 4 sin−1(0.06) < π/2 from p to q. This implies that F−

δ (p, q)

is monotone with respect to the perpendicular direction of pq.

We divide pq into three equal segments. Let u and v be the intersection points between

F−
δ (p, q) and the perpendiculars of pq at the dividing points. Assume that v follows u along

F−
δ (p, q). Refer to Figure 10(b). Suppose that ‖p− q‖ > ψh

√

f(s̃)/2. Then

|F−
δ (u, v)| ≥ ‖p− q‖

3
≥ ψh

√

f(s̃)

6
. (14)

Since f(ũ) < 1.1f(s̃) by Lemma 4.5(v), |F−
δ (u, v)| > ψhf(ũ)/7. Consider a λk-grid where

k = h/231 and ũ is a cut-point. (Note that λk = ψh/77.) Let C be the λk-cell that touches

F−
δ (u, v) and the normal segment through u. By Lemma 3.5, the diameter of C is at most

11λkf(ũ) = ψhf(ũ)/7 < |F−
δ (u, v)|. So the bottom side of C lies inside F−

δ (u, v). Let R be the

region inside coarse(s) that lies below `1 and above F−
δ (p, q). From any point x ∈ F−

δ (u, v), if

we shoot a ray along the normal at x into R, either the ray will leave C first or the ray will hit

`1 or the boundary of coarse(s) in R. We are to prove that the distances from x to `1 and the

boundary of coarse(s) in R are more than 2λkδ. This shows that the ray always leaves C first,

so C lies completely inside coarse(s) and below `1. Then the upper bound on ‖p − q‖ follows

as C is empty with probability at most n−Ω(lnω n) by Lemma 3.8(i).

Consider the distance from x to `1. By Lemma 4.5(iii), the angle between `1 and the tangent

at p (measured by rotating `1 in the clockwise direction) is at least 3 sin−1 η1 + sin−1 η2 −
2 sin−1 η1 = sin−1 η1 + sin−1 η2 and at most π/2 + 2 sin−1 η1. By Lemma 4.5(vii), the acute

angle between px and the tangent at p is at most sin−1 η2. So the angle between px and `1 is

at least sin−1 η1 and at most π/2 + 2 sin−1 η1 + sin−1 η2. This implies that the distance from

x to `1 is at least ‖p− x‖ · min{η1 , cos(2 sin−1 η1 + sin−1 η2)}. By Lemma 4.5(i), η1 ≤ 0.06 <

cos(3 sin−1(0.06)) ≤ cos(2 sin−1 η1 + sin−1 η2). Therefore, the distance from x to `1 is at least

‖p− x‖ · η1 > 5ρδ · ‖p− x‖ ≥ 20δ · (‖p− q‖/3)
(14)
> 3δψh

√

f(s̃). Since λk = ψh/88, this distance

is greater than 2λkδ.
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Figure 11:

Next, we consider the distance d from x to the boundary of coarse(s) in R. Take a radius

sy of coarse(s) that passes through x. Suppose that sy intersects F −
δ ∩ coarse(s) only once at

x. Refer to Figure 11. In this case, xy lies outside R. Therefore, if `1 intersects F−
δ ∩ coarse(s)

at p (Figure 11(a)), then d = ‖q − x‖; if `1 does not intersect F−
δ ∩ coarse(s) (Figure 11(b)),

then d = min{‖p−x‖ , ‖q−x‖}. By (14), d ≥ ‖p− q‖/3 ≥ ψh
√

f(s̃)/6 > 2λkδ. The remaining

possibility is that sy intersects F−
δ ∩ coarse(s) more than once. Then xy is parallel to the

tangent at some point on F−
δ ∩ coarse(s). By Lemma 4.5(iii), the acute angle between xy and

the tangent at x is at most 4 sin−1 η1. By Lemma 4.5(vii), the acute angle between qx and the

tangent at x is at most sin−1 η2. So the angle between qx and xy is at most 4 sin−1 η1 +sin−1 η2.

It follows that d ≥ ‖x− y‖ ≥ ‖q− x‖ · cos(4 sin−1 η1 + sin−1 η2) ≥ ‖q− x‖ · cos(5 sin−1(0.08)) >

0.9 · ‖q − x‖ ≥ 0.9 · (‖p− q‖/3) ≥ 0.15ψh >
√

f(s̃) > 2λkδ.

In all, C lies below `1 and inside coarse(s). So C must be empty which occurs with proba-

bility at most n−Ω(lnω n) by Lemma 3.8(i). It follows that ‖p−q‖ ≤ ψh
√

f(s̃)/2 with probability

at least 1 − n−Ω(lnω n). By Lemma 4.5(vi), the horizontal distance between q and the left in-

tersection point between F−
δ and the boundary of coarse(s) is at least 1.6 · radius(coarse(s)) ≥

1.6ψh
√

f(s̃) > ‖p − q‖. We conclude that p lies on F−
δ ∩ coarse(s), which implies that `1

intersects F−
δ ∩ coarse(s) exactly once at p.

Refer to Figure 10(a) and Figure 12. Let y be the leftmost intersection point between F +
δ and

the boundary of coarse(s). Symmetrically, we can also show that `2 intersects F+
δ ∩ coarse(s)

exactly once at some point z, F+
δ (y, z) lies above `2, and ‖y−z‖ ≤ ψh

√

f(s̃)/2 with probability

at least 1 − n−Ω(lnω n).

Consider the projections of F+
δ (y, z) and F−

δ (p, q) onto the horizontal diameter of coarse(s)

through s. By Lemma 4.5(vi), the projections of y and q are at distance at least 0.8 ·
radius(coarse(s)) from s. Thus, the distance between the projections of F +

δ (y, z) and F−
δ (p, q)

is at least 1.6 · radius(coarse(s)) − ‖p − q‖ − ‖y − z‖ ≥ 1.6 · radius(coarse(s)) − ψh
√

f(s̃) ≥
1.6 · radius(coarse(s)) − radius(coarse(s)) > radius(coarse(s))/ρ. That is, this distance is

greater than the width of strip(s). But then we can rotate `1 and `2 around p and z, re-

spectively, in the clockwise direction to reduce the width of strip(s) while not losing any
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sample inside coarse(s). See Figure 12. This is impossible. This implies that, under the

condition that max{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃), the acute an-

gle between the direction of strip(s) and the tangent at s̃ is at most 3 sin−1 η1 + sin−1 η2

with probability at least 1 − O(nΩ(lnω n)). By Lemmas 4.2, 4.3, and 4.4, the inequalities

max{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃) hold with probability at least

1 −O(nΩ(lnω n)/fmax). So the lemma follows.

5 Guarantees

In this section, we prove that the reconstruction returned by our algorithm is faithful with high

probability. We first prove the pointwise convergence. Then we prove that the reconstruction

is homeomorphic to the true curve. Afterwards, we combine these results to prove our main

result in this paper.

5.1 Pointwise convergence

Recall that our algorithm computes a center point for each sample. Eventually, a subset of

these center points become the vertices of the output curve. Our goal is to show that all

center points converge to F as n tends to ∞. To this end, we show that our algorithm aligns

refined (s) approximately well with the normal at s̃. Then we prove the pointwise convergence.

(See Lemmas 5.3 and 5.4.) We first prove two utility lemmas, Lemmas 5.1 and 5.2.

5.1.1 Utility lemmas

Recall that we rotate refined(s) in the clockwise and anti-clockwise directions to estimate the

normal at s̃. The range of rotation is [0, π/10]. Let θs be the angle between the upward direction

of refined (s) and the upward normal at s̃. If the upward direction of refined(s) points to the

left of the upward normal at s̃, θs is positive. Otherwise, θs is negative. For any Fα and for

any point p ∈ Fα ∩ refined(s), let γp be the angle between the upward direction of refined (s)

and the upward normal at p̃. The sign of γp is determined in the same way as θs.
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Lemma 5.1 Assume that δ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. Assume that refined (s)

is rotated within an angle of π/10. Let Ws = width(refined (s)). For sufficiently large n, the

following hold throughout the rotation with probability at least 1 −O(n−Ω(lnω n/fmax)).

(i) Ws ≤ 0.1f(s̃).

(ii) θs ∈ [−π/5, π/5] and θs = 0 at some point during the rotation.

(iii) Any line, which is parallel to refined (s) and inside refined (s), intersects Fα ∩ coarse(s)

for any α exactly once.

(iv) For any Fα and for any point p ∈ Fα ∩ refined (s), θs − 0.2|θs| − 3Ws/f(s̃) ≤ γb ≤
θs + 0.2|θs| + 3Ws/f(s̃).

Proof. We first assume that max{2√ρδ, ψh
√

f(s̃)} ≤ radius(coarse(s)) ≤ 5ρδ + ψm
√

f(s̃) and

radius(initial (s)) ≤ ψm
√

f(s̃). We will take the consideration of the probabilities of their

occurrences later.

Since Ws ≤
√

radius(initial (s)) ≤
√
ψmf(s̃)1/4 and ψm ≤ 0.01 for sufficiently large n,

Ws ≤ 0.1f(s̃). This proves (i).

By Lemma 4.6, for sufficiently large n, the acute angle between the normal at s̃ and the

initial refined (s) is at most 4 sin−1(0.06) < π/10. Since the range of rotation is [0, π/10],

θs ∈ [−π/5, π/5] and θs = 0 at some point during the rotation. This proves (ii).

Consider (iii). Let ` be a line that is parallel to refined (s) and inside refined(s). We first

prove that ` intersects Fα. Refer to Figure 13. Without loss of generality, assume that the

normal at s̃ is vertical, the slope of refined(s) is positive, and ` is below s. Let s1 and s2 be the

points on F+
δ and F−

δ , respectively, such that s̃1 = s̃2 = s̃. Shoot two rays upward from s1 with

slopes ± sin−1(0.03). Also, shoot two rays downward from s2 with slopes ± sin−1(0.03). Let R
be the region inside coarse(s) bounded by these four rays. By Lemma 4.5(iv), Fα ∩ coarse(s)

lies inside R. Let x be the upper right vertex of R. Let y be the right endpoint of a horizontal

chord through s1. Let L be the line that passes through x and is parallel to `. Let L′ be the line

that passes through s and is parallel to `. Let z be the point on L such that s1z is perpendicular

to L.

s z

x

s2

y

−1sin  (0.03)

LL’

s1

θs

Figure 13:
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We claim that L′ is above L and L and L′ intersect both the upper and lower boundaries of R.

By Lemma 4.5(iv), ∠xs1y ≤ sin−1(0.03), so ∠xsy ≤ 2 sin−1(0.03). Observe that cos ∠s1sy =
‖s−s1‖
‖s−y‖ ≤ 2δ

radius(coarse(s)) . Since radius(coarse(s)) ≥ 2
√
ρδ, cos ∠s1sy ≤ 1/

√
ρ ≤ 1/

√
5 which

implies that ∠s1sy > π/3. Since ∠s1sx = ∠s1sy − ∠xsy, we get

∠s1sx ≥ π/3 − 2 sin−1(0.03) > π/5 ≥ θs. (15)

So L′ cuts through the angle between ss1 and sx. It follows that L′ is above L. Observe that

L′ intersects s1x. By symmetry, L′ intersects the left downward ray from s2 too. We conclude

that L and L′ intersect both the upper and lower boundaries of R.

Since θs ≤ π/5 and ∠sxz = ∠s1sx− θs, by (15), ∠sxz ≥ π/3 − 2 sin−1(0.03) − π/5 > 0.3.

The distance from s to L is equal to ‖s−x‖·sin∠sxz > ‖s−x‖·sin(0.3) > 0.2·radius(coarse(s)).

Recall that ` lies below s by our assumption. The distance between ` and s is at most Ws/2

and our algorithm enforces that Ws/2 ≤ radius(coarse(s))/6. So ` lies between L′ and L. Since

L and L′ intersect both the upper and lower boundaries of R, so does `. It follows that ` must

intersect Fα ∩ coarse(s).

Next, we show that ` intersects Fα ∩ coarse(s) exactly once. If not, ` is parallel to the

tangent at some point on Fα ∩ coarse(s). By Lemma 4.5(iii), the angle between ` and the

vertical is at least π/2 − 2 sin−1(0.06) > π/5, contradicting the fact that |θs| ≤ π/5.
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Figure 14:

Consider (iv). Let ` be a line that is parallel to refined (s) and passes through s. By (iii),

` intersects Fα at some point b. We first prove that θs − 0.2|θs| ≤ γb ≤ θs + 0.2|θs|. Let s1

be the point on Fα such that s̃ = s̃1. Assume that the tangent at s is horizontal, s is above

s1, and b is to the left of s. Let C be the circle tangent to Fα at s1 that lies below s1, is

centered at x, and has radius f(s̃) − δ. By Lemma 3.1, Fα does not intersect the interior of

C. Refer to Figure 14(a). Let sa be a tangent to C that lies on the left of x. We claim that

∠asx > |θs|. Otherwise, ‖s−x‖ ≥ ‖a−x‖/ sin(π/5) = (f(s̃)−δ)/ sin(π/5) > f(s̃)+δ ≥ ‖s−x‖,
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contradiction. So sb lies between sa and sx. Let sr be the extension of sb such that r lies on

C. We have ‖a− s‖ =
√

‖s− x‖2 − ‖a− x‖2 ≤
√

(f(s̃) + δ)2 − (f(s̃) − δ)2 = 2
√

δf(s̃). Thus,

‖r − s‖ ≤ ‖a− s‖ ≤ 2
√

δf(s̃). Observe that

∠rxs = sin−1 ‖r − s‖ · sin |θs|
‖r − x‖ ≤ sin−1 2

√

δf(s̃) · |θs|
‖r − x‖ .

Since δ ≤ 1/(25ρ2) and |θs| ≤ π/5, we have

2
√

δf(s̃) · |θs|
‖r − x‖ =

2
√

δf(s̃) · |θs|
f(s̃) − δ

≤ 2
√
δ · |θs|

1 − δ
< 0.06. (16)

Combing (16) with the following fact

x ≤ 0.6 ⇒ sin−1 x < 1.1x, (17)

we get ∠rxs <
2.2
√
δf(s̃)·|θs|

‖r−x‖ . Since ‖b− s1‖ ≤ ‖r − s1‖ = ‖r − x‖ · 2 sin ∠rxs
2 , we get

‖b− s1‖ ≤ ‖r − x‖ · ∠rxs ≤ 2.2
√

δf(s̃) · |θs|.

Let γ′ be the acute angle between the normals at b and s1. By Lemma 3.3, γ ′ ≤ 2 sin−1 ‖b−s1‖
(1−α)f(s̃) ≤

2 sin−1 2.2
√
δ·|θs|

1−α ≤ 2 sin−1 2.2
√
δ·|θs|

1−δ . By (16) and (17), we conclude that γ ′ < 4.84
√
δ·|θs|

1−δ < 0.2|θs|.
It follows that

θs − 0.2|θs| ≤ θs − γ′ ≤ γb ≤ θs + γ′ ≤ θs + 0.2|θs|.

Next, we prove the upper and lower bounds for γp for any point p ∈ Fα ∩ refined (s). Let

η be the acute angle between bp and the line that passes through b and is perpendicular to

refined (s). See Figure 14(b). By Lemma 4.5(vii), the acute angle between bp and the tangent

at b is at most sin−1(0.06). It follows that η ≤ γb + sin−1(0.06) ≤ θs + 0.2|θs| + sin−1(0.06) ≤
1.2(π/5) + sin−1(0.06) < 0.9. Thus,

‖b− p‖ ≤ Ws

2 cos η
< 0.9Ws.

Note that Ws ≤ radius(coarse(s))/3 ≤ (5ρδ + ψm)f(s̃)/3, which is less than 0.02f(s̃) by

Lemma 4.5(i). Also, by Lemma 4.5(v), f(p̃) ≥ 0.9f(s̃). It follows that

‖b− p‖ < 0.9Ws ≤ 0.02f(p̃). (18)

So we can invoke Lemma 3.3 to bound the angle γ ′′ between the normals at b and p:

γ′′ ≤ 2 sin−1 ‖b− p‖
(1 − α)f(p̃)

≤ 2 sin−1 0.9Ws

(1 − α)f(p̃)
≤ 2 sin−1 Ws

f(p̃)
.

By (18), Ws/f(p̃) < 0.03. So by (17), we get γ ′′ ≤ 2.2Ws/f(p̃). Since f(p̃) ≥ 0.9f(s̃), we

conclude that γ ′′ < 3Ws/f(s̃). This implies that

θs − 0.2|θs| − 3Ws/f(s̃) ≤ γb − γ′′ ≤ γp ≤ γb + γ′′ ≤ θs + 0.2|θs| + 3Ws/f(s̃).
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Finally, we have proved the lemma under the conditions that max{2√ρδ, ψh
√

f(s̃)} ≤
radius(coarse(s)) ≤ 5ρδ + ψm

√

f(s̃) and radius(initial (s)) ≤ ψm
√

f(s̃). These conditions hold

with probabilities at least 1 − O(n−Ω(lnω n/fmax)) by Lemmas 4.2, 4.3, and 4.4. So the lemma

follows.

Lemma 5.2 Assume that δ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. Let H be a strip that

is parallel to refined(s) and lies inside refined(s). For any Fα and for any two points u and

v on on Fα ∩ H, whenever n is sufficiently large, the following hold with probability at least

1 −O(n−Ω(lnω n/fmax)).

(i) ‖u− v‖ < 3width(H).

(ii) The angle between the normals at u and v is at most 9width(H).

(iii) The acute angle between uv and the tangent to Fα at u is at most 5width(H).

Proof. Let φ be the acute angle between uv and the tangent to Fα at u. Let η be the acute

angle between uv and the direction of refined (s). By Lemma 4.5(vii), φ ≤ sin−1(0.06). So

η ≥ π/2 − γu − φ ≥ π/2 − γu − sin−1(0.06). By Lemma 5.1(i), (ii), and (iv), η ≥ π/2 −
1.2(π/5) − 3(0.1) − sin−1(0.06) > 0.4. Thus, ‖u− v‖ ≤ width(H)

sin η ≤ width(H)
sin(0.4) < 3width(H). This

proves (i).

Consider (ii). Note that Ws ≤ radius(coarse(s))/3 ≤ (5ρδ+ψm)f(s̃)/3. So by (i), ‖u−v‖ ≤
3Ws ≤ (5ρδ + ψm)f(s̃). By Lemma 4.5(i) and (v), 5ρδ + ψm ≤ 0.05 and f(ũ) ≥ 0.9f(s̃). It

follows that

‖u− v‖ < 0.06f(ũ). (19)

Thus, we can invoke Lemma 3.3 to bound the angle ξ between the normals at u and v:

ξ ≤ 2 sin−1 ‖u− v‖
(1 − α)f(ũ)

≤ 2 sin−1 3width(H)

0.9(1 − α)f(s̃)
< 2 sin−1 4width(H)

f(s̃)
.

Since 4width(H)/f(s̃) ≤ 4Ws/f(s̃) which is at most 0.4 by Lemma 5.1(i), we can apply (17)

to conclude that ξ < 9width(H)/f(s̃) ≤ 9width(H). This proves (ii).

Finally, by (19), we can invoke Lemma 3.2(ii) to bound the acute angle between uv and the

tangent at u. This angle is at most sin−1 ‖u−v‖
2(1−α)f(ũ) which is less than ξ/2.

5.1.2 Convergence lemmas

We apply the utility lemmas in the previous subsection to show that our algorithm aligns

refined (s) quite well with the normal direction at s̃.

Lemma 5.3 Assume that δ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. Let Ws = width(refined (s)).

For sufficiently large n, when the height of rectangle(s) is minimized, |θs| ≤ 60Ws with proba-

bility at least 1 −O(nΩ(lnω n/fmax)).
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Proof. We rotate the plane such that refined (s) is vertical. Suppose that |θs| > 60Ws. We first

assume that Lemmas 4.2, 4.3, 4.4, 5.1, and 5.2 hold deterministically and show that a contradic-

tion arises with probability at least 1−O(nΩ(lnω n/fmax)). Since Lemmas 4.2, 4.3, 4.4, 5.1, and 5.2

hold with probability at least 1−O(nΩ(lnω n/fmax)), we can then conclude that |θs| > 60Ws occurs

with probability at most O(nΩ(lnω n/fmax)).

Without loss of generality, we assume that θs > 0. That is, the upward normal at s points

to the left. Let L be the left boundary line of refined (s). By Lemma 5.1(iii), L intersects

F−
δ ∩ coarse(s) exactly once. We use p to denote the point L ∩ F −

δ ∩ coarse(s). We first prove

the following claim which will be useful later.

Claim 1 Orient space such that refined (s) is vertical. If θs > 60Ws, then for any

α, Fα rises strictly from left to right.

Proof. Take any point z ∈ Fα ∩ refined(s). By Lemma 5.1(iv), γz ≥ 0.8θs − 3Ws,

which is positive as θ ≥ 60Ws by assumption. Therefore, the upward normal at z

points to the left, so the slope of the tangent to Fα at z is positive.

Let h be the constant in Lemma 4.2. Let k = h/1008. Let H1 be the strip inside refined (s)

such that H1 is bounded by L on the left and width(H1) = Ws/3. Let H be the strip inside

H1 that is bounded by L on the left and has width 28λk
√

f(s̃). Refer to Figure 15. Since

δ
−

x

C
u

v

r

H

p

H1

d

d

v

F

x

Figure 15:

Ws ≥ radius(initial(s)) which is at least λh
√

f(s̃)/3 by Lemma 4.2,

width(H) =
λh

√

f(s̃)

36
≤ Ws

12
. (20)

Thus, H lies inside H1. Take any (λk/
√
fmax)-grid. By Lemma 5.1(iii), F−

δ crosses H com-

pletely. Let r be the intersection point between F −
δ and the center line of H. Let C be the

(λk/
√
fmax)-cell that contains r. The distance from r to the boundary of H is 14λk

√

f(s̃). By

Lemma 3.5, the diameter of C is at most 11λkf(r̃)/
√
fmax ≤ 11λk

√

f(r̃). Since f(r̃) ≤ 1.1f(s̃)

by Lemma 4.5(v), the diameter of C is less than 12λk
√

f(s̃). It follows that C lies inside H.

25



Let u be the rightmost vertex of C on F−
δ . Let v be the vertex of C different from u on the

normal segment at u. Let x be the intersection point between F −
δ and the right boundary line

of H1. We are to prove that x lies above C. Since C is non-empty with very high probability,

the lower side of rectangle(s) should intersect F −
δ below x then. This will allow us to rotate

refined (s) to reduce the height of rectangle(s) further, yielding the desired contradiction.

By Claim 1, v is the highest point in C and x is the highest point on F −
δ (p, x). Let dv

and dx be the height of v and x from p, respectively. Let φ be the acute angle between pu

and the horizontal line through p. Since φ is at most the sum of γp and the angle between

pu and the tangent at p, by Lemma 5.2(iii), we have φ ≤ γp + 5width(H). By Lemma 5.2(i),

‖p−u‖ ≤ 3width(H). Observe that dv ≤ ‖p−u‖·sinφ+‖u−v‖. So dv < 3φwidth(H)+2λkδ <

3γpwidth(H)+15width(H)2 +2λkδ. By (20), we get dv < Wsγp/4+5W 2
s /48+2λkδ. We bound

2λkδ as follows. Recall that Ws = min{
√

radius(initial (s)), radius(coarse(s))/3}. If Ws =
√

radius(initial(s)), by Lemma 4.2, Ws ≥
√

λhf(s̃)/3 ≥
√

λh/3. So 2λkδ < 2λk = λh/504 <

0.006W 2
s . If Ws = radius(coarse(s))/3, by Lemma 4.4, Ws ≥ 2

√
ρδ/3 and Ws ≥ λhf(s̃)/3 ≥

λh/3. We get λk = λh/1008 ≤Ws/336 and 2δ ≤ 3Ws/
√
ρ ≤ 3Ws/

√
5, so 2λkδ < 0.004W 2

s . We

conclude that

dv <
Wsγp

4
+ 0.2W 2

s .

Observe that px is parallel to the tangent at some point z on F −
δ (p, x). By Lemma 5.2(ii),

γz ≥ γp − 9Ws. Since dx = (Ws/3) · tan γz, we get

dx ≥ Wsγz
3

≥ Wsγp
3

− 3W 2
s .

Since θs > 60Ws by our assumption, Lemma 5.1(iv) implies that γp ≥ 0.8θs − 3Ws > 45Ws.

Therefore, dx − dv > Wsγp/12 − 3.2W 2 > 0. It follows that x lies above C.

Since C is a (λk/
√
fmax)-cell, by Lemma 3.8(i), C contains some sample with probability

at least 1 − nΩ(lnω n/fmax). Thus, the lower side of rectangle(s) lies below x with probability

at least 1 − nΩ(lnω n/fmax). On the other hand, the lower side of rectangle(s) cannot lie below

F−
δ ∩ H1, otherwise it could be raised to reduce the height of rectangle(s), contradiction. So

the lower side of rectangle(s) intersects F−
δ ∩H1 at some point a. See Figure 16.

1 H2

Fδ
−

Fδ
+

H1 H2

Fδ
−

Fδ
+

ss

a a

b

H

b

Figure 16:

Let H2 be the strip inside refined (s) such that H2 is bounded by the right boundary line of

refined (s) on the right and width(H2) = Ws/3. By a symmetric argument, we can prove that
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the upper side of rectangle(s) intersects F+
δ ∩H2 at a point b.

As shown in Figure 16, we slightly rotate refined (s) in the anticlockwise direction. Since

θs > 0, the anticlockwise rotation decreases θs and so the rotation is legal. Moreover, as

θs > 60Ws, the small rotation keeps θs greater than 60Ws. Correspondingly, we rotate the

lower and upper sides of rectangle(s) around a and b, respectively, to obtain a rectangle R.

Orient space such that the new refined (s) becomes vertical. By Claim 1, F −
δ rises strictly from

left to right, so F−
δ crosses the lower side of R at most once at a from below to above. Similarly,

F+
δ crosses the upper side of R at most once at b from below to above. This implies that R

contains all the samples inside the new refined (s). Since a is on the left of b and below b, the

anticlockwise rotation makes the width of R strictly less than the width of the old rectangle(s).

This contradicts the assumption that the height of rectangle(s) is already the minimum possible.

Once refined (s) is aligned well with the normal at s̃, it is intuitively true that the center

point of rectangle(s) should lie very close to s̃. The following lemma proves this formally.

Lemma 5.4 Assume that δ ≤ 1/(25ρ2) and ρ ≥ 5. Let s be a sample. Let Ws = width(refined (s)).

For sufficiently large n, the distance between the center point of rectangle(s) and s̃ is at most

(360δ + 3)Ws with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. We first assume that Lemmas 4.2, 4.3, 4.4, 5.1, 5.2, and 5.3 hold deterministically

and show that the lemma is true with probability at least 1 − O(nΩ(lnω n/fmax)). Since Lem-

mas 4.2, 4.3, 4.4, 5.1, 5.2, and 5.3 hold with probability at least 1−O(nΩ(lnω n/fmax)), the lemma

follows.

Assume that s lies on F+
α and the normal at s̃ is vertical. Let rd (resp. ru) be the ray that

shoots downward (resp. upward) from s and makes an angle θs with the vertical. Let x and y

be the points on F+
δ and F hit by ru and rd respectively. Let z be the point on F−

δ hit by rd.

Let s1 be the point on F−
δ such that s̃1 = s̃. Without loss of generality, we assume that θs ≥ 0.

Refer to Figure 17.

F

Fα

Fδ

+

z

x

s

y

+

s

ru

1
rd

θs

s~

Fδ
−

Figure 17: For the proof of Lemma 5.4.
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First, we bound the distance between the midpoint of xz and y. By Lemma 4.5(iv), the

acute angle between s1z and the tangent at s1 (the horizontal) is at most sin−1(0.03). It follows

that ∠ss1z ≤ π/2 + sin−1(0.03). So ∠szs1 = π− θs −∠ss1z ≥ π/2 − θs− sin−1(0.03), which is

greater than 0.9 as θs ≤ π/5 by Lemma 5.1(ii). By applying sine law to the shaded triangle in

Figure 17, we get

‖s1 − z‖ =
‖s− s1‖ · sin θs

sin∠szs1
≤ (δ + α)θs

sin(0.9)
< 2(δ + α)θs. (21)

Similarly, we get

‖s̃− y‖ =
‖s− s̃‖ · sin θs

sin∠sys1
≤ αθs

sin(0.9)
< 2αθs. (22)

By triangle inequality, ‖s− s1‖ − ‖s1 − z‖ ≤ ‖s− z‖ ≤ ‖s− s1‖ + ‖s1 − z‖. Then (21) yields

(δ + α) − 2(δ + α)θs ≤ ‖s− z‖ ≤ (δ + α) + 2(δ + α)θs. (23)

We can use a similar argument to show that

(δ − α) − 2(δ − α)θs ≤ ‖s− x‖ ≤ (δ − α) + 2(δ − α)θs, (24)

α− 2αθs ≤ ‖s− y‖ ≤ α+ 2αθs. (25)

Let dx and dy be the distances from the midpoint of xz to x and y, respectively. Since ‖x−z‖ =

‖s − x‖ + ‖s − z‖, by (23) and (24), we get 2δ − 4δθs ≤ ‖x − z‖ ≤ 2δ + 4δθs. Therefore,

δ − 2δθs ≤ dx ≤ δ + 2δθs. Since ‖x − y‖ = ‖s − x‖ + ‖s − y‖, by (24) and (25), we get

δ − 2δθs ≤ ‖x− y‖ ≤ δ + 2δθs. We conclude that

dy = |dx − ‖x− y‖| ≤ 4δθs. (26)

Second, we bound the distance between the center point s∗ of rectangle(s) and y. Although

s∗ lies on the support line of xz, it may not coincide with the midpoint of xz. There are two

cases.

Case 1: the upper side of rectangle(s) lies above x. The upper side of rectangle(s) must intersect

F+
δ ∩ refined (s) at some point v, otherwise we could lower it to reduce the height of

rectangle(s), contradiction. Since ‖x− v‖ ≤ 3Ws by Lemma 5.2(i), the distance between

x and the upper side of rectangle(s) is at most 3Ws.

Case 2: the upper side of rectangle(s) lies below x. Let h be the constant in Lemma 4.2. Let

k = h/84. Take any (λk/
√
fmax)-grid. Let C be the cell that contains x.

We claim that C lies inside refined(s). By Lemma 3.5, the diameter of C is at most

11λkf(x̃)/
√
fmax ≤ 11λk

√

f(x̃). Since f(x̃) ≥ 0.9f(s̃) by Lemma 4.5(v), the diame-

ter of C is less than 12λk
√

f(s̃). Note that Ws ≥ radius(initial (s)). By Lemma 4.2,

radius(initial (s)) ≥ λh
√

f(s̃)/3 = 28λk
√

f(s̃). So Ws ≥ 28λk
√

f(s̃). Thus, C must lie

inside refined (s).

Since C is a (λk/
√
fmax)-cell, by Lemma 3.8(i), C contains some sample with proba-

bility at least 1−n−Ω(lnω n/fmax). Thus, the upper side of rectangle(s) cannot lie below C.

It follows that the distance between x and the upper side of rectangle(s) is at most the

diameter of C, which has been shown to be less than Ws/2.
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Hence, the position of the upper side of rectangle(s) may cause s∗ to be displaced from the

midpoint of xz by a distance of at most 3Ws/2. The position of the lower side of rectangle(s)

has the same effect. So the distance between s∗ and the midpoint of xz is at most 3Ws. Since

‖s∗ − y‖ ≤ dy + 3Ws, by (26), we get ‖s∗ − y‖ ≤ 4δθs + 3Ws. Starting with triangle inequality,

we obtain

‖s̃− s∗‖ ≤ ‖s∗ − y‖ + ‖s̃− y‖
≤ 4δθs + 3Ws + ‖s̃− y‖

(22)

≤ 6δθs + 3Ws.

Since θs ≤ 60Ws by Lemma 5.3, we conclude that ‖s̃− s∗‖ ≤ (360δ + 3)Ws.

5.2 Homeomorphism

In this section, we prove that the output curve of the NN-crust algorithm is homeomorphic to

the underlying smooth closed curve.

For each sample s, we use s∗ to denote the center point of rectangle(s). We briefly review

the processing of the center points. We first sort the center points in decreasing order of the

widths of their corresponding refined neighborhoods. Then we scan the sorted list to select a

subset of center points. When the current center point s∗ is selected, we delete all center points

p∗ from the sorted list such that ‖p∗ − s∗‖ ≤ width(refined (s))1/3.

In the end, we call two selected center points s∗ and t∗ adjacent if F (s̃, t̃) or F (t̃, s̃) does not

contain ũ for any other selected center point u∗. We use G to denote the polygonal curve that

connects adjacent selected center points. Clearly, if we connect s̃ and t̃ for every pair of adjacent

selected center points s∗ and t∗, we obtain a polygonal curve G′ that is homeomorphic to the

underlying smooth closed curve. Our goal is to show that the output curve of the NN-crust

algorithm is exactly G. Since there is a bijection between G and G′, the homeomorphism result

follows.

We need to establish several technical lemmas (Lemma 5.5–5.10) before proving the home-

omorphism results (Lemma 5.11 and Corollary 5.1). Throughout this section, we assume the

width of any refined neighborhood is less than 1, which is true for sufficiently large n.

We first relate the widths of refined neighborhoods for two nearby center points (not neces-

sarily selected).

Lemma 5.5 Let p∗ and q∗ be two center points. If ‖p̃ − q̃‖ ≤ f(p̃)/2, there exists a constant

µ1 > 0 such that Wq ≤ µ1f(p̃)
√

Wp with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. We prove the lemma by assuming that Lemma 4.2, 4.3, and 4.4 hold deterministically.

The probability bound then follows from the probability bounds in these lemmas. For i = p

or q, let Ri = radius(coarse(i)) and let ri = radius(initial(i)). The Lipschitz condition implies

that f(p̃)/2 ≤ f(q̃) ≤ 3f(p̃)/2. Let h and m be the constants in Lemma 4.2.
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Suppose that Wp =
√
rp. By Lemma 4.2, we have

Wp =
√
rp ≥

√

λh
√

f(p̃)

3
≥

√

λh
3

(

2f(q̃)

3

)1/4

=

√

hλm
3m

(

2f(q̃)

3

)1/4

.

Note that Wq ≤ √
rq and rq ≤

√

11λmf(q̃) by Lemma 4.2. So we get

Wp ≥
√

h

33m

(

2

3f(q̃)

)1/4

rq ≥
√

h

33m

(

2

3

)1/4

W 2
q .

Suppose that Wp = Rp/3. First, since Rp ≥ 2
√
ρδ by Lemma 4.4, we get ρδ ≤ 3

√
ρWp/2.

Second, by Lemma 4.2, Wp ≥ rp ≥ λh
√

f(p̃)/3, so we get
√

λmf(p̃) =
√

mλhf(p̃)/h ≤
√

3mWp/h · f(p̃)1/4 ≤
√

3mWp/h · f(p̃). Finally, since Wq ≤ Rq/3, by Lemma 4.3, we get

Wq ≤ 5ρδ

3
+

√

11λmf(q̃)

3

≤ 5ρδ

3
+

√

11λmf(p̃)

6

≤ 5
√
ρWp

2
+

√

11mWp

2h
· f(p̃).

The next result shows that the selected center points cannot be too close to each other.

Lemma 5.6 Let p∗ and q∗ be two selected center points. Then ‖p∗ − q∗‖ > max{W 1/3
p ,W

1/3
q }.

Proof. Assume without loss of generality that p∗ was selected before q∗. Since q∗ was selected

subsequently, q∗ was not eliminated by the selection of p∗. Thus, ‖p∗ − q∗‖ > W
1/3
p ≥W

1/3
q .

Next, we bound the angle between x∗y∗ and x̃ỹ and the angle ∠x∗y∗z∗ for three center

points x∗, y∗, and z∗.

Lemma 5.7 Let x∗ and y∗ be two center points such that ‖x̃ − ỹ‖ ≤ f(ỹ)/2 and ‖x∗ − y∗‖ ≥
W

1/3
y . Then the acute angle between x∗y∗ and x̃ỹ tends to zero as n tends to ∞ with probability

at least 1 −O(n−Ω(lnω n/fmax)).

Proof. We prove the lemma by assuming that Lemmas 5.4 and 5.5 hold deterministically. The

probability bound then follows from the probability bounds in these lemmas.

We translate x∗y∗ to align y∗ with ỹ and measure the acute angle θ between x∗y∗ and x̃ỹ.

Let d be the distance between x̃ and the point x∗ + ỹ − y∗. Let k = 360δ + 3. By triangle

inequality and Lemma 5.4, d ≤ ‖x∗ − x̃‖ + ‖y∗ − ỹ‖ ≤ kWx + kWy. Since ‖x̃ − ỹ‖ ≤ f(ỹ)/2,

by Lemma 5.5, Wx ≤ µ1f(ỹ)
√

Wy. So d ≤ kµ1f(ỹ)
√

Wy + kWy. This upper bound on d is

smaller than W
1/3
y ≤ ‖x∗ − y∗‖ for sufficiently large n. So ỹ is further away from x∗ + ỹ − y∗

than x̃. It follows that θ is acute. Since d is an upper bound on the height of x∗ + ỹ − y∗ from

x̃ỹ, we have θ ≤ sin−1 d
‖x∗−y∗‖ ≤ sin−1(kµ1f(ỹ)W

1/6
y + kW

2/3
y ). We conclude that θ tends to

zero as n tends to ∞.
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Lemma 5.8 Let x∗, y∗, and z∗ be three center points such that ỹ ∈ F (x̃, z̃), ‖x̃ − z̃‖ ≤
max{f(x̃)/4, f(z̃)/4}, ‖x∗ − y∗‖ ≥ W

1/3
y , and ‖y∗ − z∗‖ ≥ W

1/3
y . For sufficiently large n,

the angle ∠x∗y∗z∗ is obtuse with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. We first show that ‖x̃− z̃‖ ≤ min{f(x̃)/3, f(z̃)/3}. Assume that ‖x̃− z̃‖ ≤ f(x̃)/4. By

the Lipschitz condition, we have f(z̃) ≥ 3f(x̃)/4. Therefore, ‖x̃− z̃‖ ≤ f(x̃)/4 ≤ f(z̃)/3.

Let D be the disk centered at x̃ with radius f(x̃)/3. Observe that F (x̃, z̃) lies completely

inside D. Otherwise, the medial axis of F intersects the interior of D which implies that

f(x̃) ≤ f(x̃)/3, contradiction. So ‖x̃ − ỹ‖ ≤ f(x̃)/3. The Lipschitz condition implies that

f(ỹ) ≥ 2f(x̃)/3.

Consider the angle ∠x̃ỹz̃. The line segments x̃ỹ and ỹz̃ are parallel to the tangents at

some points on F (x̃, ỹ) and F (ỹ, z̃), respectively. Lemma 3.3 implies that ∠x̃ỹz̃ ≥ π −
4 sin−1 radius(D)

f(x̃) = π − 4 sin−1(1/3) > 5π/9. Since ‖x̃ − ỹ‖ ≤ f(x̃)/3 ≤ f(ỹ)/2, by Lemma 5.7,

the angle between x∗y∗ and x̃ỹ tends to zero as n tends to ∞ with probability at least

1 − O(n−Ω(lnω n/fmax)). A symmetric argument shows that the angle between y∗z∗ and ỹz̃

tends to zero with probability at least 1 −O(n−Ω(lnω n/fmax)) as n tends to ∞. This proves the

lemma.

The next lemma provides an upper bound on the the edge lengths in G.

Lemma 5.9 Let e be an edge in G connecting two adjacent selected center points p∗ and q∗.

For sufficiently large n, there exists a constant µ2 > 0 such that length(e) ≤ µ2f(p̃)W
1/3
p +

µ2f(q̃)W
1/3
q with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. Let k = 360δ+3. Let Dp be the disk centered at p∗ with radius (1+kµ1f(p̃))W
1/3
p . Let

Dq be the disk centered at q∗ with radius (1 + kµ1f(q̃))W
1/3
q .

If Dp intersects Dq, then ‖p∗−q∗‖ ≤ (1+µ1f(p̃))W
1/3
p +(1+µ1f(q̃))W

1/3
q and we are done.

Suppose that Dp does not intersect Dq. We claim that F (p̃, q̃) ∩Dp is connected. Otherwise,

the medial axis of F intersects the interior of Dp which implies that f(p̃) ≤ radius(Dp) which

is less than f(p̃) for sufficiently large n, contradiction. Similarly, F (p̃, q̃) ∩Dq is connected. It

follows that F (p̃, q̃) − (Dp ∪Dq) is also connected. There are two cases.

Case 1: F (p̃, q̃) − (Dp ∪ Dq) does not contain ũ for any sample u. Let h be the constant

in Lemma 4.2. Take a λh-partition. Since F (p̃, q̃) − (Dp ∪ Dq) does not contain ũ for

any sample u, by Lemma 3.8(i), F (p̃, q̃) − (Dp ∪ Dq) does not contain F (ci, ci+1) for

any two consecutive cut-points ci and ci+1 in the λh-partition with probability at least

1−O(n−Ω(lnω n)). Let y be the endpoint of F (p̃, q̃)− (Dp ∪Dq) that lies on Dp. It follows

that

|F (p̃, q̃) − (Dp ∪Dq)| < 2λ2
hf(y). (27)

Since ‖p̃−y‖ ≤ 2 radius(Dp) = 2(1+kµ1f(p̃))W
1/3
p , ‖p̃−y‖ ≤ f(p̃)/2 for sufficiently large

n. Thus, f(y) ≤ 3f(p̃)/2, so 2λ2
hf(y) < 3λ2

hf(p̃). By Lemma 4.2, Wp ≥ radius(initial(p)) ≥
λh

√

f(p̃)/3. So 2λ2
hf(ỹ) ≤ 27W 2

p . Substituting into (27), we get

|F (p̃, q̃)| ≤ 27W 2
p + 2 radius(Dp) + 2 radius(Dq).
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By Lemma 5.4, ‖p̃ − p∗‖ ≤ kWp and ‖q̃ − q∗‖ ≤ kWq with probability at least 1 −
O(n−Ω(lnω n/fmax)). We conclude that ‖p∗ − q∗‖ ≤ ‖p̃ − p∗‖ + |F (p̃, q̃)| + ‖q̃ − q∗‖ ≤
µ2f(p̃)W

1/3
p + µ2f(q̃)W

1/3
q for some constant µ2 > 0.

Case 2: F (p̃, q̃)−(Dp∪Dq) contains ũ for some sample u. We show that this case is impossible if

Lemmas 5.5 and 5.8 hold deterministically. It follows that case 2 occurs with probability at

most O(n−Ω(lnω n/fmax)). We first claim that ‖p∗−u∗‖ > W
1/3
p . If not, Lemma 5.5 implies

that Wu ≤ µ1f(p̃)
√

Wp for sufficiently large n. But then ‖p∗−ũ‖ ≤ ‖p∗−u∗‖+‖ũ−u∗‖ ≤
W

1/3
p +kWu ≤W

1/3
p +kµ1f(p̃)

√

Wp. This is a contradiction as ũ lies outsideDp. Similarly,

‖q∗ − u∗‖ > W
1/3
q . So u∗ is not eliminated by the selection of p∗ and q∗.

Next, take any selected center point z∗ different from p∗ and q∗ such that q̃ ∈ F (ũ, z̃).

We show that u∗ is not eliminated by the selection of z∗. Assume to the contrary that

this is false. So ‖u∗ − z∗‖ ≤ W
1/3
z . By Lemma 5.5, Wu ≤ µ1f(z̃)

√
Wz for sufficiently

large n. Let k′ = 1 + k + kµ1. Then ‖ũ − z̃‖ ≤ ‖u∗ − z∗‖ + ‖z∗ − z̃‖ + ‖u∗ − ũ‖ ≤
W

1/3
z + kWz + kWu ≤ W

1/3
z + kWz + kµ1f(z̃)

√
Wz ≤ k′f(z̃)W

1/3
z . For sufficiently large

n, k′f(z̃)W
1/3
z ≤ f(z̃)/4. By Lemma 5.8, the angle ∠u∗q∗z∗ is obtuse. It follows that

‖q∗ − z∗‖ < ‖u∗ − z∗‖ ≤W
1/3
z , contradicting Lemma 5.6.

Symmetrically, we can show that u∗ is not eliminated by any selected center point z∗

different from p∗ and q∗ such that p̃ ∈ F (z̃, ũ). In all, our algorithm should select another

center point u∗ such that ũ ∈ F (p̃, q̃) − (Dp ∪Dq). This contradicts the assumption that

p∗ and q∗ are adjacent selected center points.

We are ready to show that the output curve of the NN-crust algorithm is exactly G. This

will allow us to show that the output curve is homeomorphic to the underlying smooth closed

curve.

Lemma 5.10 Let p∗ and q∗ be two selected center points that are not adjacent. For sufficiently

large n, if ‖p∗−q∗‖ ≤ f(p̃)/4, there is an edge e in G incident to p∗ such that the angle between

e and p∗q∗ is acute and length(e) < ‖p∗ − q∗‖ with probability at least 1 −O(n−Ω(lnω n/fmax)).

Proof. Since p∗ and q∗ are not adjacent, there is some selected center point u∗ adjacent to

p∗ such that ũ lies on F (p̃, q̃) or F (q̃, p̃), say F (p̃, q̃). By Lemma 5.6, ‖p∗ − u∗‖ > W
1/3
u

and ‖q∗ − u∗‖ > W
1/3
u . By Lemma 5.8, the angle ∠p∗u∗q∗ is obtuse with probability at

least 1 − O(n−Ω(lnω n/fmax)). It follows that the angle between p∗u∗ and p∗q∗ is acute and

‖p∗ − u∗‖ < ‖p∗ − q∗‖.

Lemma 5.11 For sufficiently large n, the output curve obtained by running the NN-crust al-

gorithm on the selected center points is exactly G with probability at least 1 −O(n
−Ω( ln

ω n
fmax

−1)
).

Proof. We first prove the lemma assuming that Lemmas 5.4, 5.8, 5.9, and 5.10 hold determin-

istically. We will discuss the probability bound later.
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Let p∗ be a selected center point. Let p∗u∗ and p∗v∗ be the edges of G incident to p∗.

Without loss of generality, we assume that p̃ lies on F (ũ, ṽ). By Lemma 5.6, ‖p∗ − u∗‖ > W
1/3
p

and ‖p∗ − v∗‖ > W
1/3
p .

By Lemmas 5.4 and 5.9, ‖p̃ − ũ‖ ≤ ‖p̃ − p∗‖ + ‖ũ − u∗‖ + ‖p∗ − u∗‖ ≤ kWp + kWu +

µ2f(p̃)W
1/3
p + µ2f(ũ)W

1/3
u , which is less than (f(p̃) + f(ũ))/30 for sufficiently large n. The

Lipschitz condition implies that

0.9f(p̃) < f(ũ) < 1.1f(p̃).

So we get

‖p̃− ũ‖ ≤ f(p̃) + f(ũ)

30
< 0.1f(p̃), ‖p∗ − u∗‖ ≤ f(p̃) + f(ũ)

30
< 0.1f(p̃).

Similarly, we can show that

‖p̃− ṽ‖ < 0.1f(p̃), ‖p∗ − v∗‖ < 0.1f(p̃).

Let p∗q∗ be an edge computed by the NN-crust algorithm when it processes the vertex p∗.

Assume to the contrary that p∗q∗ is not an edge in G. If p∗q∗ is computed in step 1 of the

NN-crust algorithm, then q∗ is the nearest neighbor of p∗. So ‖p∗ − q∗‖ ≤ ‖p∗ − u∗‖ < 0.1f(p̃).

By Lemma 5.10, there is another edge e in G such that length(e) < ‖p∗ − q∗‖, contradiction.

Suppose that p∗q∗ is computed in step 2 of the NN-crust algorithm. As we have just shown,

the step 1 of the NN-crust algorithm already outputs an edge, say p∗u∗, of G where u∗ is the

nearest neighbor of p∗. Observe that ‖ũ − ṽ‖ ≤ ‖p̃ − ũ‖ + ‖p̃ − ṽ‖ < 0.2f(p̃) < 0.25f(ũ). By

Lemma 5.8, ∠u∗p∗v∗ is obtuse. By the NN-crust algorithm, ∠u∗p∗q∗ is also obtuse. Since the

NN-crust algorithm prefers p∗q∗ to p∗v∗, ‖p∗ − q∗‖ ≤ ‖p∗ − v∗‖ < 0.1f(p̃). By Lemma 5.10,

G has an edge incident to p∗ that is shorter than p∗q∗ and makes an acute angle with p∗q∗,

contradiction.

We have shown that each output edge belongs to G. Since the NN-crust algorithm guaran-

tees that each vertex in the output curve has degree at least two, the output curve and G have

the same number of edges. So the output curve is exactly G.

Since Lemmas 5.4, 5.8, 5.9, and 5.10 hold with probability at least 1 − O(n−Ω(lnω n/fmax)),

the output edges incident to p∗ are edges of G with probability at least 1 −O(n−Ω(lnω n/fmax)).

Since there are O(n) output vertices, the probability that this holds for all vertices is at least

1 −O(n−Ω( ln
ω n

fmax
−1)).

Corollary 5.1 For sufficiently large n, the output curve obtained by running the NN-crust

algorithm on the selected center points is homeomorphic to the underlying smooth closed curve

with probability at least 1 −O(n−Ω( ln
ω n

fmax
−1)).

Proof. We have shown that that the output curve is G. Let G′ be the curve obtained by

connecting p̃ and q̃ for each edge p∗q∗ of G. G′ is homeomorphic to the underlying smooth

closed curve as p∗ and q∗ are adjacent. Clearly, G is homeomorphic to G′ as there is a bijection

between the edges of G and G′.
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5.3 Main theorem

We make use of the results in the previous subsections to prove the main theorem in this paper.

Theorem 5.1 Assume that δ ≤ 1/(25ρ2) and ρ ≥ 5. Given n noisy samples from a smooth

closed curve, when n is sufficiently large, our algorithm computes a polygonal curve that satisfies

the following properties with probability at least 1 −O(n
−Ω( ln

ω n
fmax

−1)
):

• Each output vertex s∗ converges to s̃.

• For each output edge r∗s∗, its slope converges to the slope of the tangent at s̃.

• The output curve is homeomorphic to the smooth closed curve.

Proof. By Lemma 5.4, an output vertex s∗ converges to s̃ with probability at least 1 −
O(n−Ω(lnω n/fmax)). Since there are O(n) output vertices, the pointwise convergence occurs

with probability at least 1−O(n
−Ω( ln

ω n
fmax

−1)
). Next, we analyze the angular differences between

the tangents of the smooth closed curve and the output curve.

Let r∗s∗ be an output edge. By Lemma 5.9, with probability at least 1−O(n−Ω(lnω n/fmax)),

we have

‖r∗ − s∗‖ ≤ µ2f(r̃)W 1/3
r + µ2f(s̃)W 1/3

s . (28)

Using the above, the triangle inequality, and Lemma 5.4, we get

‖r̃ − s̃‖ ≤ ‖r̃ − r∗‖ + ‖s̃− s∗‖ + ‖r∗ − s∗‖ (29)

≤ kWr + kWs + µ2f(r̃)W 1/3
r + µ2f(s̃)W 1/3

s . (30)

By (28), ‖r∗−s∗‖ < f(r̃)/5+f(s̃)/5 for sufficiently large n. The Lipschitz condition implies that

f(r̃) < 1.5f(s̃). So ‖r∗ − s∗‖ < f(s̃)/2. Thus, Lemma 5.5 applies and yields Wr ≤ µ1f(s̃)
√
Ws

with probability at least 1 −O(n−Ω(lnω n/fmax)). Substituting into (30), we conclude that

‖r̃ − s̃‖ ≤ µ3f(s̃)4/3W 1/6
s , (31)

for some constant µ3 > 0.

Let θ be the angle between r̃s̃ and the tangent at s̃. By Lemma 3.2(ii), we have θ ≤
sin−1 µ3f(s̃)1/3W

1/6
s

2 . Let θ′ be the acute angle between r∗s∗ and r̃s̃. By (31), ‖r̃ − s̃‖ ≤ f(s̃)/2

for sufficiently large n. Thus, by Lemma 5.7, θ ′ tends to zero as n tends to ∞ with probability

at least 1 − O(n−Ω(lnω n/fmax)). We conclude that θ + θ′ tends to zero as n tends to ∞, so the

slope of r∗s∗ converges to the slope of the tangent at s̃. Since there are O(n) output edges, the

convergence of their slopes occur with probability at least 1 −O(n−Ω( ln
ω n

fmax
−1)).

The output curve is homeomorphic to the smooth closed curve by Corollary 5.1.
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6 Discussion

We expect that the approach will also work for handling curves with features: the sampled

“curve” consists of a collection of simple curve segments that may only share endpoints, thus

forming features like corners, branchings and terminals. Some previous works have already

considered terminal and corner points. Allowing branchings extends this to the most general

problem. Furthermore, we aim to handle features in the presence of noise. A motivation for

allowing branchings is that if we consider surfaces in 3-d with features like sharp edges and

corners, then these form a curve graph (in 3-d) with corners, branchings and terminals. The

output reconstruction is expected to identify the features as part of the reconstruction. As in

previous works, the definition of local feature size is modified to avoid a zero local feature size

in corners and branchings points, by pruning the medial axis near the features. The shape

fitting can be done by finding a branching of k slabs – the Minkowski sum of a disk and k rays

originating from a common apex (see figure) – with smallest width that contains the points.

Almost brute force algorithms for these fitting problems run in polynomial time. Linear time

approximation algorithms seem possible by adapting recent work on k-line centers [1].

Figure 18: Degree 3 branching, Noisy sampling and Fitting.

We also need a Modified NN-Crust that works correctly for a noise free locally uniform

sampling from a curve with features. Such a variant is possible if we assume that for each

feature in the curve, the sampling should include a sample s which is identified and provided

with a k cones corresponding to the incident curve branches. This is the case for us, since this

is information is obtained from the feature fitting step. In the Modified NN-Crust, each feature

sample s selects the nearest neighbor in each of its cones, then each non-feature sample s that

was not selected by a feature sample proceeds as in the NN-Crust, and each non-feature s that

was selected by a feature sample s′ selects the nearest neighbor in a cone opposite to s′

To guarantee that the original curve is reconstructed, a very restricted (locally uniform)

sampling condition is needed: as it has been pointed out before, the sampling can “simulate”

non-existing features and “destroy” real ones. So, a witness guarantee as in [5] is desirable.

Beyond this, we also use uniformity of the sampling to assure that the type of the neighborhood

can be determined locally. To avoid this, the steps of neighborhood identification and global

reconstruction should be interconnected. For example, though at a small scale, a neighborhood

may seem to contain a terminal, it may be that this is not the case and that this is only realized

when a global consistent reconstruction is not possible under this assumption. Appropriate

rules for the interaction between feature fitting and reconstruction need to be explored.
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An integration of fitting and reconstruction is also necessary to avoid our current assumption

of dense noise. In a different direction, it seems possible to handle outliers if the algorithm uses

shape fitting with outliers.
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