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Abstract. We consider the problems of straightening polygonal trees
and convexifying polygons by continuous motions such that rigid edges
can rotate around vertex joints and no edge crossings are allowed. A
tree can be straightened if all its edges can be aligned along a common
straight line such that each edge points “away” from a designated leaf
node. A polygon can be convexified if it can be reconfigured to a convex
polygon. A lattice tree (resp. polygon) is a tree (resp. polygon) containing
only edges from a square or cubic lattice. We first show that a 2D lattice
chain or a 3D lattice tree can be straightened efficiently in O(n) moves
and time, where n is the number of tree edges. We then show that a
2D lattice tree can be straightened efficiently in O(n2) moves and time.
Furthermore, we prove that a 2D lattice polygon or a 3D lattice polygon
with simple shadow can be convexified efficiently in O(n2) moves and
time. Finally, we show that two special classes of diameter-4 trees in two
dimensions can always be straightened.
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1 Introduction

Graph reconfiguration problems have wide applications in contexts including
robotics, molecular conformation, animation, wire bending, rigidity and knot
theory. The motivation for reconfiguration problems of lattice graphs arises in
applications in molecular biology and robotics. For instance, the bonding-lengths
in molecules are often similar [6, 11, 12], as are the segments of robot arms.

A unit tree (resp. unit polygon) is a tree (resp. polygon) containing only edges
of unit length. An orthogonal tree (resp. orthogonal polygon) is a tree (resp.
polygon) containing only edges parallel to coordinate-axes. A lattice tree (resp.
lattice polygon) is a tree (resp. polygon) containing only edges from a square or
cubic lattice. Note that a lattice tree or polygon is basically a unit orthogonal
tree or polygon. A graph is simple if non-adjacent edges do not intersect. We
consider the problem about the reconfiguration of a simple chain, polygon, or
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tree through a series of continuous motions such that the lengths of all graph
edges are preserved and no edge crossings are allowed. A tree can be straightened
or flattened if all its edges can be aligned along a common straight line such that
each edge points “away” from a designated leaf node. In particular, a chain can
be straightened if it can be stretched out to lie on a straight line. A polygon can
be convexfied if it can be reconfigured to a convex polygon. We say a chain or
tree is locked if it cannot be straightened. We say a polygon is locked if it cannot
be convexified. We consider one move in the reconfiguation as a continuous
monotonic change for the joint angle at some vertex.

In four dimensions or higher, a polygonal tree can always be straightened,
and a polygon can always be convexified [7]. In two dimensions, a polygonal chain
can always be straightened and a polygon can always be convexified [9, 14, 5].
However, there are some trees in two dimensions that can lock [3, 8, 13]. In three
dimensions, even a 5-chain can lock [4]. Alt et al. [2] showed that deciding the
reconfigurability for trees in two dimensions and for chains in three dimensions is
PSPACE-complete. However the problem of deciding straightenability for trees
in two dimensions and for chains in three dimensions remains open. Due to the
complexity of the problems in two and three dimensions, some special classes of
trees and polygons have been considered. Poon [13] showed that a unit tree of
diameter 4 in two dimensions can always be straightened. In their paper, they
posed a challenging open question whether a unit tree in either two or three
dimensions can always be straightened.

The rest of this paper is organized as follows. We define some technical terms
used in our paper in Section 2. We present efficient algorithms to straighten
lattice chains and trees and to convexify lattice polygons in both two and three
dimensions, respectively, in Sections from 3 to 6. In Section 7, we show that two
special classes of diameter-4 trees in two dimensions can always be straightened.
Finally, we conclude with some conjectures in Section 8.

2 Definitions

Let P be unit tree or polygon in two or three dimensions. Define a small value
ε = 1

100n , where n is the number of edges in P . We call point q is convergent to
p if q is within distance ε from p. A unit edge is called convergent to a lattice
edge if any point on the edge is within distance ε from a particular lattice edge.
Such a unit edge is called a near-lattice edge, and the particular lattice edge is
called its core edge. A em core vertex is a vertex of some core edge. A near-lattice
tree (resp. near-lattice polygon) is a tree (resp. polygon) that contains only near-
lattice edges. Suppose P is a near-lattice tree or polygon. The core of P , denoted
by K(P ), is the union of core edges for all edges in P . A spring in P is the set
of edges in P converging to a common lattice edge. A spring with only one edge
is called a singleton. A leaf spring is a spring with its core edge possessing a leaf
vertex in the core of P .

A near-lattice tree is called folded if its core contains a single lattice edge.
A near-lattice polygon is called nearly folded if its core is a lattice rectangle



of unit width. Remark that the definition of a nearly-folded polygon is due to
our unfolding algorithm, in which we convert a given lattice polygon to such a
polygon, which can then be convexified straightforwardly.

3 2D lattice chains and 3D lattice trees

2D lattice chains. Given a simple 2D lattice chain P = p0p1 . . . pn. Starting from
an end edge, say p0p1, we fold up the whole chain, edge by edge. At step i, a
spring Si containing a zig-zag path from p0 to pi+1 is formed such that pipi+1

is a lattice edge staying at its original position, and ∠pj = ε2 for 1 ≤ j ≤ i.
Vertices pi−1, pi−3, . . . all lie in a lattice cell, say σ. Step i + 1 of the algorithm
tries to combine the spring Si and the edge e = pi+1pi+2 to form a new spring
Si+1. We need to consider several cases depending on the position of e. If pi+1 is
non-straight and e does not lie on σ, we rotate Si around vertex pi+1, away from
σ, until pipi+1 makes an angle ε2 with e, and we are done. See Figure 1(a) for
illustration. Otherwise, we first rotate e around pi+2 to the side containing σ until
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Fig. 1. Folding 2D chains.

e makes an angle of π/12 with its original position, and it is safe now to rotate Si

around pi+1 by sweeping through the side not containing Si until ∠pipi+1pi+2 =
ε2. Then we move e back to its original position. See Figure 1(b) for illustration.
It is clear that it takes only constant number of moves to construct Si+1 from Si.
Thus the whole chain can be folded up, in O(n) moves and time, into a zig-zag
path, which can then be straightened straightforwardly.

Theorem 1. A 2D lattice chain can be straightened in O(n) moves and time.

3D lattice trees. As in the previous section, we can unfold 3D lattice chains
in the same manner. In fact, we can even unfold 3D lattice trees in a similar
fashion. we do this in a bottom-up fashion according to the given tree structure.
The folding process starts from the leaves of the given tree. In each step, we fold
up each set of all leaf springs incident to a common internal core vertex v to the
internal core edge incident to v. Each time when we fold up a spring towards an
edge, we keep the “tail” of the spring away from its moving direction. It is clear
that folding each leaf spring takes constant number of moves. Thus we obtain
the following theorem.

Theorem 2. A 3D lattice tree can be straightened in O(n) moves and time.



4 2D lattice trees

Given a 2D lattice tree P . We consider a leftmost vertex r of P as its root.
We consider the parent of the root r as the lattice point to the left of r. Our
algorithm proceeds by pulling P to the left successively until the whole tree is
straightened. Each pulling step moves each vertex along its edge connecting to
its parent until it is within distance ε2 to its parent in the previous step. This
step is repeated n times so that, finally, P is straightened. Figure 2 shows the
execution of the algorithm on a small tree. Step i generates a new polygon Pi.
We assume P = P0. First, we can show the following lemma.
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Fig. 2. Straightening a lattice tree by pulling it to the left successively.

Lemma 1. During step i of the algorithm, suppose v is moving on the edge
vi−1ui−1, where vi−1 and ui−1 are the positions of v and its parent just after
step i− 1. Then

(i) Each vertex of Pi is within distance iε2 to a lattice vertex.
(ii) Each vertex v is within distance iε2 to the core lattice edge of e.
(iii) No edge crossings can occur.

Proof. Suppose, just after step i, v stops at position vi. Note that d(vi, ui−1) ≤ ε2

due to the algorithm.
(i) It is clear that any vertex of P0 is a lattice point. Assume any vertex

of Pi−1 is within distance (i − 1)ε2 to a lattice vertex U . Consider any vertex
vi of Pi. We know that d(vi, ui−1) ≤ ε2. As d(ui−1, U) ≤ (i − 1)ε2, we have
d(vi, U) ≤ iε2.

(ii) Suppose the core edge of ui−1vi−1 is UV , where ui−1 and vi−1 converge
to U and V , respectively. Since d(vi, U) ≤ iε2 and d(vi−1, V ) ≤ (i − 1)ε2, we
have d(v, UV ) ≤ iε2 as v moves along segment vi−1vi.

(iii) (Sketch) Consider a moving edge e = uv, where u is the parent of v. We
show that e cannot cross other moving edges. Let the parent of ui−1 in Pi−1 be
ti−1, which converges to lattice point T . By part (ii), we have d(u, TU) ≤ iε2.
We consider two cases depending on whether T,U and V are collinear. If they



are, then any point p on e is within distance iε2 from TUV . Otherwise, T,U
and V are not collinear. Then any point p on e either lies in the lattice cell with
T,U and V as its vertices or is within distance iε2 from TUV . Also d(e, TUV ) ≤
1/
√

2 + 2iε2 ≤ 2/3 < 1− 2ε. Then it is not hard to see that e cannot cross other
moving edges. The details are omitted in this abstract.

As each pulling step takes O(n) moves and time, the whole algorithm takes
O(n2) moves and time.

Theorem 3. A 2D lattice tree can be straightened in O(n2) moves and time.

5 2D lattice polygons

Given a simple 2D lattice polygon P . Start with any lattice edge e of P . We
label the edges of P in counter-clockwise order with consecutive numbers by
starting with labeling edge e with the number 1. An edge of P is called an odd
edge if its label number is odd; otherwise, it is called an even edge. Note that a
2D lattice polygon has even number of edges. We suppose that, throughout the
entire motion, the parity of each edge remains fixed. A vertex is called straight
if it is collinear with both its preceding and following vertices on the polygon.
Otherwise, it is called non-straight.

A block of a lattice polygon is a rectangle of width one such that its left, top
and bottom sides coincides with the edges of the given polygon. A collapsible
block of a lattice polygon is a block such that its right side complementing the
given polygon is a single segment. Such a segment is called the opening segment,
or simply the opening, of the corresponding collapsible block. And the two end-
points of an opening segment are called opening vertices. The path between its
two opening vertices on a collapsible block is called a collapsible path. A block
or path of a near-lattice polygon is collapsible if the corresponding block or path
of its core lattice polygon is collapsible.

The parity of a spring is defined as the parity of its two end edges. Suppose
we walk along the edges of a near-lattice polygon in anti-clockwise order. We
call a non-singleton spring left-twisted if its edges run to the left; otherwise it
is called right-twisted. See Figure 3(a) for examples. A near-lattice polygon is

(a) (b)

Fig. 3. (a) A left-twisted spring and a right-twisted spring, respectively. (b) A consis-
tently twisted near-lattice polygon.



called consistently twisted if odd and even springs have opposite directions of
twisting. See Figure 3(b) for an example of a consistently-twisted near-lattice
polygon. We first need the following two lemmas.

Lemma 2. In a non-nearly-folded near-lattice polygon, there is a collapsible
block; more precisely, the block with the smallest height is a collapsible block.

Proof. Suppose to the contrary that the block B with the smallest height is not
collapsible. Then its opening contains at least two segments. Thus there is some
block B′ with its left side between these two segments. Obviously the height of
B′ is shorter than that of B. This contradicts our assumption.

Lemma 3. In a consistently-twisted near-lattice polygon, consider a collapsible
block B such that all its non-singleton springs lie on its left side. Then

(i) All its non-singleton springs can be transformed into one non-singleton spring
on any edge on the left side of the block with consistent twisting.

(ii) Its corresponding collapsible path can be transformed to a consistently-twisted
near-lattice path convergent to the opening segment of B.

Proof. (Sketch)
(i) Note that the non-singleton springs lie only on the left side of B. A non-

singleton spring can be transformed into a singleton by moving its remaining
edges to the adjacent spring. Repeating this process results in only one non-
singleton spring on the left side of B. See Figure 4(a) for illustration.

(b)(a)

Fig. 4. (a) Transform several springs into a single non-singleton spring on the left side
of B. (b) Collapse a collapsible block.

(ii) We need to consider several cases depending on different directions of
the incident edges of its two opening vertices. Note that according to part (i),



we can assume the left side of B contains only one non-singleton spring, which
reduces a lot of cases we need to consider. Figure 4(b) shows the collapse of a
specific collapsible block. Other cases can be handled in a similar way, whose
details are omitted in this abstract.

Lemma 2 says that a near-lattice polygon which is not nearly folded always
contains a collapsible block, which can then be collapsed using Lemma 3 in
O(n) moves and time. Hence, each step of our algorithm is to select the block
with smallest height in the polygon to collapse. Note that all the blocks of the
polygon can be maintained in a priority queue with their heights as keys. After
O(n) collapsing steps, we end up with a nearly folded polygon, which clearly can
be convexified in O(n) moves and time.

Theorem 4. A 2D lattice polygon can be straightened in O(n2) moves and time.

6 3D orthogonal chains and polygons

A 3D 5-chain can lock [4]. We can simulate this chain by an orthogonal 9-chain
as shown in Figure 5(a), where each of its two end edges is longer than the
union of its internal edges. Furthermore, by doubling this 9-chain, we obtain a
3D locked orthogonal unknotted 20-gon as shown in Figure 5(b).

(a) (b) (c)

Fig. 5. (a) A 3D orthogonal locked 9-chain. (b) A 3D orthogonal locked 20-gon. (c)
Collapse a 3D collapsible block.

Theorem 2 implies that a 3D lattice chain can be straightened in O(n) moves.
We present below an algorithm to straighten a class of unknotted lattice polygons
in 3D.

A 3D polygon with simple shadow is a simple 3D polygon whose shadow is
a simple polygon when it is projected orthogonally onto some plane, which we
assume to be xy-plane. A 3D polygon with simple projection is a 3D polygon with
simple shadow such that any line parallel to z-axis intersects the polygon with
at most one single connected component. Alberto-Calvo et al. [1] showed that a
3D polygon with simple projection can be convexified in O(n+T ) time, where T
is the running time of an algorithm to convexify the planar projection. There are



several algorithms to convexify a planar polygon [5, 9, 14]. The best bound for T
is O(n79) due to the algorithm by Cantarella et al. [5], where the constant is a
polynomial in the ratio between the maximum edge length and initial minimum
distance between a vertex and an edge. In this section, we present an efficient
algorithm to convexify a 3D lattice polygon with simple shadow in O(n2) moves
and time. In this abstract, we only sketch the main idea.

Suppose P is the given 3D lattice polygon with simple shadow. Consider any
vertical lattice plane π parallel to z-axis. Let Pπ be the intersection of π and P .
Our algorithm starts by collapsing the blocks in each Pπ. This step is similar
to what we do for the 2D case. The difference is that we need to consider more
types of blocks. We define a vertical block as a block of width one with its opening
on its left or right side, and a horizontal block as a block of height one with its
opening on its top or bottom side. Note that a block in 2D case is basically
a vertical back with its opening on its right side. A collapsible block is defined
similarly as the 2D case. This step of our algorithm searches for any collapsible
vertical or horizontal block to collapse for each Pπ. It takes O(n2) moves and
time, and ends up with a near-lattice polygon P ′ whose core is a polygon with
simple projection.

In order to collapse the edges of P ′, we need to define the three dimensional
version of blocks. A 3D block of P ′ is a 3D box B with width one along x-axis or
y-axis such that the intersection of B and the core of P ′ projects orthogonally
to a two dimensional block on xy-plane. A collapsible 3D block is a 3D block
whose orthogonal projection is a collapsible 2D block. Figure 5(c) shows the
result of collapsing a 3D collapsible block, which can be done in O(n) time.
Let lattice polygon Q be projection of the core of P ′ onto xy-plane. Each 2D
block in Q corresponds to a 3D block in P ′. In this step, our algorithm finds
each 3D collapsible block by identifying its corresponding 2D collapsible block
in its orthogonal projection. As there are at most O(n) 3D collapsible blocks to
consider, the running time for this step is again O(n2).

Theorem 5. A 3D lattice polygon with simple shadow can be straightened in
O(n2) moves and time.

7 Diameter-4 trees in 2D

Let T be a polygonal tree of diameter 4 in the plane, with o as its central node.
We call the edges incident to o back edges, and the rest front edges. A UB-tree is
a tree of diameter 4 with all its back edges of unit length. An SB-tree is a tree
of diameter 4 with all its back edges not longer than their corresponding front
edges. In this section, we show that a UB-tree or SB-tree in two dimensions can
always be straightened.

We first to define some technical terms. A branch is a path from o to a leaf
of T . We define E(B) to be the extension ray of the back edge of B. The direct
straightening of branch B = ouv means to rotate the front edge uv around the
back vertex u until it aligns along E(B) by sweeping through the smaller angle.



We denote S(B) to be the swept region for directly straightening B. The direct
collapse of branch B = ouv means to rotate the front edge uv around the back
vertex u by sweeping through the smaller angle until it makes an arbitrarily
small angle with ou. We say B′ follows B if B′ intersects E(B), and B′ and
B are branches of the same turn. We say B′ directly covers B if B′ intersects
E(B) ∪ S(B), and B and B′ are branches of opposite turns. We then define B′

covers B if there exists some branch B′′ following B or simply being B such that
B′ directly covers B′′. We define a branch B′ mutually covers another branch B
if B′ covers B, and vice versa. Branch B′ non-mutually covers branch B if B′

covers B, but B does not cover B′.
We categorize the branches into three groups:

• (Group I) branches falling on a maximal following cycle,
• (Group II) those falling on non-mutual covering sequences, and
• (Group III) those including mutually covered branches and branches covered

by some straightened branches.

See Figure 6 for an example of different groups of branches in a UB-tree. Group
I branches are those with all of their vertices dotted, Group III branches are
bold, and the remained branches are Group II branches.

o

Fig. 6. A UB-tree.

Our algorithm consists of three phases, in
which we straighten the three groups of branches
in the above order respectively. In the following
cycle (if there is), the front edge of some of its
branches B can be swept through S(B) by pass-
ing through an angle of Ω( 1

n ). Thus Phase I needs
O(n2) moves to straighten such a following cycle.
In Phase II, we observe that the last branch (in-
cluding its following branches) of a maximal non-
mutual covering sequence can be straightened di-
rectly. We repeat this peeling process to straighten
all Group II branches. Finally, we consider the fi-
nal phase of our algorithm. Group III branches
have an important property that their front edges are shorter than their corre-
sponding back edges. This implies that all branches with a common back edge
can all be collapsed directly altogether. Then all the collapsed branches can
be rotated to pack inside a small wedge, say a quadrant. Now the collapsed
branches can be drawn out of the quadrant one by one to be straightened di-
rectly. This completes our algorithm. The algorithm can be implemented to take
O(n2) moves and O(n3 log n) time. We summarize in the following theorem.

Theorem 6. A UB-tree or SB-tree of diameter 4 in two dimensions can be
straightened in O(n2) moves and in O(n3 log n) time.

8 Conclusion

We present efficient algorithms to straighten lattice chains and trees and to con-
vexify lattice polygons in both two and three dimensions, respectively. In par-



ticular, we only manage to show that a special class of lattice polygons in three
dimensions can be convexified. We believe that any unknotted lattice polygon in
three dimensions can always be convexified. We are currently investigate in this
direction. It is also open whether an unknotted unit polygon in three dimensions
can always be straightened. Furthermore, it is open whether a unit tree in two or
three dimensions can always be straightened [13]. In Section 6, we show that an
orthogonal chain in three dimensions can lock. However, it is unknown whether
an orthogonal tree in two dimension can lock. In fact, we conjecture that it can
always be straightened.
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