
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

On Unfolding Trees and Polygons on Various Lattices

Sheung-Hung Poon∗

Abstract

We consider the problem of unfolding lattice trees and
polygons in hexagonal or triangular lattice in two di-
mensions. We show that a hexagonal/triangular lattice
chain (resp. tree) can be straightened in O(n) (resp.
O(n2)) moves and time, and a hexagonal/triangular lat-
tice polygon can be convexified in O(n2) moves and
time. We hope that the techniques we used shed some
light on solving the more general conjecture that a unit
tree in two dimensions can always be straightened.

1 Introduction

Graph reconfiguration problems have wide applications
in contexts including robotics, molecular conforma-
tion, animation, wire bending, rigidity and knot theory.
The motivation for reconfiguration problems of lattice
graphs arises in applications in molecular biology and
robotics.

A graph is simple if non-adjacent edges do not in-
tersect. A unit tree (resp. polygon) is a tree (resp.
polygon) containing only edges of unit length. A hexag-
onal/square/triangular lattice tree (resp. polygon) is a
simple tree (resp. polygon) containing only edges from a
hexagonal/square/triangular lattice in two dimensions,
respectively. We say two edges e and e′ cross each other
if one of edges penetrates into the interior of the other.
We consider the problem about the reconfiguration of a
simple chain, polygon, or tree through a series of contin-
uous motions such that the lengths of all graph edges are
preserved and no edge crossings are allowed. We remark
that during the reconfiguration, touchings between rigid
edges are allowed. A tree can be straightened if all its
edges can be aligned along a common straight line such
that each edge points “away” from a designated leaf
node. In particular, a chain can be straightened if it
can be stretched out to lie on a straight line. A polygon
can be convexfied if it can be reconfigured to a convex
polygon. We say a chain or tree is locked if it cannot
be straightened. We say a polygon is locked if it cannot
be convexified. We consider one move in the reconfig-
uration as a continuous monotonic change for the joint
angle at some vertex, during which no edge crossings
occur.

∗Department of Mathematics and Computer Science,
TU Eindhoven, 5600 MB, Eindhoven, the Netherlands.
spoon@win.tue.nl

In four dimensions or higher, a polygonal tree can
always be straightened, and a polygon can always be
convexified [2]. In two dimensions, a polygonal chain
can always be straightened and a polygon can always
be convexified [3]. However, there are some trees in two
dimensions that can lock [1, 4]. Poon [4] showed that a
unit tree of diameter 4 in two dimensions can always be
straightened. In their paper, they posed a challenging
open question whether a unit tree in either two or three
dimensions can always be straightened. Poon [5] showed
that a square lattice tree in two and three dimensions
can always be straightened, and a square lattice polygon
in two dimensions can always be convexified.

In the following sections, we present our results for
hexagonal and triangular lattices, respectively. We de-
fine that a spring in P is a maximal connected zig-zag
path of edges in P coincident to a common lattice edge.

2 Hexagonal Lattice

In this section, we apply the techniques used in [5] for
square lattice to unfold chains, trees or polygons in
hexagonal lattice.

2.1 Hexagonal Lattice Chains

Given a hexagonal lattice chain P = p0p1 . . . pn in two
dimensions. We fold up the chain from end edges iter-
atively to finally obtain a single spring, which can then
be straightened straightforwardly. Starting from an end
edge, say p0p1, we fold up the whole chain, edge by edge.
At the end of step i, a hexagonal lattice polygon Pi is
obtained such that a spring Si containing a zig-zag path
from p0 to pi+1 is formed. Step (i + 1) of the algorithm
tries to combine the spring Si and the edge pi+1pi+2

to form a new spring Si+1 as shown in Figure 1, which
takes constant number of moves and time. Thus the

pi

pi+1 pi+2

σ

pi

pi+1 pi+2

σ

Figure 1: A folding step for a hexagonal lattice chain.

whole chain can be folded up, in O(n) moves and time,
into a final single spring, which can then be straightened
straightforwardly.



19th Canadian Conference on Computational Geometry, 2007

Theorem 1 A hexagonal lattice chain in two dimen-
sions can be straightened in O(n) moves and time.

2.2 Hexagonal Lattice Trees

Given a hexagonal lattice tree P in two dimensions. The
algorithm runs by pulling the whole tree to the left it-
eratively until the whole tree is straightened. We select
a leftmost vertex r of P as its root. We use the conven-
tion that the parent of the root r as the lattice point
to the left of r. Our algorithm proceeds by pulling P
to the left successively until the whole tree is straight-
ened. Each pulling step moves each vertex along its
edge connecting to its parent until it coincides with its
parent in the previous step. This step is repeated n
times until, finally, P is straightened. Figure 2 shows
the execution of the algorithm on a small tree. Step i
generates a new pseudo-lattice tree Pi. The correctness

r

P P1

P2

P3P4P5

r r

rrr

Figure 2: Straightening a hexagonal lattice tree by
pulling it to the left successively.

proof of our algorithm is similar to what was done for
the square lattice in [5]. Its details are thus omitted
here. As each pulling step takes O(n) moves and time,
the whole algorithm takes O(n2) moves and time.

Theorem 2 A hexagonal lattice tree in two dimensions
can be straightened in O(n2) moves and time.

2.3 Hexagonal Lattice Polygons

Given a hexagonal lattice polygon. Our unfolding algo-
rithm runs in the same fashion as that for lattice poly-
gons in the square lattice [5]. We successively collapse
leftmost collapsible block until we finally reach a lattice
hexagon, which we can then be convexified straightfor-
wardly. However, we need to define what we mean by
a block in a hexagonal lattice. For our convenience, in
this section, we suppose that the lattice lines are the
vertical lines and lines of slopes 1/

√
3 and −1/

√
3.

For the square lattice, Poon [5] define a block to be
a rectangle of width one. However, for the hexagonal
lattice, we need a new definition for a block. A block of
a hexagonal lattice polygon is hexagonal lattice cell B
such that the left three cell edges of B are coincident to
a connected path of the given polygon lying on the cell
boundary of B. Such a maximal connected path on the
boundary of B is called the block path of B. We define

the opening of B as the boundary of B complementing
its block path. A block is called collapsible if its open-
ing is not coincident to any edge of the given polygon.
To collapse a block, we divide into three cases depend-
ing on the number of edges on the block opening. Fig-
ure 3(a), (b) show the results of collapsing a block to an
opening containing exactly one lattice edge, say Case

(a) (b) (c) (d)

Figure 3: The block opening contains (a), (b) only one
lattice edge for Case 1, (c) two lattice edges for Case 2,
or (d) three lattice edges for Case 3.

1, and Figure 3(c), (d) show the results of collapsing
a block to an opening containing two or three lattice
edges, say Case 2 or Case 3, respectively. Observe that
for Case 3, no edges are reduced during the block col-
lapsing operation, and the vertical edge of its opening
may contain a polygon edge so that the current block
is not collapsible. As in each block collapsing step, one
vertical edge of the given polygon is moved to its right,
the number of occurrences of collapsing Case 3 can be
at most n until we reach one occurrence of Case 1 or
Case 2. Up to this point, it takes O(n) moves and time.
To fold up the polygon, we have to run O(n) number of
occurrences of Case 1 or Case 2. Hence, it takes O(n2)
moves and time in total. Finally, the folded polygon, a
polygon containing a single hexagonal lattice face, can
be convexified straightforwardly.

Theorem 3 A hexagonal lattice polygon in two dimen-
sions can be convexified in O(n2) moves and time.

3 Triangular Lattice

In this section, we extend the techniques used in the
previous sections to handle the graphs in a triangular
lattice, which is in a sense denser than the hexagonal
or square lattice. Thus more involved algorithms and
analyses are needed.

3.1 Triangular Lattice Chains

Given a triangular lattice chain. We again apply the
technique as in Section 2.1 by folding up the chain from
end edges iteratively to finally obtain a single spring,
which can then be straightened straightforwardly. How-
ever, for the triangular lattice case, more careful routine
to fold up an end edge need to be designed so that there
are no edge crossings occurring in the folding routine.

To fold up an end edge e towards the second last
end edge e′, we divide into three cases depending on



CCCG 2007, Ottawa, Ontario, August 20–22, 2007

the angle α between e and e′: Case 1: α = π/3; Case
2: α = 2π/3; and Case 3: α = π. Remark that in
each of these cases, we need to handle two subcases
depending on which side of e the tail of the end spring
resides, and at the end of each folding-up step, the result
position of e′ remains the same as its original position,
or makes an angle of π/2 with the edge adjacent to e′.
We illustrate the folding procedure for the case when
α = π/3 as shown in Figure 4. The folding procedures
for the other two cases can be handled similarly. Note
that in the figure, the interior of the dotted polygon
does not contain any other chain edges except e and e′

so that our folding-up procedure does not lead to any
edge crossing.

e

e′ e′

e

e′

ore′
e′

(a) (b)

Figure 4: The case when α = π/3.

After one folding-up step, the resulting end spring e
may make an angle of π/2 with the edge e′ adjacent to
e as we can see above. Thus there is one more case for
folding up the end edges later on. However, this case can
be handled in a similar fashion as shown in Figure 4(b).
As each folding-up step takes constant number of moves,
we thus have the following theorem.

Theorem 4 A triangular lattice chain in two dimen-
sions can be straightened in O(n) moves and time.

3.2 Triangular Lattice Trees

Given a triangular lattice tree P . We apply the tech-
nique as in Section 2.2 by pulling the tree to the left
iteratively until the whole tree is straightened. Suppose
the lattice lines are horizontal lines and lines of slopes√

3 and −
√

3. We select a leftmost vertex r of P as
its root. We use the convention that the parent of the
root r as the lattice point of distance one to the left of
r. Each pulling step moves each vertex along the edge
(or its extension) connecting itself to its parent at the
beginning of the step until r coincides with its parent.
We first show that no edge crossings can occur during
one pulling step in the following lemma.

Lemma 5 No edge crossings can occur during the
pulling step i(1 ≤ i ≤ n) for straightening a triangu-
lar lattice tree.

Proof. (Sketch) If all the angles between adjacent
edges are at least 2π/3, then the same argument as for
straightening hexagonal lattice trees holds. Otherwise
there may be some new situations we will encounter.

Consider a moving edge uv during pulling step i.
Suppose at the beginning of step i, the two adjacent
edges TU and UV in Pi−1 make an angle of π/6, i.e.,
∠TUV = π/6. Suppose u moves from U to T along edge
TU , and v first moves away from V on the extension of
UV and then moves back to V along the extension of
UV . See Figure 5. We will estimate how far v goes from

T
u = U

v = V

T U

V

v

u T U

V

v

u T U

V

u

v

u = T

v = V

U

(a) (b) (c) (d) (e)

Figure 5: The motion of uv when ∠TUV = π/3.

V along the extension of UV . The maximum distance
d of v from V during the pulling step i is acquired when
u reaches the middle point of TU . By cosine rule,

d2 + (
√

3/2)2 − 2(d)(
√

3/2) cos(5π/6) = 1.

By solving this quadratic equation and neglecting the
negative root, we have d = (

√
13− 3)/4 < 0.1514.

Then we consider how the descendent vertices of V
moves. Suppose WXY is a path of Pi−1 such that V is
the ancestor of W , X and Y . Consider a moving edge xy
during pulling step i such that x (resp. y) starts at and
moves away from X (resp. Y ) along edge WX (resp.
XY ) or its extension, and finally return to X (resp.
Y ). We claim that if xX < 0.1514, then yY < 0.1514.
With this claim, we can then apply it recursively to all
descendent vertices of V . Now, let’s prove the claim. We
divide into three cases depending on whether ∠xXY is
equal to π, π/3 or 2π/3. If ∠xXY = π, then yY = xX
follows immediately. We then consider the case that
∠xXY = π/3. Refer to Figure 5(b) by replacing TUV
and uv by WXY and xy, respectively. By applying
cosine rule on 4xXy, we have

(yY + 1)2 + (xX)2 − 2(yY + 1)(xX) cos(π/3) = 1.

By solving this quadratic equation and neglecting the
negative root, we have yY < 0.12061 as xX < 0.1514.
Finally, we consider the case that ∠xXY = 2π/3. Again
by applying cosine rule on 4xXy, we have

(1− yY )2 + (xX)2 − 2(1− yY )(xX) cos(2π/3) = 1.

By solving this quadratic equation and neglecting the
negative root, we have yY < 0.08433 as xX < 0.1514.
Thus we are done.

Using the above properties and by performing case
analysis on the motion of any pair of edges, it is not
hard for us to show that they do not cross each other.
Details are omitted in this abstract.

In all, as each pulling step takes O(n) moves and time,
the whole algorithm takes O(n2) moves and time.



19th Canadian Conference on Computational Geometry, 2007

Theorem 6 A triangular lattice tree in two dimensions
can be straightened in O(n2) moves and time.

3.3 Triangular Lattice Polygons

Given a triangular lattice polygon P . In this section,
we have to extend the block-collapsing technique used
in Section 2.3 by defining a block in a more general
way. For our convenience, we suppose that the lattice
lines are the vertical lines and lines of slopes 1/

√
3 and

−1/
√

3.
A parallelogram block (resp. trapezoidal block) of a tri-

angular lattice polygon is a parallelogram (resp. trape-
zoid) of width one (along the lattice) such that its two
width-sides and one of its non-width side coincides with
the edges of the given polygon. A triangular block is a
triangle with one of its edges not coinciding with the
edges of the given polygon. See Figure 6 for illustra-
tion. A block is either a parallelogram, trapezoidal or

(a) (b) (c)

Figure 6: (a)
A parallelogram
block, (b) a trape-
zoidal block, & (c)
a triangular block.

(a) (b) (c)

Figure 7: (a) Collapse a par-
allelogram block; (b) Collapse
two trapezoidal/triangular
blocks; & (c) Collapse an
extended block.

triangular block. A collapsible block of a lattice poly-
gon is a block such that its side not completely lying on
the given polygon complementing the given polygon is
a single segment. Such a segment is called the opening
segment, or simply the opening, of the corresponding
collapsible block. And the two endpoints of an opening
segment are called opening vertices. The path between
its two opening vertices on a block is called the path of
the block. A block with its path containing no spring
on its opening side is called unsheltered; otherwise it is
called sheltered.

Below we sketch the main ideas of the unfolding al-
gorithm. Observe that an unsheltered collapsible par-
allelogram block can be folded up directly as shown in
Figure 7(a). By sweeping a vertical line from left to
right, we must find a collapsible block B. If B is shel-
tered, then from the sheltered part of B, we can find
an unsheltered parallelogram block, which can then be
folded up directly. If B is unsheltered and is a parallel-
ogram, then we can fold up B. We need to consider the
case when B is an unsheltered trapezoidal or triangu-
lar block. For this case, if there is another unsheltered
trapezoidal or triangular block vertically adjacent to B,

then we can fold them up to align on their openings as
shown in Figure 7(b). Thus the only case remained is
when B is isolated. If it is the case, we need to define
the extension of B. The extended block B′ of B is defined
by stacking another block on B such that by replacing
the block path of B by its opening segment, B′ becomes
also a block. B′ is called collapsible if B is collapsible,
and the extra stacked block is collapsible. A collapsible
extended block can be folded up by first rearranging the
edges of B in a way simulating the flipping of B along its
opening side, and then collapse the two adjacent blocks
resulted in. This is shown in Figure 7(c). Up to this
moment, we still haven’t handled the case when B is an
unsheltered collapsible trapezoidal or triangular block,
and either it does not have an extended block or its
extended block is non-collapsible. For this complicated
case, we then need to consider the sweeping direction
from right to left for the vertical line or the other four
sweeping directions so that we can find some collapsible
block/extended block. The details are omitted in this
abstract. Ultimately, the given polygon P is folded up
as a triangle or a parallelogram containing two triangu-
lar lattice faces depending on whether P contains odd
or even number of edges. Such a nearly folded polygon
can then be convexified straightforwardly. Hence, we
obtain the following theorem.

Theorem 7 A triangular lattice polygon in two dimen-
sions can be convexified in O(n2) moves and time.

References

[1] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A.
Lubiw, J. O’Rourke, S. Robbins, I. Streinu, G. Tou-
ssaint, and S. Whitesides. A Note on Reconfiguring
Tree Linkages: Trees Can Lock. Discrete Applied
Mathematics, volume 117, number 1-3, pages 293-
297, 2002.

[2] R. Cocan and J. O’Rourke. Polygonal Chains Can-
not Lock in 4D. Computational Geometry: Theory
& Applications, 20, 105–129, 2001.

[3] R. Connelly, E.D. Demaine, and G. Rote. Straight-
ening Polygonal Arcs and Convexifying Polygonal
Cycles. Discrete & Computational Geometry, vol-
ume 30, number 2, 205–239, 2003.

[4] S.-H. Poon. On Straightening Low-Diameter Unit
Trees. In Proc. 13th International Symposium on
Graph Drawing, 519–521,2005.

[5] S.-H. Poon. On Unfolding Lattice Polygons/Trees
and Diameter-4 Trees. In Proc. 12th Annual Inter-
national Computing and Combinatorics Conference
(COCOON), 186–195, 2006.


