
Toward the Optimal Itinerary-Based KNN Query
Processing in Mobile Sensor Networks

Shan-Hung Wu, Kun-Ta Chuang, Chung-Min Chen, Member, IEEE, and Ming-Syan Chen, Fellow, IEEE

Abstract—The K-Nearest Neighbors (KNN) query has been of significant interest in many studies and has become one of the most

important spatial queries in mobile sensor networks. Applications of KNN queries may include vehicle navigation, wildlife social

discovery, and squad/platoon searching on the battlefields. Current approaches to KNN search in mobile sensor networks require a

certain kind of indexing support. This index could be either a centralized spatial index or an in-network data structure that is distributed

over the sensor nodes. Creation and maintenance of these index structures, to reflect the network dynamics due to sensor node

mobility, may result in long query response time and low battery efficiency, thus limiting their practical use. In this paper, we propose a

maintenance-free itinerary-based approach called Density-aware Itinerary KNN query processing (DIKNN). The DIKNN divides the

search area into multiple cone-shape areas centered at the query point. It then performs a query dissemination and response collection

itinerary in each of the cone-shape areas in parallel. The design of the DIKNN scheme takes into account several challenging issues

such as the trade-off between degree of parallelism and network interference on query response time, and the dynamic adjustment of

the search radius (in terms of number of hops) according to spatial irregularity or mobility of sensor nodes. To optimize the

performance of DIKNN, a detailed analytical model is derived that automatically determines the most suitable degree of parallelism

under various network conditions. This model is validated by extensive simulations. The simulation results show that DIKNN yields

substantially better performance and scalability over previous work, both as k increases and as the sensor node mobility increases. It

outperforms the second runner with up to a 50 percent saving in energy consumption and up to a 40 percent reduction in query

response time, while rendering the same level of query result accuracy.

Index Terms—Indexing methods, query processing, distributed databases, sensor networks, mobile environments, wireless

communication.

Ç

1 INTRODUCTION

OVER the past years, mobile sensor networks have
received a significant amount of attention as they

support a wide range of applications, e.g., the Intelligent
Transportation Systems (ITS) [1], wildlife conservation
systems [2], and battlefield surveillance systems [3]. Sensor
nodes move and are periodically queried by an external
source for summaries and statistical information about the
underlying physical process. The K-Nearest Neighbors
(KNN) query, which invokes finding for KNN around a
query point q, has been of significant interest in many
studies and become one of the most important spatial
queries in mobile sensor networks [4], [5], [6], [7]. The
applications of KNN queries may include vehicle naviga-
tion, wildlife social discovery, and squad/platoon searching
on the battlefields. KNN queries may also be applied to the

emergency situations such as tracing the insurgent of a
traffic accident, discovering the impact of a forest fire, and
seeking for the nearby survivals around a battlefield
stronghold, to name a few.

The problem of efficient KNN search in a spatial or
multidimensional database is a major research topic in the
literature [5], [8], [9], [10], [11], [12]. Traditional KNN query
processing techniques assume that location data are
available in a centralized database and focus on improving
the index performance [13], [5], [14], [15]. In new applica-
tions where data sources are geographically spread (e.g.,
sensor networks [16], [2], wireless ad hoc networks [17], ITS
[1], etc.), pulling data from a large number of data sources
(e.g., sensor nodes, laptops, vehicles, etc.) is generally
infeasible due to high energy consumption, high commu-
nication cost, or long latency [18], [19]. Recently, a number
of studies have explored “in-network” KNN query proces-
sing techniques for sensor networks [20], [9], [10], [11], [12].
These techniques rely on certain in-network infrastruc-
ture—index or data structures (e.g., clustered indices or
spanning trees) distributed among the sensor nodes—to
select KNN candidates, propagate queries, and aggregate
the result.

Although these in-network approaches avoid the over-
head of periodical data gathering from a large number of
sources, they still face several challenges if they are to be
deployed in large-scale mobile sensor networks. First, the
distributed indexing structures may become too costly to
maintain when the number of nodes increases, due to the
communication overhead among the nodes. Second, certain

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008 1655

. S.-H. Wu is with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, and Telcordia Applied Research
Center, Taipei, Taiwan, ROC. E-mail: brandonwu@research.telcordia.com.

. K.-T. Chuang is Synopsys Inc., Taipei, Taiwan, ROC.
E-mail: doug@arbor.ee.ntu.edu.tw.

. C.-M. Chen is with Telecordia Applied Research Center, Taipei, Taiwan,
ROC. E-mail: chungmin@research.telecordia.com.

. M.-S. Chen is with the Research Center of Information Technology
Innovation, Academia Sinica, Taipei, Taiwan, and the Department of
Electrical Engineering, National Taiwan University, Taipei, Taiwan,
ROC. E-mail: mschen@cc.ee.ntu.edu.tw.

Manuscript received 12 July 2007; revised 30 Dec. 2007; accepted 8 Feb. 2008;
published online 18 Apr. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-07-0358.
Digital Object Identifier no. 10.1109/TKDE.2008.80.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

techniques [20], [9] require some nodes to act as super-
nodes, for example, as clusterheads or data aggregation
points. These supernodes may easily turn into a bottleneck
of the system. Furthermore, current in-network-based KNN
techniques [20], [9], [10], [11], [12] have all assumed a fixed
network topology where sensor nodes are stationary and
never fail. This assumption makes them inappropriate for a
sensor environment where sensor nodes are mobile and
packet loss is the norm rather than an exception [18], [21],
[22], as the maintenance overhead of the in-network
indexing structure could be considerable.

In this paper, we propose a Density-aware Itinerary
KNN query processing (DIKNN) for mobile sensor net-
works that does not rely on any sort of in-network indexing
structure. The key idea of DIKNN is to let sensor nodes
collect partial results and propagate the query along a well-
devised conceptual itinerary structure. No physical main-
tenance of this itinerary structure is required. The DIKNN
divides (conceptually) a circular search boundary centered
at the query point q into multiple cone-shape areas. It then
performs concurrent itinerary traversal, based on a pre-
defined itinerary structure, to the nodes in each of these
areas. The traversal length is adjusted dynamically accord-
ing to the node distribution information it collects as the
traversal proceeds.

To the best of our knowledge, DIKNN is the first KNN
processing technique for mobile sensor networks that does
not rely on any in-network indexing structure support: No
constant maintenance or fixed data aggregation point is
needed. Because of this, DIKNN is able to avoid potential
bottleneck and survive rapid changes of network topology.
It also reduces query response time (or latency for short) by
combining data collection with query propagation in a well-
devised itinerary.

Several challenging issues arise in the design of DIKNN,
such as the trade-off between concurrent traversal and
network interference, the estimated search radius, and the
design of an efficient itinerary. We investigate and present
solutions to each of these issues. To ensure the optimal
performance of DIKNN, we derive a detailed analytical
model that automatically determines the most suitable
degree of concurrency under various network conditions.
This model is validated by extensive simulations. The
simulation results also show that DIKNN yields substan-
tially better performance and scalability over previous work,
both as k increases and as the sensor node mobility increases.
In particular, it outperforms KPT [11], [12] with up to a
50 percent saving in energy consumption and up to a
40 percent reduction in query response time, while render-
ing the same level of query result accuracy.

The rest of the paper is organized as follows: Section 2
reviews the previous studies on KNN query processing and
related work to DIKNN. Section 3 presents the design of
DIKNN. An analytic model is derived for parallel itinerary
traversal. In Section 4, algorithms determining the KNN
boundary are introduced. We also discuss how DIKNN
may interact with network environments. Section 5 reports
our performance evaluation based on simulation results.
Section 6 concludes the paper. An analytic model is derived
in Section 5 for parallel itinerary traversal. Section 6 reports
our performance evaluation based on simulation results.
Finally, Section 7 concludes the paper.

2 RELATED WORK

Previous work on KNN or window (range) query processing
in sensor networks can be generally classified into two
categories: the centralized and in-network approach, as shown
in Fig. 1. The centralized approach performs the queries in a
centralized database containing locations of all the sensor
nodes [13], [5], [14], [15]. These location data are usually
maintained in an R-tree variant index modified to handle
mobile objects. In contrast, the in-network approach does not
rely on a centralized index, instead, it propagates the query
directly among the sensor nodes in the network and collects
relevant data to form the final result [23], [20], [9], [10], [11],
[12]. This approach is favored when maintenance of a
centralized index is expensive or may impose high energy
consumption on the sensor nodes. And, it happens, for
example, when the locations of the nodes change frequently
or when there is no direct wireless link between the nodes
and the centralized index. The centralized indices may lead
to substantial message routing/relay overhead.

The in-network approach can be further divided into two
subcategories: those relying on a certain sort of in-network
infrastructure and those that are infrastructure free. The
term “infrastructure” refers to a data structure distributed
among the sensor nodes that is created, either once on-the-
fly or to be updated constantly, to support the query
processing. The works in [20], [9], [10], [11], and [12] are
representatives of this kind targeting at KNN queries for
fixed sensor networks. Maintenance of the in-network data
structure could become costly prohibitive, if not infeasible,
when the sensor nodes become mobile. To eliminate this
problem, an infrastructure-free method was proposed in
[19], but it applies to window queries only. Unlike range
queries, the search boundary of a KNN query is not
predetermined by the user. It is challenging to estimate a
proper KNN search boundary that balances the trade-off
between power efficiency and query result accuracy.
Recently, a number of works have addressed continuous
queries using in-network techniques [23], [5], [15]. These
methods are good for constant monitoring of queries of
long-standing interest but do not suit well for on-demand
queries (one time only) that is the focus of our work.

We will briefly describe the Peer-tree [20], DSI [9], and
KPT [11], [12] as they are most relevant to our work. They
will also be used as a comparison point in our performance
evaluation. The Peer-tree [20] and DSI [9] decentralize the
index structures (e.g., R-tree [13]) to distributed environ-

1656 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

Fig. 1. Categorization of previous studies.

ments. As shown in Fig. 2a, a network is partitioned into a
hierarchy of Minimum Bounding Rectangles (MBRs). Each
MBR covers a geographical region, including all sensor
nodes located inside. An MBR in the higher hierarchy (say,
region A in Fig. 2a) covers all the regions of the sub-MBRs
in the child hierarchy (regions B, C, and D in Fig. 2a). One
specific node is designated as a clusterhead (i.e., distributed
index) in each MBR. A clusterhead knows locations and
identities (IDs) of all the other nodes within the MBR. It also
knows locations and IDs of its parent and child cluster-
heads. To handle an NN query, the source node s routes the
query message to its clusterhead (node E in Fig. 2a). Upon
receiving the message, the clusterhead forwards it upward
in the hierarchy until that the query point q is covered by
the MBR of a clusterhead (in this case, node A in Fig. 2a).
The clusterhead then forwards the message downward in
the hierarchy looking for a child clusterhead (node G in
Fig. 2a) that contains q with minimal MBR. After that, the
location of NN of q can be determined, and the NN is
informed of the query message by unicast. Supporting of
KNN queries is more complicated that needs multiple
clusterheads to find and to propagate the query message in
different MBRs. Since every query message goes through
the clusterheads, the major problem of these approaches is
that index nodes become system bottlenecks easily. Such
approaches are vulnerable to index failure. In addition,
there are many unnecessary hops from s to the KNN nodes
because each query message is routed along the hierarchy
of clusterheads, as depicted by the arrows in Fig. 2a. Such
overhead becomes significant in the large-scale sensor
networks, where the distance between clusterheads is long.

To address such issues, the KPT [11], [12] is proposed to
handle the KNN query without fixed indexing. This work
assumes each sensor node is location aware. After a query is
issued from s, it is routed to the sensor node, named home
node, closest to q. To avoid flooding the entire network, a
conservative boundary containing at least k candidates is
estimated by the home node. Multiple trees rooted at the
home node are then constructed to propagate queries and to
aggregate data, as shown in Fig. 2b. Upon aggregating data
at the home node, it determines correct KNNs (by sorting
locations) and transmits their query responses back to the
source s. KPT assumes an optimal network condition where
each node is stationary. It encounters two serious draw-
backs in presence of mobility. First, constructing or
maintaining the trees while sensor nodes are moving incurs

considerable overhead. Partially collected data may be
forwarded again and again between new and old tree
nodes. Second, the conservative (large) boundary grows
quadratically as k increases, which leads to high energy
consumption and long latency. Although such a boundary
is expected to cover at least k nodes in the worst case, sensor
nodes may either move in or move out the boundary during
tree construction and data aggregation. KPT returns poor
query result accuracy.

In light of the above problems, we propose DIKNN,
which to our best knowledge, is the first infrastructure-free
KNN search method for mobile sensor networks. Never-
theless, the concept of itinerary traversal is inspired by a
number of research efforts in unicast routing [24], data
fusion [25], network surveillance [26], and window query
processing [19]. Our main contribution lies on the origina-
tion of a sophisticated itinerary structure and its detailed
analysis (taking into account the important factors such as
itinerary width, data collection scheme, adaptive search
boundary estimation, forwarding heuristics, etc.) that offers
both high efficiency and high flexibility in parallel query
dissemination and processing.

3 DESIGN OF DIKNN

In this section, we first give a formal definition of our
problem. Then, we describe the three execution phases in
DIKNN. Design and analysis of the itinerary/subitinerary
traversal are detailed thereafter.

3.1 Definitions and Network Model

In this paper, we focus on snapshot queries, which expect to
obtain the query result only once during their lifetimes. The
KNN problem is defined as follows:

Definition 3.1 (KNN problem). Given a set of sensor nodes S, a
geographical location q (i.e., query point), and valid time T find
a subset S0 of S with k nodes (i.e., S0 � S, jS0j ¼ k) such that at
time T , 8n1 2 S0, n2 2 S � S0 : DIST ðn1; qÞ � DIST ðn2; qÞ,
where DIST denotes the euclidean distance function.

Ideally, we would like to obtain the exact result set S0

comprising the KNN of q at the given time T . However, due
to node mobility and efficiency considerations [18], [19], we
may accept an approximate result set. Query result accuracy
is measured by the percentage ratio of the correct KNNs (at
valid time T) returned. Depending on different application
needs, the valid time T can be defined either as the time the
query is issued (snapshot results are better) or the time the
result set is received (newer results are better). In our
evaluation, measurements of accuracy according to these
two types of valid time are called preaccuracy and post-
accuracy, respectively.

We assume the network is in ad hoc mode so nodes far
away from their mutual coverage communicate with each
other through multihops. We assume that all sensor nodes
can store data locally and answer the queries individually.
In addition, the moving speed and directions of sensor
nodes are arbitrary. Each sensor node is aware of its
geolocation. Beacons with locations and IDs are periodically
broadcasted. Every sensor node also maintains a table
including IDs and locations of neighbor nodes falling

WU ET AL.: TOWARD THE OPTIMAL ITINERARY-BASED KNN QUERY PROCESSING IN MOBILE SENSOR NETWORKS 1657

Fig. 2. Related work: The decentralized R-tree approaches and KPT.

within its radio range, r. Note this network scenario has

been assumed in [19] and complies with IEEE standard

802.15.4 [16], the Low Rate Wireless Personal Area Network

(LR-WPAN), to achieve maximum compatibility.
Note that Definition 3.1 does not specify the types of

information returned with S0. If the node order in S0 is

desired, each node may return its geolocation, and the user

receiving S0 can simply determine the order of nodes by

comparing their distances to the query point.

3.2 Execution Phases

The execution of DIKNN consists of three phases:

1. Routing phase. A query message Q is geographically
routed from the sink node s to the nearest neighbor
(i.e., the home node np, where p denotes the number
of hops along the routing path) around the query
point q. Information of the sensor network is
gathered along with the routing procedure without
the aid of any infrastructure.

2. KNN boundary estimation phase. Upon receiving Q
and the collected information from the previous
phase, the home node estimates a searching bound-
ary, named KNN boundary, with radius R by using
an efficient (specifically, linear time) KNNB algo-
rithm. The estimated boundary is not fixed and will
be dynamically adjusted (by the other nodes) as long
as additional information is available in the next
phase.

3. Query dissemination phase. The home node dissemi-
nates the query message to all sensor nodes inside
the KNN boundary. Dissemination follows a con-
current itinerary structure, and query responses are
aggregated along with multiple itineraries. At the
end of dissemination, the aggregated query re-
sponses along each itinerary are bundled and routed
back to the sink directly without the home node’s
involvement.

Next, we explore the main phase of DIKNN, the query

dissemination phase, by assuming that the KNN boundary

is given. The routing and KNN boundary estimation phases

will be visited later.

3.3 Itinerary-Based Query Dissemination

Once the KNN boundary (and its radius R) is determined,

the home node np enters the query dissemination phase

aiming to inform all the sensor nodes inside the boundary of

the query message Q and to collect their responses. As the

infrastructure-based technique leads to considerable over-

head in dynamic environments, we turn to explore an

infrastructure-free technique. One naive infrastructure-free

solution is to flood the query within the boundary. Each

node inside the boundary, upon receiving Q, routes its

response back to s end-to-end and then broadcasts Q again.

This approach, however, is extremely resource-consuming

and has poor scalability because of the excessive number of

independent routing paths from sensor nodes to s [19]. In

addition, serious degrees of collision and hidden terminal

problem may also occur during the wireless transmission.

To address these issues, DIKNN adopts an itinerary-based

dissemination technique, which provides robust and effec-
tive query processing under transient network topologies.

The concept of itinerary query dissemination [24], [25],
[26], [19] can be best understood by the illustration in
Fig. 3a. A set of Query nodes (Q-nodes) in the KNN
boundary are chosen for query dissemination. Upon
receiving a query, a Q-node broadcasts a probe message
that includes information about Q, R, and the itinerary (e.g.,
itinerary width and the number of sectors, which will be
discussed later). When hearing the probe message, the
neighbor nodes that are qualified to reply the query, called
Data nodes (D-nodes), report their query response back to
the Q-node. After obtaining the data from all D-nodes as
well as the partial result received from the previous Q-node,
the current Q-node selects the next Q-node based on the
itinerary information and forwards this new partial query
result to the selected next Q-node. This procedure repeats
until the query traverses the entire KNN boundary along a
predefined (say, spiral) itinerary structure, as shown in
Fig. 3b. Responses of all nodes held by the last Q-node are
then returned back to the sink node s in a single message.

Primitives of itinerary-based solution. Some useful
primitives have been proposed in [19] to ensure correctness
of itinerary execution. At first, the itinerary width w, as
shown in Fig. 3b, specifies the minimum distance between
different segments of an itinerary. Obviously, a small w
results in denser itinerary traversal which ensures the KNN
boundary to be fully covered by the traversal. On the other
hand, the small w incurs unnecessary transmission and long
latency because of the increased itinerary length.

Theorem 3.1. Let r denote the transmission range of the sensor
nodes. In order to guarantee full coverage of a KNN boundary,
the itinerary width w must be less than

ffiffiffi
3
p

r=2.

It can be shown [19] that letting w ¼
ffiffiffi
3
p

r=2 yields full
coverage while ensuring the minimal itinerary length, a
good balance on query accuracy and energy efficiency.
Second, data collection from multiple D-nodes needs to be
better scheduled to avoid collisions and delays. The
contention-based data collection scheme1 can be utilized to
prevent serious contention and to sustain network dy-

1658 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

1. As suggested by our simulation result, the data collection scheme
introduced in this paper combines both the token-ring-based and contention-
based scheme to achieve higher performance. For a detailed discussion on
these two schemes, please refer to [19].

Fig. 3. Itinerary-based query dissemination.

namics. In this scheme, a reference line emanating form the
current Q-node is included in the probe message. The probe
message also contains a precedence list indicating the reply
order of D-nodes. Upon receipt of the probe message, each
D-node sets a timer with timer ¼ ð �2�Þim, where � is the
angle formed by the specified reference line and the line
connecting the current Q-node and the current D-node, i is
the received precedence, and m is a time unit for the Q-node
waiting for each D-node to report its data. A D-node does
not respond to the Q-node until its timer expires. Discus-
sions on the other issues such as fault tolerance and
traveling in low-connectivity areas with itinerary voids (i.e.,
situations when a Q-node cannot find the next Q-node for
query forwarding) can be found in [27] and [19].

In mobile environments, when the Q-node moves out-
side the current segment during the data collection phase, it
may immediately forward the partial collected results to the
node nearby its original location. The data collection can be
resumed on the new Q-node with a new probe message
targeting only those D-nodes that have not been reported
yet. To avoid duplicated data, we let each D-node report its
own ID along with the sensed data to the Q-node. By
keeping the IDs of the nodes (including Q-nodes and D-
nodes) collected so far in the partial query result, each Q-
node is able to determine whether the coming data is
duplicated or not. Note that since k is usually small,
keeping these IDs may not result in too much overhead.

Clearly, the performance of dissemination solely de-
pends on the structure of an itinerary, along which Q is
propagated and responses are forwarded. Query latency
can be significantly improved by considering the parallel
dissemination. Nevertheless, concurrent dissemination may
increase the likelihood of channel contention and collision
at the data link and physical layers, causing degradation of
network throughput. Parallelization should be exercised
cautiously to avoid the overhead and should satisfy the
following criteria. First, the number of routing paths
leading back to the sink s, after dissemination, should be
controllably small to prevent high energy consumption in
large-scale sensor networks. Second, as concurrent itinerary
traversals may incur channel interference in wireless
transmission, the chance they meet should be as small as
possible. Unfortunately, the only study [19] that mentions
parallelization cannot scale well to a high concurrency level
due to its simplified assumption upon the query range and
itinerary structure.

Concurrent itinerary structures. To fulfill the above
criteria, a KNN boundary is partitioned into multiple
sectors, as shown in Fig. 4a. In each sector, the query is

propagated along a subitinerary. The distance between
subitineraries in adjacent sectors is w to ensure full coverage
of the KNN boundary when w �

ffiffiffi
3
p

r=2. Each subitinerary
consists of three segments: the init-, adj-, and peri-segments,
as illustrated in Fig. 4b. The init-segment is a portion of
subitinerary that has a distance less thanw=2 to either side of
a sector’s border. This segment is formed by a straight line to
get rid of the interference as soon as possible. Specifically, let
S be the number of sectors and linit be the length of the init-
segment. Then, we have sinð�=2Þ ¼ sinð�=SÞ ¼ ðw=2Þ=linit,
which gives

linit ¼ min w=ð2 sinð�=SÞÞ; Rf g: ð1Þ

Let q0 denote the end of the init-segment. The peri-segments
are portions of the subitinerary that together form peri-
meters of concentric circles centered at q0. Let lperi be the
total length of the peri-segments, then

lperi ¼
XbðR�linitÞ=wc

i¼1

2�ðiwÞ
S

; ð2Þ

where 2�ðiwÞ=S denotes the perimeter length of the
ith concentric circle, and bðR� linitÞ=wc denotes the number
peri-segments. The adj-segments are portions of the sub-
itinerary that are parallel to either side of the sector’s
border. It is clear that each adj-segment has the same length
of w. The total length of the adj-segments ladj therefore is
equal to

ladj ¼ ðR� linitÞ=wb cw: ð3Þ

Ideally, two subitineraries in adjacent sectors interfere
with each other only at their init-segments. An important
observation is that even if these two subitineraries are
traversed in different speeds, extra interference can only
occur at adj-segments, which are relatively short as
compared to peri-segments. Such a cone-shape itinerary
structure is highly adaptive to various degrees of paralle-
lism. At an extreme, the shape of a subitinerary degenerates
into a straight line if S is large enough. This allows the best
efficiency when no interference can ever occur in the sensor
network (e.g., when Contention Free Period (CFP) is exercised
in the LR-WPAN).

4 KNN BOUNDARY ESTIMATION

It is a challenging issue to precisely estimate the KNN
boundary without the aid of supernodes containing long-
term monitored (and cached) information. This is because
decisions must be made with very limited knowledge that
can only be obtained from query propagation. DIKNN
adopts a simple, yet effective, algorithm named KNNB,
tailored for sensor nodes with limited ability.

4.1 Routing Phase

In the routing phase, a query Q is routed from sink node s
to the nearest neighbor np (i.e., the home node) around the
query point q, where p denotes the number of hops along
the routing path. Any geographic face routing protocol [27],
[28] is compatible with DIKNN. Ensuring correctness and
efficiency of these routing protocols in the sensor network is

WU ET AL.: TOWARD THE OPTIMAL ITINERARY-BASED KNN QUERY PROCESSING IN MOBILE SENSOR NETWORKS 1659

Fig. 4. Concurrent query dissemination.

an orthogonal issue to DIKNN, which is studied in the
literature [29], [30].

By utilizing the geographic face routing protocol,
information collection is performed between hops. An
additional list L is sent along with Q. On the ith ð1 � i <
pÞ hop to the destination, the corresponding node (i.e., the
sensor node triggering the ith hop) appends its own
location loci and the number of newly encountered
neighbors enci to L. To avoid duplicate information, enci
can simply be counted by checking the number of
neighbors having a distance larger than r from the
corresponding node of the ði� 1Þth hop. Note that in
comparison with the previous studies [23], [20], [9], such
an information gathering technique consumes very few
extra recourses since only nodes around the route is
involved.

4.2 Linear KNNB Algorithm

Upon the receipt of the query message and the list L from
the previous phase, nq starts estimating the KNN boundary
by determining its radius lengthR. As described previously,
too large a boundary (as the one given by KPT [11]) incurs
great energy consumption and long latency. In contrast, a
small boundary loses the query accuracy. The determination
of R must balance two conflicting factors: 1) increasing R to
enclose correct KNN points as many as possible and
2) decreasing R to reduce the energy consumption.

In most of the previous work, sensor nodes are thought
to be uniformly distributed in the network and sometimes
even to form a grid. However, the recent investigation [31]
argues that spatial irregularity happens in the majority of
the cases. Regarding the limited energy and computing
power on sensor nodes that may prohibit a complex
analysis of the sensor distribution, for now, we content
ourselves that KNNB adopts a weaker assumption: Sensor
nodes are uniformly distributed within the optimal KNN
boundary (i.e., the boundary containing exactly KNN). Of
course, this assumption is blatantly violated when k is large.
We will discuss a solution later to remit the bias of
estimation.

Let eR be the radius of the optimal KNN boundary and ni
be the corresponding node of the ith hop in the routing path
that locates inside the optimal KNN boundary. We have
lociq � eR. Consider a circle centered at q with radius lociq.
From assumption of uniform distribution, we can estimate
the number of nodes est k locating inside the circle by using
the equation:

D � est k

� lociq
� �2

�
Pp

j¼i L:encj

Area covered from ni to np
; ð4Þ

where D denotes density of nodes ðnodes=m2Þ within the
optimal KNN boundary. Thus, we have

est k �
�ðlociqÞ2

Pp
j¼i L:encj

Area covered from ni to np
;

while leaving the coverage area (the long-dotted line shown
in Fig. 5b) along the routing path from ni to np to be
determined. Since correct evaluation of this area is too
complicated to be executed on a sensor node given its
limited computing power, we need an easy approximation.

Observing that a sensor node will always find the next hop
within its radio coverage, thus advance of a single hop must
be less than r. As depicted in Fig. 5a, the shaded coverage
area between two sensor nodes of successive hops is large
enough to be approximated by using a rectangle Ai. Putting
rectangles Ai;Aiþ1; . . . ; Ap�1 from ni to np�1 together, the
symmetric property shown by the arrows in Fig. 5b helps
the doubly counted regions (heavily shaded in Fig. 5b) to
complement the opposite areas against the routing path.
Thus, summing these rectangles with an additional semi-
circular region Ap yields an easily calculated but close
approximation to the coverage area from ni to np.

From the above, we now have est k. Back to our problem
of estimating the KNN boundary, applying (4), we have

D ¼ k

� eR2
� est k

� lociq
� �2

:

eR is unknown. As est k approaches k, we haveR ¼ lociq � eR.
Algorithm 1 below shows the detailed steps of KNNB.

Algorithm 1. The KNNB algorithm: KNNBðL; q; r; kÞ.
Require: information list L gathered from the first phase of

DIKNN, the query point q, radius r of a sensor node,

and number k of nearest neighbors to be found.
Ensure: returning radius length R of the KNN boundary.

1: i ¼ L:length� 1;

2: neighbors ¼ L:enci;
3: approx area ¼ �r2=2;

4: while i � 0 do

5: d ¼ DISTðL:loci; qÞ;
6: est k ¼ �d2ðneighbors=approx areaÞ;
7: if est k � k then

8: return d;

9: end if

10: neighborsþ ¼ L:enci�1;

11: approx areaþ ¼ APPROXðL:loci; L:loci�1Þ;
12: i ¼ i� 1;

13: end while

The list L is indexed from one. In lines 4-13, KNNB
iteratively approaches est k to k by examining L from the
tail. The function DIST ða; bÞ at line 5 simply returns the
distance between the given two positions a and b, and the
function APPROXða; bÞ at line 11 gives the approximative
rectangle by returning r �DIST ða; bÞ. The complexity of

1660 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

Fig. 5. KNN boundary estimation.

KNNB is OðnÞ, where n is the number of hops in the
routing path.

Note that the experimental results reveal that the radius
lengths returned by KNNB are generally 1=

ffiffiffiffiffiffi
k�
p

of those

returned by KPT [11], [12] given the same level of accuracy.

An example finding for five nearest neighbors ðk ¼ 5Þ is

depicted in Fig. 2b. As we can see, the shaded KNN

boundary determined by KNNB is much smaller than the

long-dotted one estimated by KPT.

4.3 Interaction with Environments

Next, we discuss some mechanisms adopted by DIKNN to

face spatial irregularity and mobility in real-world sensor

environments.
Spatial irregularity. The KNNB algorithm estimates the

KNN boundary by assuming that sensor nodes are
uniformly distributed around the query point q. This

assumption is valid for a small region due to the spatial

locality; however, when k is large, the sensor nodes tend to

irregularly spread, and their spatial density becomes

unpredictable [31]. This effect, called spatial irregularity,

may degrade the query accuracy. To handle this problem,

we let the Q-nodes in different sectors adjust their own R

during dissemination. Specifically, we inverse the direction
of peri-segments in every interseptal sector. In such a

configuration, the face-to-face adj-segments of different

subitineraries together form rendezvous segments (as shown

by the shaded area in Fig. 6a), in which two Q-nodes from

adjacent subitineraries can, with a little cost of latency, meet

with each other and exchange the latest statistics (e.g., total

number of nodes explored so far). By repeating this
procedure, the jth rendezvous segment in a subitinerary

can obtain information from 2; 4; . . . ;minf2j; Sg nearby

sectors at the jth, ðj� 1Þth; . . . ; 1st level of the peri-

segments, respectively (as depicted by the shaded area in

Fig. 6b). Each sector, say, S1 in Fig. 6b, can then infer how

many nodes around q are explored so far (totally) and

dynamically adjust R to stop or to continue the dissemina-

tion. With rendezvous, itinerary traversals can stop im-
mediately if KNN are discovered before reaching the

perimeter of the KNN boundary or continue if fewer nodes

are found. Note this technique may result in shrinking of a

KNN boundary, if there are nodes moving into the

boundary after the KNN boundary estimation phase.

When S1 is doing the inference, a simple bilinear
interpolation can be used to complement the not-yet-
exchanged information from the other sectors. For example,
S1 may estimate the density of an unseen segment
(Fig. 6b(1)) by taking the advantages of spatial locality
along the radiate and concentric lines centered at the query
point. The bilinear interpolation is done by considering the
known densities of the adjacent segments along these two
lines, as shown by the small arrows in Fig. 6b.

Mobility concern. The mobility of sensor nodes de-
grades query accuracy because nodes may move in or move
out the KNN boundary during dissemination. For applica-
tions to which discovering correct KNNs are the most
important concern, support of flexible expansion of R to
include more candidates is critical. One naive approach is to
modify the KNNB algorithm so that R0 ¼ c � R is returned,
where R0 denotes the adjusted radius of the KNN boundary
and c, c > 1, denotes a constant. Obviously, with the larger
c, we may guarantee more correct KNNs with R0; however,
more energy is consumed as well. This makes it very
difficult for an application to determine a good value of c. In
DIKNN, we address this issue in the query dissemination
phase, where the last Q-node is obligated to determine how
much farther a subitinerary should continue. Specifically,
each application is allowed to specify an attribute, named
assurance gain g, 0 � g � 1, at the time when a KNN query is
issued. By acquiring the moving speed of each sensor node
along with data collection, each subitinerary can maintain a
record � specifying the fastest moving speed traced so far.
Upon receiving this record, the last Q-node is able to
measure the maximum shift of sensor nodes by ðts � teÞ�,
where ts and te denote time stamps of the moment the
node np receives the query and the query dissemination
ends, respectively. Thus, an appropriate expansion of R can
be obtained by R0 ¼ Rþ gðte � tsÞ�.

To deal with the interaction between the mobility and
spatial irregularity, it is reasonable to first adjust the KNN
boundary according to the updated density information
during the itinerary traversal, then make a final expansion
(to guarantee the worst case performance) by considering
the uncertainty introduced by the node mobility.

Fault tolerance. Wireless sensor networks encompass
various types of packet losses, which may occur due to
mobility of sensor nodes, environmental interference, low
signal-to-noise ratios (SNR), contention of the channel
access, etc. Xu et al. [19] have proposed a mechanism to
deal with the packet losses. Upon receiving the probe
message form a Q-node, each D-node, besides replying with
its own response, relays all the responses it hears from the
neighbor D-nodes to the Q-node as well. This approach
causes redundant transmission and induces extra conten-
tion, as well as energy overhead. In this paper, we propose a
new fault-tolerant data collection scheme that requires
much less extra energy consumption and does not result in
duplicate responses. Benefiting from the location aware-
ness, a D-node receiving a probe message knows the
relative reply precedence with its neighbor D-nodes. It
monitors (i.e., caches) the response of the D-node having the
precedence immediately before itself. If no ACK (from the
Q-node to monitored D-node) is heard, the monitoring

WU ET AL.: TOWARD THE OPTIMAL ITINERARY-BASED KNN QUERY PROCESSING IN MOBILE SENSOR NETWORKS 1661

Fig. 6. Dynamic search boundary adjustment according to the spatial

irregularity.

D-node sends cached data together with its own response.

This helps to overcome the loss of D-node responses. On the
other hand, when sending the response, each D-node

piggybacks the probe message upon its response, so the
nearby D-nodes will have a chance to hear the probe again,

if the original probe from Q-node is lost.

5 OPTIMAL CONCURRENT DISSEMINATION

As we have seen in Section 3, parallelizing the subitineraries

may reduce query latency. However, when S is large,
network throughput degrades due to the frequent occur-

rence of contentions and collisions at the data link and
physical layers. Such degradation of the network through-
put can, reversely, increase the latency. As a consequence,

how to determine an appropriate S is vital to DIKNN
performance. In this section, we derive an analytic model

that is able to suggest the most appropriate degree of
concurrency under various network conditions.

Given the parameters shown in Table 1, our first step is

to derive a model that gives the expected dissemination
time T under a certain S. For simplicity, we assume the

actual dissemination path in each sector proceeds exactly
along the subitinerary, no itinerary void encountered

during the dissemination, and no packet loss occurs due
to the environmental interference, low SNR, and mobility of

sensor nodes. We do not consider the node mobility in our
analysis. In IEEE 802.15.4 wireless transmission aspect, we

assume the slotted Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) mechanism is enabled, no CFP is

exercised in a Superframe, and the payload (e.g., queries and
responses) from upper layers can be transmitted within a
Contention Access Period (CAP). Note the derivation requires

a prerequisite condition that S � 4 to ensure the function
sin�1 being valid.

Without ambiguity, we refer to the “itinerary” as the

subitinerary of a sector interchangeably. Suppose it takes
E½hops� hops between Q-nodes to finish itinerary traversal,

we are able to express T as

T ¼
XE½hops�
i¼1

ðE½TDi� þ E½TPi�Þ; ð5Þ

where E½TDi� and E½TPi� denotes expected time for the
ith Q-node to collect data and to forward partial query

result to the next Q-node, respectively.

Derivations of E½hops�, E½TDi�, and E½TPi� are basically
straightforward. Let litinerary be the length of itinerary and
E½Adv� be the expected distance between hops, then

E½hops� ¼ litinerary
E½Adv� : ð6Þ

Recalling the contention-based data collection scheme in
which the Q-node broadcasts a probe message and waits
m seconds for each D-node to response the query, we can
obtain E½TDi� by summing the time the Q-node spends in
transmitting probe message and waiting for responses from
D-nodes. That is,

E½TDi� ¼
dprob
�
þ �r2Dm; ð7Þ

where dprob denotes the size (in bits) of the probe message.
Assume that every sensor node has the same size of

query response, d (in bits). Each Q-node on the subitinerary
(except the first one) encounters aD new neighbors (i.e.,
D-nodes) after a hop, where

a ¼ �r2 � 2r2 cos�1ðE½Adv�=ð2rÞÞ þ

E½Adv�
ffi
r2 � ðE½Adv�=2Þ2

q
is the area that is not covered by the radio range of the
precedent Q-node, as shown by the shaded area in Fig. 3a.
The amount of data the ith Q-node transfers to the
ðiþ 1Þth Q-node is ð�r2Dþ ði� 1ÞaDÞd. Thus,

E½TPi� ¼
ð�r2Dþ ði� 1ÞaDÞd

�
: ð8Þ

However, (6), (7), and (8) are valid only in the optimal case.
E½TDi� and E½TPi� are susceptible to interference of
wireless communication from adjacent sectors. Next, we
give detailed derivations of E½hops�, E½TP �, and E½TD� by
taking the network dynamics into account.

Derivation of E½hops�E½hops�. Recall that each subitinerary
consists of init-, peri-, and adj-segments. From (6), we have

E½hops� ¼ linit þ lperi þ ladj
E½Adv� :

To proceed with the analysis, we determine how much
advance a Q-node can make on each hop by the following
lemma.

Lemma 5.1. A Q-node is expected to find the next Q-node at

distance E½Adv� ¼ r2
ffiffiffiffi
D
p

=ð1þ r
ffiffiffiffi
D
p
Þ along the itinerary.

The proof of this lemma is shown in the Appendix.
Combining (1), (2), (3), and the lemma, E½hops� can be
given by

E½hops� ¼ ð1þ r
ffiffiffiffi
D
p
Þ

r2
ffiffiffiffi
D
p

�
min w=ð2 sinð�=SÞÞ; Rf g þ

XR�linitwb c

i¼1

2�ðiwÞ
S
þ ðR� linitÞ=wb cw

�
:

ð9Þ

Derivation of E½TP �E½TP �. In the LR-WPAN CAP, all sensor
nodes contend with each other for channel access. Serious
contention can lead to degradation of the network

1662 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

TABLE 1
Notation Used in our Analysis

All parameters can be obtained from the KNN boundary estimation
phase.

throughput and growth of E½TPi� and E½TDi�. To
evaluate the amount of degradation, we follow an
analytic model proposed in [32] to derive a normalized
throughput eSðuÞ,2 where 0 � eSðuÞ � 1 denotes the frac-
tion of time the channel is used to successfully transmit
payload bits when there are u stations contending for
channel access. By multiplying � with eSðuÞ, we can
obtain the actual channel rate of a sensor node under a
certain level of contention.

To determine the contention level u, we define the active
Q-nodes as a set of Q-nodes in different sectors which
perform data collection at a specific time. Now, consider the
following lemma.

Lemma 5.2. Given an active Q-node, ni, in the ith sector, the
number of the active Q-nodes in neighbor sectors that have
distances less than " from ni can be expressed by

Uð"; b�Þ ¼ S; if b� � "=2;

2 ½S � sin�1ð"=ð2b�ÞÞ�=�j k
; otherwise;

(

where 1 � i � S, and b� denotes the distance between ni and
query point q.

The proof of this lemma is also given in the Appendix.
Let �ðiÞ be a function returning the distance between the
ith Q-node of the current sector and the query point. There
exist Uðr;�ðiÞÞ Q-nodes from adjacent sectors that may
result in contention. Thus, eSð1þ Uðr;�ðiÞÞÞ� denotes the
actual rate at which the query message and partial result is
transmitted from the ith to the ðiþ 1Þth Q-node. With this
new rate, we can rewrite (8) as

E½TPi� ¼
ð�r2Dþ ði� 1ÞaDÞdeSð1þ Uðr;�ðiÞÞÞ� : ð10Þ

Derivation of E½TD�E½TD�. Applying the degraded channel
rate eSð1þ Uðr;�ðiÞÞÞ�, the data collection time specified by
(7) now becomes

E½TDi� ¼
dprobeSð1þ Uðr;�ðiÞÞÞ�þ �r2Dm: ð11Þ

In addition to the channel rate concern, the hidden terminal
problem can also affect E½TDi� due to the lack of RTS/CTS
mechanism in IEEE 802.15.4. Consider a scenario in which
two probe messages are broadcasted simultaneously from
two active Q-nodes of different sectors. Some D-nodes,
which locate inside the overlapped coverage of two Q-
nodes, will not be successfully informed of the probe due to
radio interference. We can see that this phenomenon occurs
only when the distance between two active Q-nodes is less
than 2r. By applying the above lemma, Uð2r;�ðiÞÞ now
represents the number of nearby active Q-nodes that may
result in the hidden terminal problem with the ith Q-node in
current sector.

To obtain the probability a probe message is hidden by
the others, consider the random back-off scheme, where the
time is slotted and data transmission on each station can
only occur at the beginning of each slot time. A back-off

counter is decremented as long as the channel sensed idle.
When the back-off counter reaches zero, data transmission
is then launched. The study [32] has derived �u denoting the
probability a sensor node transmits data (after its random
back-off) at a particular slot time, given u� 1 neighbor
Q-nodes contending for the channel access. Let PhðiÞ be the
probability that the transmission of the probe message from
the ith Q-node is hidden by active Q-nodes in other sectors.
Since the transmission attempts on different sensor nodes
are independent, PhðiÞ can be expressed by the probability
that the ith Q-node and at least one of the Uð2r;�ðiÞÞ
neighbor Q-nodes transmits probe messages at the same
slot time, conditioned on the fact that the ith Q-node
transmits, i.e.,

PhðiÞ ¼
�n 1� ð1� �nÞn�1
� �

�n

¼ 1� ð1� �nÞn�1;

where n ¼ 1þ Uð2r;�ðiÞÞ. Suppose every time a probe
message is hidden, the active Q-node broadcasts the probe
message again and reperforms data collection, then (11) can
be rewritten as

E½TDi� ¼M þ
X1
j¼1

PhðiÞjM

¼ M

1� PhðiÞ
;where

M ¼ dprobeSð1þ Uðr;�ðiÞÞÞ�þ �r2Dm:

ð12Þ

Putting (9), (10), and (12) together, we finally obtain (5).
Model validation. The optimal concurrency level derived

by our analytic model is verified by extensive simulation
results. We demonstrate a typical scenario finding for k ¼
300 nearest neighbors in 256 	 256 m2 simulation fields,
where 1,000 stationary nodes are randomly located. A heavy
query load 20 queries=s is issued. For clear presentation, we
make the analytic response time T continuous by omitting
the floor functions in the model. As illustrated in Fig. 7, the
optimal number of sectors ðSopt ¼ 8Þ suggested by the model
is very close to the one ðSopt ¼ 7Þ revealed by the simulation
results. Note the simulated response time T grows drama-
tically as S increases. This is due to the fact that the Q-node

WU ET AL.: TOWARD THE OPTIMAL ITINERARY-BASED KNN QUERY PROCESSING IN MOBILE SENSOR NETWORKS 1663

2. Due to the space limitation, we do not derive eSðuÞ in this paper.
Interested readers can refer to [32] for the detailed discussion.

Fig. 7. Comparison of the optimal number of sectors determined by the

analytic model ðSopt ¼ 8Þ to simulation results ðSopt ¼ 7Þ.

may not always find the next Q-node along the itinerary,
especially when S is large, and the sectors are narrow (at this
time, a traversal may go into adjacent sectors). Since we do
not target on returning the correct T , our model can
efficiently determine the best number of sectors by precisely
tracing the trend of T . With this model, a mapping table from
S to T can be constructed and stored in each sensor node. By
simply looking up the table, a home node can determine the
optimal degree of concurrency in Oð1Þ time and start query
dissemination thereafter.

6 PERFORMANCE EVALUATION

In this section, we explore performance of DIKNN in terms
of query accuracy, query latency, and energy efficiency. The
simulation environment is developed based on ns-2 [33].
We study the impact of varying application specifications
and network conditions, such as k, the query load, the
mobility of sensor nodes, and the packet loss rate.

6.1 Settings and Performance Metrics

We simulate the LR-WPAN environment at 2.4 GHz by
disabling the RTS/CTS mechanism and setting the
channel rate 250 kbps. The georouting protocol GPSR
[27] and DIKNN are implemented above the ns-2 802.11
MAC layer. The optimal number of sectors is deter-
mined by our analytic model (in this configuration,
Sopt ¼ 8). Mechanisms (i.e., rendezvous, mobility assur-
ance, and fault-tolerant scheme) coping with network
dynamics are enabled. Initially, the sensor nodes are
randomly distributed in the simulated field. The mobility
of sensor nodes is modeled by the random waypoint
(RWP) model, in which each sensor node selects an
arbitrary destination and moves to the destination at a
random speed ranging from 0 to �max. Upon arrival, the
node selects a new destination and walks again. In our
configuration, the mobility of sensor nodes is controlled
by varying the maximum moving speed �max. By
default, �max ¼ 10 m=s. There are 200 sensor nodes in
the simulation field, and each with radio range 20 m
[16], [34]. By fixing the number of sensor nodes and
varying the simulated field from 200 	 200 to 115 	 115
m2, the node degree (i.e., neighbor count of each sensor
node) ranges from 5 to 20. The time unit for data
collection is 0.018 s, and the query response size of each
sensor node is 10 bytes. Every simulation run lasts for
100 seconds of simulated time. The performances are
obtained by averaging the result over 20 simulation
runs. Our confidence level was at 95 percent with the
confidence interval of ðX � 1:96�=3:16; X þ 1:96�=3:16Þ,
where X is the mean, and � is the standard deviation
of the samples. Table 2 summarizes the default
parameters. Note that we control k such that a query
may effect at most 1/3 of the nodes in a network. This
prevents a serious bias when the query point is issued
near the network border, where nodes may not move
freely within the full coverage of the KNN boundary.

To evaluate the simulation result, three performance
metrics are employed:

. Query latency. The elapsed time (in second)
between the time a query is issued by the sink and
the time the query responses are returned.

. Energy consumption. Amount of energy (in Joule)
consumed by the nodes’ wireless modules in packet
transmission and reception during a simulation run.

. Query accuracy. As discussed in Section 3.1, the
preaccuracy and postaccuracy are measured separately
in our experiments.

We focus on comparison between DIKNN and the in-
network executions: the naive approaches (KPT) [11], [12]
and the Peer-tree approach [20]. Note the KNN boundary
estimation techniques proposed in [11] and [12] lead to
quadratic growth of the boundary area as k increases. The
query execution can easily flood the entire network. For
example, when k ¼ 20 and MHD ¼ 15, the returned radius
length R ¼ 20 � 15 ¼ 300 exceeds twice the field edge,
resulting that the boundary area is six times larger than
the network size. For fair comparisons, we simulate KPT in
which the KNNB algorithm is adopted for boundary
estimation, and a spanning tree is constructed for data
collection after the boundary is determined. In Peer-tree, a
global index structure, R-tree [13], is built to preserve the
MBR hierarchy as described in Section 2. To avoid a skew
index, we partition the network into a 5 	 5 grid. Every cell
represents an MBR within which a stationary clusterhead is
prelocated and its address is known by every sensor node.
Each sensor node periodically sends a notification of
existence to its closest clusterhead. If a clusterhead does
not hear from a child after a period of time, it deletes the
node and updates the MBR record.

6.2 Observations

Before studying the DIKNN performance, we discuss some
observations from our simulation result that are worthy to
be mentioned. We apply DIKNN to some large-scale sensor
distributions obtained in [35]. The trace format of ns-2 is
modified so that the query execution can be visualized.
Fig. 8 demonstrates a scenario for finding k ¼ 500 caribous
around an arbitrary query point. The concurrent itinerary
traversals are illustrated in Fig. 8a, where successive hops
between Q-nodes are connected with lines. As pointed out
by the arrows, we can see that the itinerary void appears
occasionally. When a void is encountered, the itinerary
traversal switches to the perimeter forwarding mode, which
bypasses the vacancy by walking into the nearby segments
or sectors. During the perimeter forwarding, some sensor
nodes, as surrounded by the rectangle in Fig. 8b, may not be
informed of the query message because they are isolated
within a sector. Such a phenomenon can, empirically, cause
0.2 percent to 1 percent degradation of both the post- and
prequery accuracy. Fortunately, from mobility of sensor
nodes, this effect can be alleviated by issuing a serious of

1664 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

TABLE 2
Default Parameters Used in Our Simulation

queries within a time interval. Our demonstration verifies
the applicability of DIKNN to real deployments.

6.3 Scalability

The application specified k directly affects the number of
nodes involved with the query. In this section, we
investigate the impact of k by varying k from 20 to 100.
The parameter �max is set to 10 m=s, and the query interval
is exponentially distributed with mean 4 s. Fig. 9a shows
that both Peer-tree and KPT grow faster than DIKNN as k
increases. This is due to the overhead of Peer-tree to route
query messages between different levels of the R-tree
hierarchy that incurs many unnecessary node visits, and
the overhead of KPT to construct and maintain the
spanning tree during data collection. Such overhead also
leads to the higher energy consumption, as shown in
Fig. 9b. KPT consumes more energy than the others when
k ¼ 100 due to a serious degree of collisions and large
retransmissions of data in the tree. Fig. 9c shows that Peer-
tree has the postaccuracy below average since the cluster-
heads may not obtain the most current position of each
sensor node. The postaccuracy of KPT also degrades when k
is large because of the long latency in data collection. The
preaccuracy of DIKNN and KPT, as depicted in Fig. 9d,
varies when k � 60. This occurs due to the error in KNN
boundary estimation, since when k (correspondingly, R) is
small, the error rate is relatively large. However, when
k > 60, boundary error shrinks and DIKNN becomes
precise; while the others continuously degrade due to their
long latency. Among these results, DIKNN exhibits super-
ior improvements in query latency and energy efficiency
while preserving a high level of accuracy.

6.4 Impact of Query Load

The impact of query load is studied in this section. The
query arrival rate is varied by changing the mean of the
exponentially distributed interval from 10 to 1 s. We set
k ¼ 40 and �max ¼ 10 m=s. In Figs. 10a and 10b, we can see
that Peer-tree has high latency and consumes large energy
under all loads because of the routes in R-tree hierarchy
and mass information updates, respectively. As depicted
in Fig. 10a, KPT responds faster than DIKNN under small
query loads, since DIKNN has to wait a time unit ðm ¼
0:018 sÞ for every D-node to collect data. However, as
query load increases, the latency of KPT grows because of
serious collisions and retransmissions. This overhead also
affects the energy consumption of KPT, as shown in
Fig. 10b, which results in the highest growing rate among

all work. Note the energy consumption of DIKNN also
grows. This is because we evaluate the total energy
consumption in each simulation run, which encompasses
more query processing when the load increases. Thus,
DIKNN precludes excessive overhead and has a stable
performance under heavy query load.

6.5 Robustness

The impact of packet loss rate (from 0.1 to 0.6) is given in
Figs. 10c and 10d. We examine the robustness of DIKNN by
varying the packet loss rate from 0.1 to 0.6. We set k ¼ 40,
�max ¼ 10 m=s, and mean query interval 4 s as the default.
Two versions, DIKNN (with fault-tolerant scheme) and
DIKNNwoFT (without fault-tolerant scheme) are consid-
ered. Fig. 10d shows that the accuracy of all mechanisms
falls when the packet loss rate increases. However, benefit-
ing from the fault-tolerant scheme, DIKNN remains to have
a high accuracy when the packet loss rate is less than 0.4 and
outperforms all the other works, including DIKNNwoFT. As
depicted in Fig. 10c, the fault-tolerant data collection scheme
consumes relatively small energy and thus is suggested to be

WU ET AL.: TOWARD THE OPTIMAL ITINERARY-BASED KNN QUERY PROCESSING IN MOBILE SENSOR NETWORKS 1665

Fig. 8. Visualization of DIKNN execution over the real-world sensor

distributions [35].

Fig. 9. Scalability of DIKNN.

Fig. 10. Impact of query load and packet loss rate.

turned on to sustain network dynamics. DIKNN reveals
great feasibility to the error-prone sensor environments.

6.6 Impact of Network Dynamics

In this section, we study the impact of sensor movements by
varying �max from 5 to 30 m=s. We set k ¼ 40, and the query
interval is exponentially distributed with mean 4 s. Fig. 11a
shows that Peer-tree has high latency in all moving speeds
because of the routes in hierarchy, as stated in the previous
section. The latency of KPT grows because of tree main-
tenance overhead. Data at child levels of the tree will have to
wait to be relayed to the root until the structures of the
parent layers are settled. In Fig. 11b, we can see that the
energy consumption of Peer-tree increases rapidly, because
there are more sensor nodes moving across MBRs, which
results in excessive information updates. The post- and
preaccuracy of Peer-tree shown in Figs. 11c and 11d degrade
dramatically because the latest position of each sensor node
can hardly be traced by the clusterheads under high
mobility. A clusterhead simply drops packets (i.e., the
queries) if they cannot be routed to the destinations in the
MBR record. The preaccuracy of KPT also degrades due to
its latency. Benefiting from the novel itinerary traversals that
maintain no infrastructure, DIKNN has stable performance
under various mobility conditions. Again, DIKNN offers
prominent advantages over energy efficiency and query
latency in mobile sensor networks while rendering a high
level of accuracy.

7 CONCLUSION

In this paper, we proposed a cost-effective solution,
DIKNN, for handling the KNN queries in mobile sensor
networks. DIKNN integrates query propagation with data
collection along a well-designed itinerary traversal, which
requires no infrastructures and is able to sustain rapid
change of the network topology. A simple and effective
KNNB algorithm has been proposed to estimate the KNN
boundary under the trade-off between query accuracy and
energy efficiency. Dynamic adjustment of the KNN bound-
ary has also been addressed to cope with spatial irregularity
and mobility of sensor nodes. Determination of the optimal

concurrency for query disseminations is modeled in this
paper. From extensive simulation results, DIKNN exhibits a
superior performance in terms of energy efficiency, query
latency, and accuracy in various network conditions.

APPENDIX A

A.1 Proof of Lemma 2

Let X be a random variable, which denotes the distance
between the current Q-node and a neighbor along the
itinerary. Since we assume that sensor nodes are uniformly
distributed within the KNN boundary, X has uniform
distribution with CDF:

FXðxÞ ¼ PfX � xg ¼ x=r; 0 � x � r:

Let Adv ¼ maxfX1; X2; . . . ; Xig be an ith-ordered statistic
of X, which denotes the maximum of distances between the
current Q-node and i neighbors along the itinerary, where
i 2 IN. Assume the location of each sensor node is indepen-
dent with others, then the CDF of Adv can be expressed by

FAdvðxÞ ¼ PfAdv � xg
¼ PfX1 � x ^X2 � x ^ . . . ^Xi � xg
¼ ðx=rÞi;

leading to the pdf

fAdvðxÞ ¼ dFAdvðxÞ=dx ¼ ði=rÞðx=rÞi�1:

Given the parameter D, there exist r
ffiffiffiffi
D
p

sensor nodes that
locate exactly on the itinerary within the radio coverage of
the current Q-node. Since a Q-node will always choose the
farthest neighbor to be the next Q-node, by replacing i with
r
ffiffiffiffi
D
p

, we can derive E½Adv� by

E½Adv� ¼
Z r

0

xfAdvðxÞdx ¼
r
ffiffiffiffi
D
p

xðx=rÞr
ffiffiffi
D
p

ð1þ r
ffiffiffiffi
D
p
Þ

				r
0

¼ r2
ffiffiffiffi
D
p

=ð1þ r
ffiffiffiffi
D
p
Þ:

tu

A.2 Proof of Lemma 3

Given the assumption that the sensor nodes are uniformly
distributed within the boundary and every node has the
same capability with same data size, the relative expected
location of an active Q-node in a sector will be the same
with that in all the other sectors at any particular time
during dissemination. Since the structures of subitineraries
are identical in different sectors, it follows two direct
consequences: 1) all active Q-nodes in different sectors are
expected to have the same distance from the query point;
2) let bu, 1 � bu < S=2, be an integer, the expected angle �bu,
included by the line connecting q and the active Q-node in
the ith sector and the line connecting q and the active node
in the ðiþ buÞth sector, is fixed by the value �bu ¼ buð2�=SÞ.

From consequence 1, these active Q-nodes together form
a circle that has diameter of length 2b�. If 2b� � ", then all
active Q-nodes has mutual distances less than ", yielding
Uð"; b�Þ ¼ S, and we finish the proof.

Otherwise, let dbu be the distance between two active
Q-nodes of the ith sector and the ðiþ buÞth sector. From

1666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

Fig. 11. Impact of mobility.

consequence 2, we have sinð�bu=2Þ ¼ ðdbu=2Þ=b�, leading to

sinðbu�=SÞ ¼ ðdbu=2Þ=b�. Thus, dbu can be expressed as

dbu ¼ 2b� sin
bu�
S

� �
:

We can see that if dbu is less than ", the active Q-node in

the ðiþ buÞth sector will have a distance less than " from

ni and so does the active Q-nodes in the ðiþ bu�
1Þth; . . . ; ðiþ 1Þth sectors. By giving constraint dbu � ", we

have 2b� sinðbu�=SÞ � ", which yields

bu � S � sin�1ð"=ð2b�ÞÞ
�

<
S

2
:

Thus, there are S sin�1ð"=ð2b�ÞÞ=�j k
active Q-nodes from

the ðiþ 1Þth sector to the

iþ S sin�1ð"=ð2b�ÞÞ=�j k� �
th

sector, which have a distance less than " from ni. Note that

sinðbu�=SÞ is a monotone increasing function with inverse

larger than 0 and less than �=2, since 1 � bu < S=2 implies

that 0 < bu�=S < �=2. As a consequence, bu is less than S=2.

By considering the sectors in both clockwise and counter-

clockwise directions, we have

Uð"; b�Þ ¼ 2 ½S � sin�1ð"=ð2b�ÞÞ�=�j k
:

tu

ACKNOWLEDGMENTS

The work was supported in part by the National Science

Council of Taiwan, under Contracts NSC93-2752-E-002-006-

PAE. The authors are grateful to Professor Wang-Chien Lee

for his suggestions and Yingqi Xu for discussions over the

ns-2 simulation. K.-T. Chuang did this work while with

National Taiwan University.

REFERENCES

[1] U.D. of TraNsportation, “Intelligent Transportation System Joint
Program Office Home,” http://www.its.dot.gov, 2006.

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D.
Rubenstein, “Energy-Efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with Zebranet,” Proc. 10th
Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

[3] F. of Am. Scientists, “Remote Battlefield Sensor System (Re-
mbass),” http://www.fas.org, 2000.

[4] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. Abbadi,
“Approximate Nearest Neighbor Searching in Multimedia Data-
bases,” Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2001.

[5] A.A.H.D. Chon and D. Agrawal, “Range and KNN Query
Processing for Moving Objects in Grid Model,” Mobile Networks
and Applications, vol. 8, no. 4, 2003.

[6] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD, 1995.

[7] Z. Song and N. Roussopoulos, “K-Nearest Neighbor Search for
Moving Query Point,” Proc. Int’l Symp. Spatial and Temporal
Databases (SSTD), 2001.

[8] M.-S. Chen, P.S. Yu, and K.-L. Wu, “Optimizing Index Allocation
for Sequential Data Broadcasting in Wireless Mobile Computing,”
IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, pp. 161-173,
Jan./Feb. 2003.

[9] W. Lee and B. Zheng, “DSI: A Fully Distributed Spatial Index for
Location-Based Wireless Broadcast Services,” Proc. Int’l Conf.
Distributed Computing Systems (ICDCS), 2005.

[10] B. Liu, W. Lee, and D. Lee, “Distributed Caching of Multi-
Dimensional Data in Mobile Environments,” Proc. Int’l Conf.
Mobile Data Management (MDM), 2005.

[11] J. Winter and W. Lee, “KPT: A Dynamic KNN Query Processing
Algorithm for Location-Aware Sensor Networks,” Proc. Int’l
Workshop Data Management for Sensor Networks (DMSN), 2004.

[12] J. Winter, Y. Xu, and W. Lee, “Energy Efficient Processing of k
Nearest Neighbor Queries in Location-Aware Sensor Networks,”
Proc. Ann. Int’l Conf. Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous), 2005.

[13] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD, 1984.

[14] G. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, 1999.

[15] M. Mokbel, X. Xiong, and W. Aref, “SINA: Scalable Incremental
Processing of Continuous Queries in Spatio-Temporal Databases,”
Proc. ACM SIGMOD, 2004.

[16] IEEE Std. 802.15.4-2003, Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate Wireless Personal
Area Networks, 2003.

[17] IEEE Std. 802.11-1997, IEEE Standard for Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, 1997.

[18] M. Bawa, A. Gionis, H.G. Molina, and R. Motwani, “The Price of
Validity in Dynamic Networks,” Proc. ACM SIGMOD, 2004.

[19] Y. Xu, W. Lee, J. Xu, and G. Mitchell, “Processing Window
Queries in Wireless Sensor Networks,” Proc. IEEE Int’l Conf. Data
Eng. (ICDE), 2006.

[20] M. Demirbas and H. Ferhatosmanoglu, “Peer-to-Peer Spatial
Queries in Sensor Networks,” Proc. Int’l Conf. Peer-to-Peer
Computing (ICP2PC), 2003.

[21] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MobiCom, 2000.

[22] J. Kahn, R. Katz, and K. Pister, “Next Century Challenges: Mobile
Networking for Smart Dust,” Proc. ACM MobiCom, 1999.

[23] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu, “Adaptive
Stream Filters for Entity-Based Queries with Non-Value Toler-
ance,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2005.

[24] D. Niculescu and B. Nath, “Trajectory Based Forwarding and Its
Applications,” Proc. ACM MobiCom, 2003.

[25] S. Patil, S. Das, and A. Nasipuri, “Serial Data Fusion Using Space-
Filling Curves in Wireless Sensor Networks,” Proc. Conf. Sensor
and Ad Hoc Comm. and Networks (SECON), 2004.

[26] C. Gui and P. Mohapatra, “Virtual Patrol: A New Power
Conservation Design for Surveillance Using Sensor Networks,”
Proc. Int’l Symp. Information Processing in Sensor Networks (IPSN),
2005.

[27] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” Proc. ACM MobiCom, 2000.

[28] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric
Ad-Hoc Routing: Of Theory and Practice,” Proc. Ann. ACM Symp.
Principles of Distributed Computing (PODC), 2003.

[29] Y. Kim, R. Govindan, B. Karp, and S. Shenker, “On the Pitfalls of
Geographic Face Routing,” Proc. Discrete Algorithms and Methods
for Mobile Computing and Comm. (DIALM), 2005.

[30] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-Case Optimal
and Average-Case Efficient Geometric Ad-Hoc Routing,” Proc.
ACM MobiHoc, 2003.

[31] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin, “Coping with
Irregular Spatio-Temporal Sampling in Sensor Networks,” ACM
SIGCOMM Computer Comm. Rev., vol. 34, no. 1, 2004.

[32] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE J. Selected Areas in Comm., vol. 18,
no. 3, 2000.

[33] The Network Simulator, http://www.isi.edu/nsnam/ns, 2000.
[34] I. Howitt and J. Gutierrez, “IEEE 802.15.4 Low Rate—Wireless

Personal Area Network Coexistence Issues,” Wireless Comm. and
Networking, vol. 3, nos. 16-20, 2003.

[35] “Caribou Population Distribution in Gros Morne National Park
Greater Ecosystem,” http://www.pc.gc.ca/apprendre-learn/
prof/sub/eco/itm5/fi-lr6/caribou_E.asp, 2003.

WU ET AL.: TOWARD THE OPTIMAL ITINERARY-BASED KNN QUERY PROCESSING IN MOBILE SENSOR NETWORKS 1667

Shan-Hung Wu received the BS degree from
the Department of Information Management,
National Central University, Jhongli, Taiwan,
and the MS degree from Department of
Computer Science and Information, National
Taiwan University, Taipei. He is currently a PhD
candidate in the Department of Electrical
Engineering, National Taiwan University, Taipei,
and a research staff member at Telcordia
Technologies. His research interests include

distributed data management, spatial/temporal databases, wireless and
sensor networks, and performance modeling.

Kun-Ta Chuang received the BS degree from
the National Taiwan Normal University, Taipei,
in 2000, and the PhD degree in communication
engineering from the National Taiwan Univer-
sity, Taipei, in 2006. He is currently serving as a
software engineer in SYNOPSYS Inc. to develop
physical verification tools. His research interests
include data mining, mobile data management,
and electronic design automation.

Chung-Min Chen received the BS degree in
computer science from the National Taiwan
University and the PhD degree in computer
science from the University of Maryland, College
Park. He is currently a director and senior
scientist at Telcordia Technologies. His research
interests include data management, network
management, and their applications. He is a
member of the IEEE and the IEEE Computer
Society.

Ming-Syan Chen received the BS degree in
electrical engineering from National Taiwan
University, Taipei, and the MS and PhD degrees
in computer, information and control engineering
from the University of Michigan, Ann Arbor, in
1985 and 1988, respectively. He is now a
Distinguished Research Fellow and the director
of the Research Center of Information Technol-
ogy Innovation (CITI) in the Academia Sinica,
Taiwan, and is also a distinguished professor in

the Electrical Engineering Department, National Taiwan University. He
was a research staff member at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, from 1988 to 1996, the director of
the Graduate Institute of Communication Engineering from 2003 to
2006, and also the president/CEO of the Institute for Information
Industry (III), Taiwan, from 2007 to 2008. His research interests include
database systems, data mining, mobile computing systems, and
multimedia networking, and he has published more than 260 papers in
these research areas. In addition to serving as program committee
members in many conferences, he served as an associate editor of the
IEEE Transactions on Knowledge and Data Engineering (TKDE) from
1997 to 2001. He is currently on the editorial board of the Very Large
Data Base (VLDB) Journal, the Knowledge and Information Systems
(KAIS) Journal, and the International Journal of Electrical Engineering.
He is a distinguished visitor of the IEEE Computer Society for Asia-
Pacific from 1998 to 2000 and also from 2005 to 2007 (invited twice). He
served as the international vice chair for INFOCOM 2005, program chair
of PAKDD 2002, program cochair of MDM 2003, program vice chair of
IEEE ICDE 2008, CEC/EEE 2006, ICDE 2006, ICDCS 2005, ICPP
2003, and VLDB 2002, and many other program chairs and cochairs. He
was a keynote speaker on Web data mining in the International
Computer Congress in 1999 and IEEE ISM in 2007 and a tutorial
speaker on Web data mining in DASFAA 1999 and on parallel
databases in the 11th IEEE ICDE in 1995. He was also a guest coeditor
for IEEE TKDE special issue for data mining published in the December
1996 issue. He holds, or has applied for, 18 US patents and seven ROC
patents on data mining, Web applications, interactive video playout,
video server design, and concurrency and coherency control protocols.
He is a recipient of the National Science Council (NSC) Distinguished
Research Award, Pan Wen Yuan Distinguished Research Award, Teco
Award, Honorary Medal of Information, K.-T. Li Research Penetration
Award for his research work, and the Outstanding Innovation Award
from IBM Corporate for his contribution to a major database product. He
also received numerous awards for his research, teaching, inventions
and patent applications. He is a fellow of the ACM and also a fellow of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1668 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 12, DECEMBER 2008

