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Abstract

We study the target node prediction prob-
lem: given two social networks, identify those
nodes/users from one network (called the source
network) who are likely to join another (called
the target network, with nodes called target
nodes). Although this problem can be solved us-
ing existing techniques in the field of cross do-
main classification, we observe that in many real-
world situations the cross-domain classifiers per-
form sub-optimally due to the heterogeneity be-
tween source and target networks that prevents
the knowledge from being transferred. In this
paper, we propose learning the consistent be-
havior of common users to help the knowledge
transfer. We first present the Consistent Inci-
dence Co-Factorization (CICF) for identifying
the consistent users, i.e., common users that be-
have consistently across networks. Then we in-
troduce the Domain-UnBiased (DUB) classifiers
that transfer knowledge only through those con-
sistent users. Extensive experiments are con-
ducted and the results show that our proposal
copes with heterogeneity and improves predic-
tion accuracy.

1. Introduction
With the popularity of online social networking and its im-
mense influence, more and more online services (including
new startups like Foursquare and old players such as Gmail,
Flicker, YouTube, etc.) “socialize” themselves by allowing
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their users to link to each other either directly or through
existing social networks (e.g., Facebook, Twitter, Google+,
etc.), aiming to strengthen the coherence amongst existing
users and to attract newcomers via virus marketing. One
important task to the owner of such a service is to identify
those users in other social networks who are willing to join
in, so that the advertisements can be placed more precisely
and economically. Meanwhile, to another social network,
the owner may identify existing common users either a) ex-
plicitly (e.g., Foursquare and Twitter, given that Foursquare
allows their users to fill in Twitter IDs in their account
pages); b) through common e-mail addresses (aided by the
single-sign-one protocols such as OpenID); c) by affiliation
(e.g., YouTube and Google+, Flickr and Yahoo! Answers,
and between many online travel agencies); or d) via other
data mining techniques (Narayanan & Shmatikov, 2009).

Define a content-rich social network asG = (V,E), where
V = {vi}ni=1 is the set of vertices/nodes representing users,
E = {ei}mi=1 is the set of edges representing user relation-
ship (e.g., friendship, following, coauthorship, etc.), and
each vertex v (and/or edge e) is associated with a con-
tent/feature vector content(v) ∈ Rw, w ∈ Z+ (and/or
content(e)), denoting, for example, the bag of words of
a user profile (and/or interaction logs between the endpoint
users). We study the target node prediction problem:

Problem 1. Given two snapshots of content-rich social net-
works G(t) = (V (t), E(t)) and G(s) = (V (s), E(s)) with
identifiable common users C = V (t) ∩ V (s) 6= ∅, where
G(t) and V (t) (resp. G(s) and V (s)) are called the target
(resp. source) network and nodes/users respectively, find a
function f : V (s) → R that scores a node in V (s)\C higher
if it is more likely to become a target node in the future.

Note that different communities (e.g., fans of a Page in
Facebook) in a single social network can also be treated
as different “networks.” Then, the target node prediction
can be applied to identify users who would like to join a
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new community (and receive the ads from that community,
which is an important revenue source of Facebook now).

The cross-domain classification, which aims to classify the
unlabeled instances in one domain using the labeled ones in
another domain, can be employed to solve the above prob-
lem if we regard the target users and users in V (s)\C as
the positive and unlabeled instances in two respective do-
mains.1 The works in this field can be divided into those
minimizing empirical error (Long et al., 2012a; Zhuang
et al., 2011) and those regularizing geometry properties (He
et al., 2009; Ling et al., 2008; Pan et al., 2011; Wang &
Mahadevan, 2009; 2011). Zhuang et al. (Zhuang et al.,
2011) exploit the association between the latent factors of
instance features and factors of labels to align distributions
of instances in different domains. Long et al. (Long et al.,
2012a) find “common factors of factors” which associate
the feature factors and label factors to transfer knowledge.
Ling and Pan et al. (Ling et al., 2008; Pan et al., 2011)
regularize geometry properties in each network using spec-
tral clustering and Wang et al. (Wang & Mahadevan, 2009;
2011) map the features of all domains into a low dimen-
sional manifold while preserving the geometric structure in
each domain. He et al. (He et al., 2009) propagate the label
information across graphs using the graph Laplacian. Re-
cent, Long et al. (Long et al., 2012b) take the two tasks
simultaneously: minimizing the empirical error and reg-
ularizing geometric structures, and demonstrate improved
performance.

However, we find that in many real-world situations the
cross-domain classifiers are outperformed by some much
simpler classifiers taking only the inputs from a single do-
main V (s) (e.g., Semi-Supervised Learning (SSL)-based
methods, by labeling nodes in C as positive) due to the
following reasons. Since the target and source networks
may be formed by different reasons, have different focuses,
and evolve distinctively, they may be heterogeneous, ei-
ther extrinsically or intrinsically. The two networks may
be heterogeneous extrinsically in that their link structures
and contents may be very different. Nevertheless, existing
cross-domain classifiers find the common latent factors us-
ing the overlap of contents (of vertices), thereby rendering
sub-optimal results in the presence of extrinsic heterogene-
ity. On the other hand, the two networks may be heteroge-
neous intrinsically in that their users may sign/participate in
for different reasons. Each network may reveal only a small
fraction of a user’s latent interests/character, and the knowl-
edge on the user is not necessarily transferable across the
networks. If we learn from the target users equally, those
“inconsistent” users may introduce bias during the knowl-
edge transfer. Moreover, due to the heterogeneity of net-

1Be aware of the naming conflict: the source and target net-
works are indeed the target and source domains by convention of
cross-domain classification respectively.

works, a pair of latent factors that help knowledge transfer
is not necessarily a common latent factor. It is also possible
that they are complementary to each other.

In this paper, we propose learning the consistent behavior
of common users to help the knowledge transfer between
social networks. We first present the Consistent Incidence
Co-Factorization (CICF), a regularized co-factorization of
the incidence matrices of the source and target networks,
that finds the pairs of latent factors in respective networks
explaining the consistent behavior of common users. The
factors in each pair can be either common or complemen-
tary with each other. More importantly, they can be used
to identify the consistent users, i.e., common users that be-
have consistently across networks. Then we introduce the
Domain-UnBiased (DUB) classifiers that allow the knowl-
edge to be transferred only through those consistent users.
A DUB classifier can be either augmentation of an exist-
ing classifier such that it labels common users positively
according to their consistency scores, or a completely new
classifier that makes use of the found latent factors directly.

The proposed learning technique copes with both the ex-
trinsic and intrinsic heterogeneity. In CICF, the pairs of
latent factors are found using the overlap of vertices (i.e.,
common nodesC), rather than the overlap of feature spaces
of vertices/edges as in traditional cross-domain classifiers.
So, our work can be readily applied to two networks where
the link structures and contents are very different. Fur-
thermore, by focusing on the consistent behavior, the DUB
classifiers are robust to the bias of individual networks dur-
ing the knowledge transfer.

Extensive simulations are conducted on both synthetic and
real datasets and the results show that a DUB classifier
augmenting LapRLS (Belkin et al., 2006) can improve the
performance of original LapRLS up to about 35% in both
precision and recall. And another DUB classifier which di-
rectly makes use of the latent factors found by CICF outper-
forms GCMF (Long et al., 2012b) up to 60% in precision
and 58% in recall.

Further related work. Different from most existing
work on transfer learning, we do not assume the extrin-
sic/intrinsic overlapping of link structure/feature spaces in
two domains. Although not directly comparable, some
other work on graph-based cross-domain learning are rele-
vant to our study. Tang et al. (Tang et al., 2009) lay the fun-
damentals of clustering on multiple graphs. However, this
work assumes that the vertex set V in different networks
are identical and therefore is not applicable to our problem.
Tang et al. (Tang et al., 2012) predict the next coauthorship
between authors from different domains in the future. If we
treat the authors, coauthorship, and documents as the ver-
tices, edges, and edge contents respectively, the problem in
this study is to predict new edges between existing vertices
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No. Target Source HLS HF IH
D

B
L

P

1 A&T DM 0.932 0.912 0.452
2 DB DM 0.263 0.288 0.439
3 D&PC DM 0.909 0.895 0.303
4 HCI DM 0.912 0.912 0.184
5 ML&PR AI 0.323 0.342 0.211
6 NL&S AI 0.848 0.88 0.214
7 NL&S ML&PR 0.696 0.736 0.472
8 PL SE 0.407 0.448 0.367
9 WWW DM 0.776 0.82 0.386

A
m

az
on

10 BM HB 0.442 0.334 0.567
11 LF CB 0.728 0.72 0.433
12 SF T 0.58 0.559 0.552
13 SB T 0.961 0.93 0.478
14 CG HB 0.87 0.829 0.403

Figure 1. Datasets and degree of extrinsic/intrinsic heterogeneity.

across networks, which is different from our problem (to
predict vertices). Moreover, the input contains the cross-
network edges and contents that are not available in our set-
tings. Similarly, Lu et al. (Lu et al., 2010) focus on predict-
ing edges. Jiang et al. (Jiang et al., 2012) recommend items
from different item networks to users. Again, the assumed
edges between the items and users are not available in our
problem. Zhong et al. (Zhong et al., 2012) use the link
structure and historical user behavior data (which records
the user-item pairs) to predict user behavior on items in the
future. Both the input and problem definition are differ-
ent from our settings. Studies (Duan et al., 2012; Glorot
et al., 2011) investigate the preprocessing of data from dif-
ferent domains, either by feature augmentation or unsuper-
vised deep learning, to help the knowledge transfer. How-
ever, these works assume the overlapping of feature spaces,
which may not hold in our settings. Furthermore, they do
not consider the link structures nor common users in social
networks.

2. Evidence of Heterogeneity and Challenges
We use two real datasets, DBLP citation network (Tang
et al., 2008) and Amazon product co-purchasing network
(Leskovec et al., 2007), to demonstrate the extrinsic and
intrinsic heterogeneity.2

2The DBLP citation network contains 1,572,277 papers and
2,084,019 citation relations. Each paper is associated with ab-
stract, authors, year, venue, and title. We use the categories listed
in Microsoft Academic Search to divide the venues into differ-
ent networks: Algorithm & Theory (A&T), Data Mining (DM),
Databases (DB), Distribution & Parallel Computing (D&PC),
Human-Computer Interaction (HCI), Machine Learning & Pat-
tern Recognition (ML&PR), Artificial Intelligence (AI), Natural
Language & Speech (NL&S), Programming Language (PL), Soft-
ware Engineering (SE), World Wide Web (WWW). For each cat-

The two networks G(t) and G(s) may be heterogeneous
extrinsically in that their link structures E(t) and E(s)

may be very different, and the content(t)(e) ∈ Rw(t)

and content(s)(e) ∈ Rw(s)

of a common edge e, e ∈
E(t) ∩ E(s), may consist of different features. We define
the Heterogeneity of Link Structures (HLS) as the average
degree of neighbor overlap for each common user:

1− 1

|C|
∑
v∈C

|N (t)(v) ∩N (s)(v)|
|N (t)(v) ∪N (s)(v)|

,

where C = V (t) ∩ V (s) is the set of common users and
N (t)(v) (resp. N (s)(v)) is the set of neighbors of a com-
mon user v in the target (resp. source) network. We also
define the Heterogeneity of Feature spaces (HF) as

1− |F
(t) ∩ F (s)|

|F (t) ∪ F (s)|
,

where F (t) (resp. F (s)) is the feature set of the target (resp.
source) network.

On the other hand, the two networks may be heterogeneous
intrinsically in that their users may join in for different rea-
sons. We measure the degree of Intrinsic Heterogeneity
(IH) as follows: (1) adopt the spectral clustering on two
networks separately;3 and then (2) calculate IH by using
the 1-cluster purity,

1− 1

|C|
∑
i

max
j
|U (t)
i ∩ U

(s)
j |,

egory, we extract a coauthor-network formed by all papers with
corresponding authors published during 2006 to 2010. The nodes
and edges are the authors and coauthorship respectively. We as-
sign the content of an edge as the term frequencies of abstracts of
all papers coauthored by the two endpoint users. Then, 9 pairs of
networks are selected to be the target and the source networks.

The Amazon product co-purchasing network contains product
metadata and review information about 548,552 different prod-
ucts. For each product, we use the following information: de-
tailed product categorization and product reviews including time,
customer, rating, etc. To fit the dataset for the target node pre-
diction problem, we only extract the products under Books cate-
gory and treat the following subcategories as different networks:
Biographies and Memoirs (BM), Children’s Books (CB), History
Books (HB), Literature & Fiction Books (LF), Science fiction and
Fantasy books (SF), Teens (T), Science Books (SB), and Comics
& Graphic novels (CG). Each network contains all reviewers that
have reviewed at least one book of the corresponding subcategory
during 2003 to 2005 and two reviewers have a link if they have
co-reviewed at least one book. We assign the content of an edge
as the term frequencies of the book description crawled from the
Amazon website. Finally, 5 pairs of networks are selected to be
the target and the source networks.

3We use spectral clustering because 1) it is based on the latent
factors like our baseline GCMF; 2) it is popular and has different
explanations (from either the graph-cut, random walk, or pertur-
bation points of view (Von Luxburg, 2007)) for the objective. We
set the number of clusters k = 10.
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where U (s)
i and U (t)

j are the clusters found by the spectral
clustering (nodes only in a single network are excluded).
The more common users that are grouped into different
clusters in the two networks, the higher the IH.

The degree of heterogeneity in different datasets are sum-
marized in Table 1. As we can see, the HLS, HF, and IH
are rather high in many real datasets. However, most of the
existing studies on cross-domain classification (He et al.,
2009; Ling et al., 2008; Long et al., 2012a;b; Pan et al.,
2011; Wang & Mahadevan, 2009; 2011; Zhuang et al.,
2011) find common latent factors by assuming the over-
lap of feature spaces, therefore result in sub-optimal per-
formance. In addition, a high IH implies that users may
join different networks with different reasons, hence their
behaviors may not be consistent across networks. How-
ever, existing studies on cross-domain classification learn
from the positive labels of target users equally, and those
“inconsistent” users introduce bias during the knowledge
transfer.

In fact, we observe that in many situations the existing
cross domain predictors are outperformed by simple clas-
sifiers such as the Semi-Supervised Learning (SSL)-based
methods that utilize the information in only the source net-
work by regarding the common and source users as the
positive and unlabeled examples respectively. We choose
the GCMF (Long et al., 2012b) and LapRLS (Belkin et al.,
2006) as the representative cross-domain and SSL-based
classifiers due to their superior performance. Figs. 3 and
4 show the accuracy of GCMF and LapRLS on synthetic
networks with different degrees of extrinsic and intrinsic
heterogeneity (see Section 5 for more details about the syn-
thetic networks). In Fig. 3, the performance of GCMF
keeps decreasing when the degree of extrinsic heterogene-
ity gets larger. We believe this is because that the extrinsic
heterogeneity prevents GCMF from finding the correct la-
tent factors of content features. In Fig. 4, the GCMF per-
forms well when the common users in two networks are
highly consistent but is outperformed by LapRLS when the
degree of intrinsic heterogeneity becomes larger than 0.3.
Since the heterogeneity is common in practice, it is crucial
to have a new technique to improve the knowledge transfer
between the content-rich social networks.

3. Consistent Incidence Co-Factorization
In the presence of extrinsic and intrinsic heterogeneity, it
is hard to transfer knowledge via links, contents, or com-
mon latent factors. The only parts the two networks G(t)

andG(s) are in common are the common users V (t)∩V (s).
This motivates us to first identify the knowledge transfer-
able via the common users, and then, based on the knowl-
edge, make better predictions. In this section, we introduce
the Consistent Incidence Co-Factorization (CICF) for the

first step. Section 4 explains the second.

We model CICF using the framework of regularized co-
factorization. Given a constant k ∈ Z+, our goal is to em-
bed the spaces of vertices and edges in target and source
networks into four low-dimensional latent spaces respec-
tively of the same dimension k, and obtain four latent fac-
tor matrices V(t) ∈ (R+)k×n

(t)

, V(s) ∈ (R+)k×n
(s)

,
E(t) ∈ (R+)k×m

(t)

, and E(s) ∈ (R+)k×m
(s)

. We re-
quire the elements of V(g) and E(g), g = t or s, to be
non-negative such that V(g)

i,j (resp. E
(g)
i,j ) denotes the de-

gree that user (resp. edge) j holds latent factor i, or equiva-
lently, degree that latent factor i covers user (resp. edge) j.
Without loss of generality, we assume that the columns of
V(t) and V(s) from left correspond to the common users.
We formulate the objective of CICF as follows:

arg min
Θ

∑
g

‖G(g)−E(g)>V(g)‖2F+αΩc(Θ)+β
∑
g

Ωl(Θ
(g)),

(1)
where Θ =

⋃
g Θ(g), Θ(g) = {V(g),E(g) : V(g) ≥

O and E(g) ≥ O}, are parameters to solve, G(g) ∈
{0, 1}m(g)×n(g)

is the incidence matrix such that G(g)
i,j = 1

if e(g)i is incident to v
(g)
j and 0 otherwise, and ‖ · ‖F is

the Frobenius norm. The term Ωl(Θ
(g)) is a regularizer

that penalizes the variations of latent factors in an indi-
vidual network along its structure and/or contents; while
Ωc(Θ) is another regularizer penalizing the variations of
the latent factors across the two networks along some con-
sistency measure for common users (to be explained later).
The hyperparameters α and β control the trade-off between
the empirical error (the first term) and the effect of regular-
izers.

The regularizer Ωl(Θ
(g)) for single network has been well-

studied (for example, in (Belkin et al., 2006; Qi et al.,
2012)). Here we adopt a simple form:

k∑
i=1

E
(g)
i,: L(K(V (g)))E

(g)>
i,: = tr(E(g)L(K(V (g)))E(g)>),

(2)
where L(K(V (g))) is the Laplacian matrix of a ker-
nel matrix K(V (g)) ∈ Rn(g)×n(g)

, and K(V (g))i,j

equals to 0 if v(g)i and v
(g)
j are not adjacent; otherwise

exp(−‖content(vi)−content(vj)‖
2

2σ2 ), a Gaussian RBF with
σ constant. This makes each latent factor of users V

(g)
i,: ,

1 ≤ i ≤ k, smooth along similar users who are connected.
Note that since we factorize the incidence matrices, when-
ever the contents content(e(g)) of edges are available, we
can write Ωl(Θ

(g)) as

tr(E(g)L(K(E(g)))E(g)>) (3)

analogously.4 Therefore, CICF can make use of the edge
contents, which usually encode peer-specific information

4The contents of edges are usually available to the owner
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Target UsersSource Users

A pair of corresponding factors
Local factor of source network
Local factor of target network

Figure 2. CICF aims to find the pairs of corresponding latent fac-
tors in the two networks, each explaining some consistent behav-
ior of the covered common users (shaded).

not available in the contents of individual nodes (Qi et al.,
2012; Yang et al., 2009; Zhou et al., 2009), to find better
latent factors.

We write Ωc(Θ) as

‖V(s)P(s) −V(t)P(t)‖2F , (4)

where P(g) ∈ {0, 1}n(g)×|V (g)∩V (g)| is a rectangular di-
agonal matrix, Pi,i = 1, used to extract the columns
of V(g) corresponding to the common users. The ef-
fect of Eq. (4) is two-fold. First, it can be written as∑k
i=1 ‖V

(t)
i,: P

(t) − V
(s)
i,: P

(s)‖2. Minimizing this term re-
quires two latent factors with the same index i in respec-
tive networks to cover the same set of common users, and
therefore creates their mutual correspondence, as shown in
Fig. 2. Each (V

(t)
i,: ,V

(s)
i,: ) pair, denoted as ϕi, can be seen

as a pair of corresponding latent factors from respective
networks. Moreover, the two corresponding latent factors
can be either one common latent factor spanning through
the two networks or two complementary factors. For ex-
ample, researchers who are active in two research fields
(networks) may hold either the same or complementary ex-
pertise (factors). It is important to note that, since the k
pairs of corresponding latent factors are found using the
overlap of vertices rather than the overlap of feature spaces
of vertices/edges, the CICF can cope with extrinsic hetero-
geneity and be readily applied to two networks where the
link structures and contents are very different.

Eq. (4) can also be written as
∑|V (t)∩V (s)|
j=1 ‖V(t)

:,j −V
(s)
:,j ‖2.

By minimizing this term, we seek only those latent factors
that explain the consistent behaviors of common users. No-
tice that if we find a pair of corresponding latent factors ϕi,
then a common user vj covered by ϕi must be consistent in
terms of this factor (i.e., V(t)

i,j = V
(s)
i,j ). The corresponding

latent factors are learned from those consistent users only.

of a social network via logs. In case both content(v(g)) and
content(e(g)) are available in a network, we adopt Eq. (3) by
first pushing all features of a vertex v to the content(e) of all e’s
incident to v.

Solving the objective. The objective function Eq. (1), with
the non-negative constraints on V(g) and E(g), is difficult
to solve using traditional optimization methods such as the
multiplicative update approach (Seung & Lee, 2001; Yang
& Oja, 2010) due to the fluctuation problem in convergence
(Yang & Oja, 2011; Zhang et al., 2012). To avoid this prob-
lem, we transform Eq. (1) into a Projective Non-negative
Matrix Factorization (PNMF) (Yang & Oja, 2010) prob-
lem, then devise an auxiliary function (Seung & Lee, 2001)
and obtain an iterative update rules for E(t) and E(s) re-
spectively. We then update E(t) and E(s) alternately until
convergence. Empirically, 8 to 15 iterations suffice to reach
convergence. For more details, please refer to the supple-
mentary materials.

4. Domain-Unbiased Classifiers
The reason that the intrinsic heterogeneity prevents the
knowledge from being transferred is because that it intro-
duces the domain bias:

Definition 2. Let {X (i)}i and {Y(i)}i be sets of instance
and label spaces. We say a cross-domain classification task
{Y(p), f (p)}, where f (p) is trained on different datasets
{({x(i,j)}j , {y(i,j)}j)}i,5 x(i,j) ∈ X (i) and y(i,j) ∈ Y(i),
is biased by a domain q, q 6= p, if f (p) is systematically in-
correct when predicting the correct labels for x(p) ∈ X (p)

due to ({x(q,j)}j , {y(q,j)}j).

Consider a local latent factor in one network shown in Fig.
2. If a cross-domain classifier makes predictions in the op-
posite network based on this factor, then the classifier can
suffer from domain bias because the factor might not ex-
plain behavior in the other network and incur systematic
errors. For example, GCMF (Long et al., 2012b) finds the
“latent factors of factors” for knowledge transfer. But these
latent factors of factors may be biased if they are required
to explain the (linear) relationship between local factors in
different networks, which does not exist indeed.

Definition 3. From the above definition, the task
{Y(p), f (p)} is said to be domain-unbiased if it is not bi-
ased by any domain q, q 6= p.

As Fig. 2 implies, a cross-domain classifier can eliminate
the domain bias due to local factors by making predictions
only based on the corresponding latent factors found by
CICF. Depending on how the corresponding latent factors
are used, we introduce two domain unbiased classifiers as
follows. While other, more sophisticated, classifiers are
possible, we show in Section 5 that these two classifiers
suffice to make significant improvement.

5The labels {y(i,j)}j can be an empty set, as in V (s)\C.
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4.1. Label Augmentation

One way to make domain-unbiased predictions is to trans-
fer knowledge through those common users with high con-
sistency.

Definition 4 (Consistency). Given V(t) and V(s). The
consistency of a user vc, denoted as cnst(vc), is defined
as the unnormalized similarity between V

(t)
:,c and V

(s)
:,c .

E.g., cnst(vc) = V
(t)>
:,c V

(s)
:,c . The similarity is unnormal-

ized in order to take the absolute degrees that the user be-
longs to the k communities into account.

Once obtaining the consistency measure, we can pair up the
CICF with an existing classifier by labeling the common
user using their consistency scores. For example, we can
rewrite the first term of the objective of LapRLS (Belkin
et al., 2006)

arg min
f

∑
v∈V (t)∩V (s)

(1− f(v))2 +α‖f‖2 + βfTL(K(V (s)))f ,

as
∑

v∈V (t)∩V (s)(cnst(v) − f(v))2. In this way, the CICF
augments existing classifiers by enabling/improving the
knowledge transfer.

4.2. Direct Predictions based on Corresponding Latent
Factors

Recall that a pair of corresponding latent factors ϕc =

(V
(t)
c,: ,V

(s)
c,: ) for some c can be either a common fac-

tor spanning both networks or complementary factors. A
source user that is covered by V

(s)
i,: may be a good candi-

date for the target network. For example, a target network
that has attracted researchers in machine learning may con-
tinue to attract other researchers in the same field. In addi-
tion, if the network has attracted researchers with expertise
in both machine learning and biology, it may also attract
other biologists.

Definition 5 (Correspondence). Given V(t) and V(s). The
correspondence of a pair of corresponding latent factors
ϕc = (V

(t)
c,: ,V

(s)
c,: ), denoted as crsp(ϕc), is defined as the

unnormalized similarity between V
(t)
c,:P(t) and V

(s)
c:,:P(s).

Let crsp = [crsp(ϕ1), crsp(ϕ2), · · · , crsp(ϕk)]> ∈
Rk×1, we define a new prediction function as f(vi) =

crsp>V
(s)
:,i , which scores a source user vi higher if he/she

holds more highly correspondence factors and therefore has
more reasons (supported by the consistent behavior) to join
the target network.

Solving the objectives of the above classifiers is straight-
forward therefore omitted.

Figure 3. Accuracy with different degrees of extrinsic heterogene-
ity.

5. Performance Evaluation
We study the performance of the two DUB classifiers
proposed in Section 4, denoted by CICF+LapRLS6 and
CICF respectively. These classifiers are compared with
the LapRLS (Belkin et al., 2006) and GCMF (Long et al.,
2012b), which have shown superior performance in the
fields of semi-supervised learning and cross domain clas-
sification respectively.

5.1. Synthetic Networks

To understand the performance of various algorithms given
different degree of heterogeneity, we generate synthetic
networks. We first define the number of common users nC
(that exist in both networks), and the numbers of total users
nTarget and nSource in respective networks. We define
the latent factors of users in ground truth. A factor is said to
be local if it covers users in only one network; and common
if it covers users in both networks and explains universal
structures/contents. A common factor is a special case of a
pair of corresponding factors in Fig. 2. In our settings, only
the common factors can pull users from the source to target
network. So here our target is to predict users in V (s)\C
that are covered by common factors.

There are cf common latent factors across the networks
and lf local factors in each network. Each latent factor,
either local or common, has predefined link structure be-
tween the covered users as well as predefined edge con-
tents. Regarding the link structure, each user is connected
to at least 10% of the nodes in the same latent factor to en-
sure the community structure. Users in the same latent fac-

6We do not pair the CICF with GCMF because they are both
based on the latent factors, and CICF does not improve the way
GCMF finds the corresponding latent factors.
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Figure 4. Accuracy with different degrees of intrinsic heterogene-
ity.

tor are also forced to form a connected component. Com-
mon users, if assigned to a common factor (to be discussed
later), have the same link structure in the two networks. To
generate the content vector content(e) on each edge, we
define a feature pool with 10 features for each latent fac-
tor. The content of a link has all the features of a feature
pool iff the two adjacent users both have the factor where
the feature pool belongs to. Then, the value of each feature
is sampled from a normal distribution with mean 30 and
variance 4.

We simulate the extrinsic heterogeneity by introducing a
degree of noises dNoise,7 based on which the noise val-
ues (sampled from a normal distribution with mean 30 and
variance 4) are added to #features × dNoise features
randomly sampled from all features in each network. As
dNoise gets larger, the feature sets of a common factor in
two networks becomes more different due to the random-
ness.

We randomly assign k latent factors to each user, by ran-
dom sampling with replacement. To simulate that a com-
mon factor can pull users from the source to target network,
each sampling requires that a common user has a probabil-
ity pConsistent to choose a common factor. Hence the
opposite, rp = 1 − pConsistent, is the probability that
a common user behaves inconsistently and simulates the
random pull. The larger the rp, the more the intrinsic het-
erogeneity.

Here we fix nC = 40, nTarget = 50, nSource = 100,
cf = 2, lf = 4, dNoise = 0.05, and k = 2, and varies
dNoise and rp to simulate different degrees of extrinsic
and intrinsic heterogeneity respectively. Each reported re-

7Adding noise is not the only option to simulate the extrinsic
heterogeneity. For example, randomly rewire some edges may do
the same effect.

sult is an average of 15 runs. We also report the 90%
confidence intervals (following the student’s t-distribution
with 14 degrees of freedom). Fig. 3 shows the accuracy
(or simply the true positive rate, as we have only posi-
tive testing instances) achieved by different algorithms un-
der different degrees of extrinsic heterogeneity. We set
pConsistent = 0.9. As we can see, the CICF standalone
consistently outperforms the other algorithms. In addition,
when pairing up with LapRLS the CICF improves the per-
formance of LapRLS by about 10%. Notice that the GCMF
does not perform well because it finds the corresponding la-
tent factors using the overlap of content features, which is
biased when the the extrinsic heterogeneity is large. GCMF
also gives higher variances, implying that the degradation
is mainly resulted from the sharp decreases when feature
clusters cannot be identified successfully.

Fig. 4 shows the performance of the algorithms under dif-
ferent degrees of intrinsic heterogeneity. We set dNoise =
0.2. Again, the CICF standalone outperforms the other al-
gorithms in most cases, although the performances of all
algorithms decrease as the degree of intrinsic heterogene-
ity gets larger. The CICF improves the performance of
LapRLS up to 48% at rp = 0.4. We believe that this is
because CICF can correctly identify the consistent users,
and smoothing f only on these consistent users that help
make better prediction.

5.2. Results from Real Networks

In this section, we demonstrate the performance of our
algorithm using the real datasets introduced in Section 2
based on DBLP citation network (Tang et al., 2008) and
Amazon product co-purchasing network (Leskovec et al.,
2007).

Because each author may write papers and each reviewer
may review books in different categories, we can iden-
tify common users in each dataset via common email ad-
dresses or Amazon IDs. We also observe in datasets that
the nodes who have few publications/reviews tend to join
the networks randomly. With these users, all algorithms
give very poor performance because the test set contains
random pulls mostly, and the behavior of a testing author
who don’t have enough publications can neither be inferred
from link structures nor contents. Therefore, for each pair
of networks we first prune the nodes having fewest publi-
cations/reviews and select the common authors with largest
numbers of neighbor overlap in two networks as the test
and validation sets.

Regarding the parameter tuning, for CICF we seek k in
{3, 5, 7, 9} and run the grid search on α and β. For GCMF,
we set λ = γ and seek them in [10−1, 103] with log step
1, k in [1, 5] with step 1, and p in [2, 10] with step 2. For
LapRLS, we find α and β from [2−8, 28] with log step 1.
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Table 1. Performance comparison.
CICF CICF+LapRLS GCMF LapRLS

Dataset Recall Precision Recall Precision Recall Precision Recall Precision
D

B
L

P

1 0.3333 0.2667 0.5 0.4 0.1042 0.0833 0.0625 0.05
2 0.7424 0.8167 0.6364 0.7 0.0909 0.1 0.6364 0.7
3 0.1548 0.2167 0.2262 0.3167 0.0238 0.0333 0.0357 0.05
4 0.3678 0.5333 0.2759 0.4 0.0805 0.1167 0.0345 0.05
5 0.5287 0.7667 0.3793 0.55 0.2414 0.35 0.4483 0.65
6 0.359 0.2333 0.4615 0.3 0.0769 0.05 0.2308 0.15
7 0.3077 0.4 0.3077 0.4 0.1923 0.25 0.2308 0.3
8 0.9394 0.5167 1 0.55 0.3636 0.2 0.7273 0.4
9 0.7619 0.8 0.7619 0.8 0.4286 0.45 0.8095 0.85

A
m

az
on

10 0.6923 0.9 0.5897 0.7667 0.4231 0.55 0.5 0.65
11 0.3929 0.55 0.3929 0.55 0.3214 0.45 0.5 0.7
12 0.7143 1 0.6071 0.85 0.4524 0.63 0.5357 0.75
13 0.2361 0.2833 0.2083 0.25 0.0417 0.05 0.2083 0.25
14 0.1111 0.1333 0.0972 0.1167 0.1111 0.1333 0.0833 0.1

Table 1 shows the precision and recall for the top 20
predictions. We can see that in most cases, CICF stan-
dalone and CICF+LapRLS outperform the GCMF and tra-
ditional LapRLS. In particular, CICF, when paired up with
LapRLS, improves the performance of LapRLS up to about
35% in both precision and recall given dataset 1. On the
other hand, CICF standalone outperforms GCMF up to
60% in precision given dataset 2 and 58% in recall given
dataset 8. Generally, the performance of CICF standalone
is comparable to that of CICF+LapRLS. But CICF stan-
dalone offers an advantage in fewer hyperparameters to be
tuned.

Note that in datasets 9 and 11 the LapRLS performs the
best. Although the extrinsic heterogeneity is high in these
two datasets (see Table 1), we find that there exist many
small user groups that are identical across the networks.
Therefore, the extrinsic link structures and contents are al-
ready helpful to make good predictions. In this case, CICF
is more conservative on only picking the consistent infor-
mation. Also note that the GCMF performs well in dataset
14 when the intrinsic heterogeneity is relatively low. In
the presence of intrinsic heterogeneity, we also observe
that GCMF gives unstable performance during the cross-
validation.

Fig. 5 shows a typical ROC curve demonstrating how
CICF and CICF+LapRLS outperform GCMF and tradi-
tional LapRLS. Both CICF and CICF+LapRLS can make
correct predictions at low false positive rates, and therefore
are suitable for situations where only few predictions can
be made (due to, for example, limited budget for advertise-
ment).
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Figure 5. An ROC curve on dataset 8.

Acknowledgment
This work is supported in part by US NSF through grants
CNS-1115234, DBI-0960443, and OISE-1129076, and US
Department of Army through grant W911NF-12-1-0066.

References
Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regu-

larization: A geometric framework for learning from la-
beled and unlabeled examples. The Journal of Machine
Learning Research, 7:2399–2434, 2006.

Duan, Lixin, Xu, Dong, and Tsang, Ivor. Learning with
augmented features for heterogeneous domain adapta-
tion. In Proc. of ICML, pp. 711–718, 2012.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Do-
main adaptation for large-scale sentiment classification:



Learning Consistent Behavior of Common Users for Target Node Prediction

A deep learning approach. In Proc. of ICML, pp. 513–
520, 2011.

He, Jingrui, Liu, Yan, and Lawrence, Richard. Graph-based
transfer learning. In Proc. of CIKM, pp. 937–946, 2009.

Jiang, Meng, Cui, Peng, Wang, Fei, Yang, Qiang, Zhu,
Wenwu, and Yang, Shiqiang. Social recommendation
across multiple relational domains. In Proc. of CIKM,
2012.

Leskovec, Jure, Adamic, Lada A, and Huberman,
Bernardo A. The dynamics of viral marketing. ACM
Trans. on the Web, 1(1):5, 2007.

Ling, X., Dai, W., Xue, G.R., Yang, Q., and Yu, Y. Spectral
domain-transfer learning. In Proc. of KDD, pp. 488–496,
2008.

Long, M., Wang, J., Ding, G., Cheng, W., Zhang, X., and
Wang, W. Dual transfer learning. In Proc. of SIAM,
2012a.

Long, M., Wang, J., Ding, G., Shen, D., and Yang, Q.
Transfer learning with graph co-regularization. In Proc.
of AAAI, 2012b.

Lu, Zhengdong, Savas, Berkant, Tang, Wei, and Dhillon,
Inderjit S. Supervised link prediction using multiple
sources. In Proc. of ICDM, pp. 923–928, 2010.

Narayanan, Arvind and Shmatikov, Vitaly. De-
anonymizing social networks. In IEEE Symposium on
Security and Privacy, pp. 173–187, 2009.

Pan, S.J., Tsang, I.W., Kwok, J.T., and Yang, Q. Domain
adaptation via transfer component analysis. IEEE Trans.
on Neural Networks, 22(2):199–210, 2011.

Qi, G.J., Aggarwal, C.C., and Huang, T. Community de-
tection with edge content in social media networks. In
Proc. of ICDE, pp. 534–545, 2012.

Seung, D. and Lee, L. Algorithms for non-negative matrix
factorization. Advances in Neural Information Process-
ing Systems, 13:556–562, 2001.

Tang, J., Wu, S., Sun, J., and Su, H. Cross-domain collab-
oration recommendation. In Proc. of KDD, pp. 1285–
1293, 2012.

Tang, Jie, Zhang, Jing, Yao, Limin, Li, Juanzi, Zhang, Li,
and Su, Zhong. Arnetminer: Extraction and mining of
academic social networks. In Proc. of KDD, pp. 990–
998, 2008.

Tang, Wei, Lu, Zhengdong, and Dhillon, Inderjit S. Clus-
tering with multiple graphs. In Proc. of ICDM, pp. 1016–
1021, 2009.

Von Luxburg, Ulrike. A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416, 2007.

Wang, C. and Mahadevan, S. Manifold alignment without
correspondence. In Proc. of IJCAI, 2009.

Wang, C. and Mahadevan, S. Heterogeneous domain adap-
tation using manifold alignment. In Proc. of IJCAI, pp.
1541–1546, 2011.

Yang, T., Jin, R., Chi, Y., and Zhu, S. Combining link
and content for community detection: a discriminative
approach. In Proc. of KDD, pp. 927–936, 2009.

Yang, Z. and Oja, E. Unified development of multiplicative
algorithms for linear and quadratic nonnegative matrix
factorization. IEEE Trans. on Neural Networks, 22(12):
1878–1891, 2011.

Yang, Zhirong and Oja, Erkki. Linear and nonlinear pro-
jective nonnegative matrix factorization. IEEE Trans. on
Neural Networks, 21(5):734–749, 2010.

Zhang, H., Yang, Z., and Oja, E. Adaptive multiplicative
updates for projective nonnegative matrix factorization.
In Proc. of the Neural Information Processing, pp. 277–
284, 2012.

Zhong, E., Fan, W., Wang, J., Xiao, L., and Li, Y. Comsoc:
adaptive transfer of user behaviors over composite social
network. In Proc. of KDD, pp. 696–704, 2012.

Zhou, Y., Cheng, H., and Yu, J.X. Graph clustering based
on structural/attribute similarities. Proc. of VLDB, 2(1):
718–729, 2009.

Zhuang, F., Luo, P., Xiong, H., He, Q., Xiong, Y., and
Shi, Z. Exploiting associations between word clusters
and document classes for cross-domain text categoriza-
tion. Statistical Analysis and Data Mining, 4(1):100–
114, 2011.


