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PatchNet: A Simple Face Anti-Spoofing Framework
via Fine-Grained Patch Recognition
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Abstract

Face anti-spoofing (FAS) plays a critical role in securing
face recognition systems from different presentation attacks.
Previous works leverage auxiliary pixel-level supervision
and domain generalization approaches to address unseen
spoof types. However, the local characteristics of image
captures, i.e., capturing devices and presenting materials,
are ignored in existing works and we argue that such infor-
mation is required for networks to discriminate between live
and spoof images. In this work, we propose PatchNet which
reformulates face anti-spoofing as a fine-grained patch-type
recognition problem. To be specific, our framework recog-
nizes the combination of capturing devices and presenting
materials based on the patches cropped from non-distorted
face images. This reformulation can largely improve the
data variation and enforce the network to learn discrim-
inative feature from local capture patterns. In addition,
to further improve the generalization ability of the spoof
feature, we propose the novel Asymmetric Margin-based
Classification Loss and Self-supervised Similarity Loss to
regularize the patch embedding space. Our experimen-
tal results verify our assumption and show that the model
is capable of recognizing unseen spoof types robustly by
only looking at local regions. Moreover, the fine-grained
and patch-level reformulation of FAS outperforms the ex-
isting approaches on intra-dataset, cross-dataset, and do-
main generalization benchmarks. Furthermore, our Patch-
Net framework can enable practical applications like Few-
Shot Reference-based FAS and facilitate future exploration
of spoof-related intrinsic cues.

1. Introduction

Face anti-spoofing (FAS) is a crucial technique to pre-
vent face recognition systems from security attacks. With
the advance of deep neural network, several learning-based
approaches were proposed to discriminate live faces from
physical presentation attacks.
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Figure 1. The face recognition model learns a face embedding
space to discriminate between identities. Our fine-grained patch-
type recognition model learns a patch embedding space to dis-
criminate between patches with different capture characteristics.

Face Recognition

Previous face anti-spoofing methods are highly limited
by the scale and variation of the datasets. Commonly
used datasets [1, 5, 18, 27, 34] contain less than 100 iden-
tities during training, and the spoof images are captured
under limited variation. Based on our observation, train-
ing on such datasets with a binary classification model is
prone to overfit to the biases introduced by the data collec-
tion, and the learned features are vulnerable in the unseen
testing scenarios. Therefore, previous face anti-spoofing
works [14,15,18,21,29,30] leverage auxiliary pixel-wise
supervision (e.g., the facial depth map and reflection map)
as a strong prior knowledge to achieve better generalization
ability under testing scenarios with unseen illumination or
spoof types. The other FAS works [19,33] propose to adopt
Generative Adversarial Network (GAN) to disentangle the
feature maps of live faces and spoof images by reconstruct-
ing new live and spoof facial images. Despite the effective-
ness of these spoof-detecting techniques, it is still remained
as an open question to describe the intrinsic cues learned
from networks. Yu et al. [29] rephrase FAS as a structural
material recognition problem, which assumes that the dis-
crimination of the structural materials between human fa-
cial skin and physical spoofing carriers is the essence for
FAS tasks. Following the similar motivation, we believe
that the capability of recognizing and comparing different
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fine-grained material types is the key to learn robust intrin-
sic cues for FAS.

In this paper, we propose PatchNet which learns discrim-
inative features based on patches cropped from the entire
face regions. Inspired by previous works [2, 6, 28], the
patch-level inputs can enhance the data variation and en-
force the network to learn spoof-specific features in the lo-
cal region, and thus prevent the network from overfitting to
the biases introduced by datasets. Instead of resizing the
input face images into the same size as adopted by recent
FAS works, we directly crop the fixed-size patches from
raw facial captures to avoid the distortion of discriminative
FAS cues. With the patch-level inputs, our PatchNet aims at
classifying the corresponding fine-grained categories, i.e.,
the capturing devices and presenting materials, and we de-
note each category as a specific “patch-type”. To enforce
the network to learn robust spoof-related feature to recog-
nize unseen patch types during testing, we adopt the an-
gular margin-based softmax loss that is commonly used in
face recognition tasks [8,23,25], which aims to optimize the
face embedding on the normalized hypersphere (Figure 1).
Moreover, since the patch type classes are not symmetric
between live and spoof faces, we propose “asymmetric an-
gular margin loss” and impose a larger margin on live type
classes. Inspired by the recent works on self-supervised
learning [3,4, 10], and the fact that material patterns are pre-
sented spatially in the entire face region, we also propose
“self-supervised similarity loss” to regularize the features
with location and rotation invariance.

To demonstrate the effectiveness of PatchNet, we con-
duct extensive experiments on intra-dataset, cross-dataset,
and domain generalization benchmark datasets, and Patch-
Net achieves the state-of-the-art performance under most
testing scenarios. Moreover, we also conduct the ablation
study to further investigate the proposed components.

Our contributions are summarized as follows:

e We reformulate face anti-spoofing as a fine-grained
patch recognition problem, and design a simple frame-
work called PatchNet to learn an embedding space to
encode intrinsic cues from local patches to represent
captures’ characteristics.

* We propose novel Asymmetric Margin-based Softmax
Loss and Self-supervised Similarity Loss to supervise
the PatchNet training. While the former helps to learn
a more generalized patch type embedding space to ad-
dress the asymmetry between live and spoof, the latter
can enforce the patch feature to be invariant within a
single capture.

e The proposed framework could achieve state-of-the-
art performance on intra-dataset, cross-dataset, and do-
main generalization benchmarks simultaneously with-

out auxiliary pixel-wise supervision and domain gen-
eralization techniques. Moreover, the learned patch
embedding space can enable applications like Few-
Shot reference FAS and patch type retrieval, which can
boost the FAS performance in certain deployment sce-
narios.

2. Related Works

Auxiliary-based Methods. Most of the recent works
leverage auxiliary tasks as the prior knowledge to guide
the feature learning toward more generalizable cues. Liu
et al. [18] proposed to employ the depth map and rPPG as
strong supervision signals for live samples to regularize the
features. Kim et al. [13] further leveraged the reflection
maps as the supervision signal for spoof samples. Many
other FAS methods [9, 14,15,20,21,29,30] also heavily rely
on similar auxiliary pixel-wise supervision to improve their
FAS model performance. Even though the feature learning
can benefit from such supervision, the pseudo ground truths
for those tasks are not accurate, and the generation of those
supervision signals takes high computation resources.

Domain Generalization FAS Methods. In the face anti-
spoofing community, domain generalization techniques are
developed to address the domain shift between differ-
ent anti-spoofing datasets. Shao et al. [21] employed
meta-learning techniques to simulate the target domain
shift during the training process to regularize the feature
learning directions. Wang et al. [24] proposed to learn
domain-independent features via a disentangled represen-
tation learning framework. The most related work to ours
is [12], which treats live and spoof samples asymmetri-
cally and applies adversarial loss and triplet loss to regular-
ize the features in the normalized space. Actually, domains
are hard to define in FAS tasks, as even within the same
dataset, there are captures with very different capture de-
vices. While people are using generalization methods to
find common features across collections and spoof types,
we aim to break the concept of domain and propose to learn
a generic embedding space that encodes capture character-
istics explicitly.

3. Proposed Method
3.1. Overview

As illustrated in Fig. 2, we reformulate face anti-
spoofing as a fine-grained patch-type recognition problem
and propose a simple training framework to learn the patch
features efficiently. First, we apply certain transform on the
original image to obtain the patch inputs, and the patch fea-
tures are extracted by an encoder and then normalized in
the feature space. Based on the meta-info from the train-
ing dataset, we split the categories finely based on the pre-
senting materials and capture devices. For example, in
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Figure 2. Overview of our proposed PatchNet framework. We address the face anti-spoofing with a fine-grained patch-type recognition
model. The patch-type classes are pre-defined by the combination of the capture device and the presenting material, and the patch inputs
are extracted from the face captures by non-distorted augmentation operations. Asymmetric Angular Margin Softmax Loss is employed
in the last classification layer to impose larger angular margin on live classes. Self-Supervised Similarity Loss is applied to enforce the

patch feature invariance within a single capture.

CASIA-FASD, there are two different spoof mediums and
three different capture resolutions, so there are nine fine-
grained patch types (three live and six spoof types).

Inspired by the latest face recognition approaches, dur-
ing training we employ angular margin-based softmax loss,
which can force feature cluster for each category to be
compactly distributed and enable better generalization abil-
ity. Furthermore, as the distribution discrepancies between
spoof samples are larger than live samples, we treat live
and spoof samples asymmetrically: force the model to learn
a more compact cluster within live samples while leaving
spoof samples more dispersed in the feature space. We
modify the angular margin-based softmax loss and apply
asymmetric margin onto live and spoof patch types: impos-
ing larger angular margin on live types to push more com-
pact boundaries. Finally, the self-supervised similarity loss
further regularizes the patch features by applying the pos-
itive part of the contrastive loss on two transformed patch
views from a single whole face image. Given that spoof-
specific discriminative information is present spatially in
the entire face region, the features between two different
patch views from the same face capture should be similar.

3.2. Patch Features Extraction

We want to avoid any transform which can lead to image
distortion or the reduction of the important spoof-related
information. Given the cropped face region x; from the
raw capture, the two augmented patch views from z; are
l‘zl = tl(l‘i) and .T? = tg(xi), where tl,tQ ~ T. T
is the sequence of non-distorted augmentation operations,
which only have random horizontal flip, random rota-
tion, and fixed size cropping. The two input patches are

then passed into the encoder Ejy and normalization layer to

El))affz =

get the final features: f{' = Normalize(Ep(x
Normalize(Eg(x?)).

3.3. Fine-Grained Patch Recognition

Assuming we have N patch type classes in the train-
ing dataset, which consists of k£ live and N — k spoof
classes. Each input patch ¢(x;) belongs to one fine-grained
ground truth class y; € {Li,Lo,...Lk, S1, 52, ...Sn—k},
and the Angular-Margin Softmax Loss is applied to reg-
ularize the patch features. The Angular-Margin Softmax
Loss has many variants [8, 16,17,23,25] and is commonly
used in face recognition to improve the generalization abil-
ity to open-set identities. In this work, we employ AM-
Softmax [23] loss to optimize the fine-grained patch recog-
nition model and modify it to address the asymmetric nature
in face anti-spoofing.

3.3.1 Preliminaries

The formulation of the original Softmax loss is given by

Esz—fz 0g————=— S

eHWy,HHfll\COS( ;)
S

_, elWilllfilleos(6;)

where f is the input of the fully connected layer for classi-
fication (f; denotes the i-th sample), W is the j-th column
of the fully connected layer, and y; is the ground truth label
of the i-th sample. The term WyTZ fi is also called the target
logit of the i-th sample.

The large-margin property is introduced by
Sphereface [16], which defines a general function (9)

W, fi
Wit

ey
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to impose the angular margin between feature and weight
vectors. After applying feature and weight normalization
(IIWy, 1l = |1 fill = 1), the loss function becomes

]_ n ew(eh)
Ls=——) log z ~,  (2)
n ; ew(eyi) + ijl,j;ﬁyi 6005(9])

where in AM-Softmax [23] the function ¢ () is defined as

Y(0) = cosd —m 3)

During implementation, the input after normalizing both

the feature and the weight is actually x = cosf,, =
T

i

%, so in the forward propagation it only needs to
Yi v
compute

U(z)=x—m “)

Then it scales the cosine values using a hyper-parameter
s and the final AM-Softmax loss function becomes

1 n
Lavs = - Zlog
i=1 €

1 n
—=3"

€S~(6050yi 7m)
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3.3.2 Asymmetric AM-Softmax Loss

We impose different angular margin m; and mg on live
and spoof categories, respectively. Denote live category
setas L = {L1, La,...L;} and spoof category set as .S =
{51, 52, ...Sn_k}. The modified AM-Softmax Loss of one
feature sample f; becomes

l =
— ogeg (Wylfz—mz)+ $ o ijfi
Laams(fi) = l e(ijf:i;¢3
—log e (Wg; f7—mb)+ % s W]Tfl
i=1,j#y;

(6)
The final Asymmetric Recognition Loss on two aug-
mented patch views from the image is formulated as
1 n
‘CAsym = _ﬁ Z;(‘CAAMS(fitl)—i_‘CAAMS(f:z)) @)

3.4. Self-Supervised Similarity Loss

Given two different patch views from the same face im-
age, the self-supervised similarity constraint is applied to
enforce the features to be similar. Therefore, the spoof-
related feature can be learned with patch location and ro-
tation invariance.

1 n
ESi'rn(f;lvffz):ﬁZ||f;1_ff2||2 ®)
=1

3.5. Training and Testing
3.5.1 Total Loss

The total loss L of the proposed framework during training
is
L= OélﬁAsyTn + a2£5’im (9)

where o1 and oo are the weights to balance the influence
of loss components. In all of the experiments, we set a; =
Qg = 1.0.

3.5.2 Testing Strategy

Given a test face image, we uniformly crop patches from
the whole image for the network inference, with the patch
size the same as the one in the training process. Assum-
ing we have P cropped patches features (f*, f2, ... f¥) from
one face image, then the average live probability can be ob-
tained by the sum of live class probabilities in the last fully
connected layer:

P
1 .
LiveProb = - E E Softmaz(s- W, ') (10)
i=1yel

4. Experiments

4.1. Datasets and Protocols

Databases. Five databases OULU-NPU [1] (denoted as
0), SiW [18] (denoted as S), CASIA-FASD [34] (denoted
as C), Replay-Attack [5] (denoted as I), MSU-MFSD [27]
(denoted as M) are used in the testing protocols. OULU-
NPU and SiW are large-scale high-resolution databases
containing four and three protocols to validate the gener-
alization (e.g., unseen environment and spoof mediums) of
models, respectively, which are utilized for intra-dataset
testing. CASIA-MFSD, Replay-Attack, and MSU-MFSD
are databases that contain low-resolution videos with much
fewer video clips and are used for cross-dataset testing to
validate the generalization ability to testing data with large
distribution shift. There are three capture devices with qual-
ity ranging from low to high in CASIA-FASD, two de-
vices in SiW and MSU-MFSD, and only one device in the
other datasets. The fine-grained class number and the other
statistics of databases are shown in Tab. 1. Note that in
Oulu-NPU, even the collections are captured by six differ-
ent types of phones, the quality and fine details are pretty
similar, so we only split the patch type into five classes in
total. More details and sample images can be found in the
supplementary material.

Performance Metrics. In intra-dataset testing on
OULU-NPU and SiW, we follow the original protocols
and metrics, i.e., Attack Presentation Classification Error
Rate (APCER), Bona Fide Presentation Classification Er-
ror Rate (BPCER), and Average Classification Error Rate
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# Subjects | # Clips | #Classes

Dataset l

| Train | Test | Train | Test | Live [ Spoof
OULU-NPU (O) 20 20 1800 | 1800 1 4
SiW (S) 90 75 2442 2036 2 12
CASIA-FASD (C) 20 30 480 720 3 6
ReplayAttack (I) 30 20 360 240 1 3
MSU-MFSD (M) 15 20 120 160 2 6

Table 1. Statistics of the face anti-spoofing datasets.

(ACER) for a fair comparison. Half Total Error Rate
(HTER) and Area Under Curve (AUC) are adopted in the
cross-dataset testing between OULU-NPU, CASIA-MFSD,
Replay-Attack, and MSU-MFSD.

4.2. Implementation Details

All face anti-spoofing datasets above are stored in video
format originally. We randomly select three frames from
each video clip and use the state-of-the-art face detector
RetinaFace [7] to crop the face for training. We set the
fixed patch crop size as 160, and set the hyperparameter
s = 30.0,m; = 0.4,ms = 0.1 in all protocols. We use
ResNet18 [11] as the patch feature encoder, and we did not
see much performance difference while using an encoder
with larger capacity (as shown in the supplementary ma-
terials). Models are trained with SGD optimizer and the
initial learning rate is 0.002. We train models with max-
imum 200 epochs while the learning rate halves every 90
epochs. During testing, we uniformly crop the fixed-size
patches from the face input image: the minimum x and y
coordinates are size/2.0, and the maximum x and y coor-
dinates are width — (size/2.0) and height — (size/2.0),
respectively. In all of the experiments during testing, we
uniformly sample 3 patch anchors on each side, which re-
sults in P = 9 patches for score averaging.

4.3. Intra-Dataset Testing

We conduct experiments on Oulu-NPU [1] and SiW [ 18]
for intra-dataset testing results. We compare the results with
the most recent face anti-spoofing methods in the following.

4.3.1 Results on Oulu-NPU

Oulu-NPU [1] has four challenging protocols, which eval-
uate the model robustness against the unseen environment,
unseen spoof mediums, unseen capture devices, and all of
the above, respectively. The number of classes during train-
ing are 5, 3, 5, and 3, respectively. As shown in Tab. 2,
our simple patch-based recognition approach achieves the
best performance in all protocols. It clearly verifies the bet-
ter generalization ability of the features learned through the
patch recognition proxy tasks.

4.3.2 Results on SiW

SiW [18] is another commonly used high-quality dataset
with more identities. The collection is captured by two dif-

Prot. | Method | APCER(%) | BPCER(%) | ACER(%)
Disentangle [33] 1.7 0.8 1.3
SpoofTrace [19] 0.8 1.3 1.1

BCN [29] 0.0 1.6 0.8
1 CDCN [32] 0.4 1.7 1.0
NAS-FAS [31] 0.4 0.0 0.2
PatchNet (Ours) 0.0 0.0 0.0
Disentangle [33] 1.1 3.6 2.4
SpoofTrace [19] 2.3 1.6 1.9
BCN [29] 2.6 0.8 1.7
2 CDCN [32] 1.5 1.4 1.5
NAS-FAS [31] 1.5 0.8 1.2
PatchNet (Ours) 1.1 1.2 1.2
Disentangle [33] 2.842.2 1.7£2.6 22422
SpoofTrace [19] 1.6+1.6 4.0+54 2.843.3
BCN [29] 28+2.4 2.34+2.8 2.5+1.1
3 CDCN [32] 24+13 2.2+42.0 23+1.4
NAS-FAS [31] 2.1£1.3 1.4+£1.1 1.7+0.6
PatchNet (Ours) 1.8+1.47 0.56+1.24 | 1.18+1.26
Disentangle [33] 5.44+2.9 3.34+6.0 4.4+3.0
SpoofTrace [19] 2.3£3.6 52454 3.8+4.2
BCN [29] 2.9+4.0 7.5+6.9 5.2+3.7
4 CDCN [32] 4.6+4.6 9.24+8.0 6.94+2.9
NAS-FAS [31] 42453 1.7£2.6 2.9+2.8
PatchNet (Ours) | 2.54+3.81 3.33£3.73 2.9+43.0

Table 2. The results of testing on OULU-NPU protocols.

Prot. | Method | APCER(%) | BPCER(%) | ACER(%)
Disentangle [33] 0.07 0.50 0.28
SpoofTrace [19] 0.00 0.00 0.00

1 BCN [29] 0.55 0.17 0.36
CDCN [32] 0.07 0.17 0.12
DualStage [26] 0.00 0.00 0.00
NAS-FAS [31] 0.07 0.17 0.12
PatchNet (Ours) 0.00 0.00 0.00
Disentangle [33] | 0.084+0.17 | 0.13£0.09 | 0.10£0.04
SpoofTrace [19] | 0.00+0.00 | 0.004+0.00 | 0.00-+0.00
2 BCN [29] 0.084+0.17 | 0.154+0.00 | 0.11+0.08
CDCN [32] 0.004+0.00 | 0.134+0.09 | 0.06+0.04
DualStage [26] 0.00+0.00 | 0.004+0.00 | 0.00+0.00
NAS-FAS [31] 0.00+0.00 | 0.094+0.10 | 0.04+0.05
PatchNet (Ours) | 0.00+£0.00 | 0.00+0.00 | 0.00+0.00
Disentangle [33] | 9.354+6.14 | 1.844+2.60 | 5.59+4.37
SpoofTrace [19] 8.3+3.3 7.5+3.3 7.9+3.3
3 BCN [29] 2.55+0.89 | 2.344+0.47 | 2.45+0.68
CDCN [32] 1.67+0.11 1.76+0.12 | 1.71£0.11
DualStage [26] 47774+5.04 | 2.4442.74 | 3.584+3.93
NAS-FAS [31] 1.58+0.23 | 1.46+0.08 | 1.52+0.13
PatchNet (Ours) | 3.06%1.1 1.83+0.83 | 2.4540.45

Table 3. The results of testing on SiW protocols.

ferent quality devices: Canon EOS T6 and Logitech C920.
Compared to Oulu-NPU, it includes more environment vari-
ations and spoof mediums. The numbers of fine-grained
patch type classes during training in protocol 1, 2, 3-1, and
3-2 are 14, 8, 6, and 10, respectively. As shown in Tab. 3,
our method performs the best for the first two protocols and
achieves competitive results in protocol 3.

4.4. Ablation Study

In this subsection, all ablation studies are conducted on
Protocol 1 (different illumination conditions and location
between the train and test sets) of OULU-NPU [1] to ex-
plore the details of our patch-based recognition framework.
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Output Class Input Extraction Loss Functions
Binary  Fine } Resize  PatchCrop } Lasym Lsim \‘ ACER(%)
4 4 6.25
v 3.54
5.63
1.88
v 1.46
4 0.63
v v 0.0

Table 4. Ablation study of each component in PatchNet on OULU-
NPU protocol 1.

v

AN NENY
SSNS S

ACER (%) my | ms | ACER(%)

00 | 0.0 1.46
02 | 02 0.83
02 | o1 0.41
04 | 04 0.63
1111 04 | 03 0.2
04 | 02 0.2
04 | 0.1 0.0
“““ e m w me m m m w 04 | 00 0.41

Crop Size

Figure 3. Comparison between Table 5. Ablation study of mar-
choices of patch crop size. gin choices in L Asym.

Impact of Each Component. Tab. 4 shows the ab-
lation study of each component in our proposed frame-
work. The first row is the naive baseline (ACER: 6.25%)
which formulates the face anti-spoofing as a binary classi-
fication problem (trained with the standard Cross Entropy
loss) with the resized 256x256 face input. Surprisingly,
by only adopting the fine-grained classes and raw frame
cropping strategies, we can improve the performance sig-
nificantly to 1.88% ACER. It shows that the naive baseline
model could overfit to the high-level biases in the public
FAS dataset, which only contains limited background and
identities. Moreover, the fine details in cropped patches
from raw frames are very critical to discriminate between
different patch types in high-quality datasets like OULU-
NPU. From the lower part of the table, we can observe the
advantage of the proposed margin-based classification loss
and the self-supervised similarity loss. It is clear that both
regularization techniques can facilitate the encoder to learn
more intrinsic features related to the capture device’s char-
acteristics and presenting materials.

Impact of Patch Crop Size. Fig. 3 demonstrates the
ACER(%) on OULU-NPU protocol 1 between different
crop sizes. We can observe that larger patch sizes during
training might be prone to overfit to biases from the face
capture. With the regularization of patch recognition loss
and patch-based augmentation to increase training data vari-
ance, the overall performance does not differ much when
enlarging the patch size. However, when the patch size is
too small (e.g., 64), the performance degrades significantly
as the capture characteristics can not be learned with very
limited information.

Asymmetric Margin Choices. We conduct ablation ex-
periments to verify the effectiveness of our asymmetric mar-
gin design in the angular margin softmax loss. From Tab. 5,
we can observe that adding angular margins can signifi-

Method Train Test Train Test

CASIA- Replay- | Replay- CASIA-

MFSD(C) | Attack(I) | Attack(I) | MFSD(C)
STASN [28] 31.5 30.9
Disentangle [33] 224 30.3
BCN [29] 16.6 36.4
CDCN [32] 15.5 32.6
DC-CDN [30] 6.0 30.1
PatchNet (Ours) 9.9 26.2

Table 6. The results of cross-dataset testing between CASIA-
MEFSD and Replay-Attack. The evaluation metric is HTER(%).

cantly improve the generalization capability and outperform
the model without any margin. Furthermore, adding a very
large margin to spoof patch types which have more diverse
appearances would hurt the discrimination power of learned
features. We find that PatchNet works well on all testing
protocols with the margin choice m; = 0.4, ms = 0.1.

4.5. Cross-Dataset Testing
4.5.1 Experiments between C and I

First, following the related works, CASIA-MFSD (C) [34]
and ReplayAttack (I) [5] are used for cross-dataset experi-
ments, and the results are measured in HTER. During train-
ing, the numbers of fine-grained patch-type classes are 9
and4in C' — I and I — C protocols, respectively. The re-
sults are shown in Tab. 6. Given the limited number of clips
and low-quality videos from the ReplayAttack dataset, it is
hard to learn generalizable features which can perform very
well on other datasets, so the error rate in protocol I — C'is
still high compared with C' — I. Our proposed framework
can achieve competitive performance compared to previous
works in both protocols.

4.5.2 Domain Generalization Experiments

Some recent FAS works [12,21,24] consider each dataset as
one domain and promote the domain generalization bench-
mark in FAS, which utilizes three datasets for training, and
the remaining one as testing. As we aim to distinguish the
patch type in the fine-grained manner, our proposed frame-
work can be directly used to evaluate such benchmark with-
out employing further generalization techniques (e.g., ad-
versarial training or meta-learning). With access to more
different patch types with more diverse capture devices, our
framework is capable of learning more discriminative fea-
tures through the patch recognition proxy task. There are
four protocols in this benchmark: O&C&I to M, M&I1&O
to C, M&C&O to I, and M&C&I to O. During training,
we directly combine the fine-grained patch classes from the
three training datasets, which results in 18, 17, 22, and 21
classes, respectively.

The testing results are shown in Tab. 8. The proposed
PatchNet achieves competitive results on all protocols. Due
to the high variance of capture types in C dataset, it is hard
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Method O&C&ItoM O&M&Ito C O&C&Mtol I&C&M to O
HTER(%) [ AUC(%) | HTER(%) | AUC(%) | HTER(%) | AUC(%) | HTER(%) | AUC(%)
PatchNet w/ coarse cls [12] 10.24 96.45 15.67 92.47 21.65 91.08 16.26 91.33
PatchNet w/o margin 10.0 96.61 18.0 91.57 17.25 90.47 15.04 92.42
PatchNet w/o Lgim, 8.9 97.42 13.44 93.99 15.1 92.10 14.24 92.93
PatchNet (Ours) 7.10 98.46 11.33 94.58 14.6 92.51 11.82 95.07
Table 7. Evaluations of different components of the proposed method on four cross-dataset protocols.
Method O&C&ItoM O&M&I to C O&C&M to I I&C&M to O
HTER(%) | AUC(%) | HTER(%) | AUC(%) | HTER(%) | AUC(%) | HTER(%) | AUC(%)
Auxiliary [18] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61
MADDG [20] 17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02
PAD-GAN [24] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47
RFM [21] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16
NAS-FAS [31] 16.85 90.42 15.21 92.64 11.63 96.98 13.16 94.18
SSDG-R [12] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
ANRL [14] 16.03 91.04 10.83 96.75 17.85 89.26 15.67 91.90
DRDG [15] 15.56 91.79 12.43 95.81 19.05 88.79 15.63 91.75
PatchNet (Ours) 7.10 98.46 11.33 94.58 13.4 95.67 11.82 95.07

Table 8. Comparison results between the proposed PatchNet and state-of-the-art methods on four domain generalization protocols.

to learn robust local features to address both high and low
resolution scenarios. We also conduct an ablation study in
this benchmark to explore the influence of each component
in our framework and show the results in Tab. 7. In the
first ablation experiment, we split the patch classes using the
strategy proposed by SSDG [12]: It aggregates the live sam-
ples as one class and treats spoof samples from each other
dataset as one class, which results in 4 classes. The results
verify that the proposed fine-grained class split, L 4 sym, and
Lg;m, are all important to regularize the network to general-
ize better in challenging FAS tasks.

4.6. Visualizations

Patch Feature Distribution. In Fig. 4, we visualize the
patch features by t-SNE [22] from OULU-NPU protocol 1,
which both the training and testing sets consist of 5 patch
types (live, printl, print2, screenl, screen2). We can ob-
serve in (b) that the model trained without margin cannot
distinguish printl and print2 types very well. The distri-
bution for the live samples is more compact, and clusters
are separated better for the model trained with the margin.
The training and testing feature sets are aligned well in the
feature space.

In Fig. 5, we visualize the feature distribution in the
protocol M&I&O to C. We can observe that the features
from the training set are separated well in the fine-grained
manner. As dataset C contains three different quality cap-
ture devices, the corresponding three live classes are lo-
cated separately in the embedding space. Aligning with
the device characteristics, we observe that features from
C3_L are close to O_L, which both types are captured from
high-quality capture devices. Moreover, low-quality de-
vices like C1_L exhibit similar appearance with that from
similar quality device M1_L. It implies that the patch em-
bedding space encodes the capture characteristic well.

A  trn_live trn_printl trn_print2 trn_screenl & trn_screen2
x  tst_live tst_printl tst_print2 tst_screenl x  tst_screen2
P Y
= AL
ac *

(a) w/ margin (b) w/o margin
Figure 4. The t-SNE features visualizations on Oulu-NPU Proto-
col 1. (a) training with asymmetric margin (b) training without

margin.

T M2_s1 52 02 x L o as
.M m252 is3 053 x GL o s
& M1S1 M2_53 oL 0s4 o C1S1 o €351
M1s2 n 0s1 x ClL o as o s
M1_S3 151
588
a gL
ag .
g/ T
— Bk LS.
- - 1T oot
- TR
%E" v ]
s g Rl SR —
ot o o 3
- E
7o N Q
g %
s ) ’
7 . *
= v ;
~. -0 o
-
A
a8,
oL “ o MI_L

Figure 5. The t-SNE visualizations of normalized patch features in
cross-dataset protocol M&I&O to C. The fine-grained patch type
class is denoted by (Dataset)(SensorID)_(Liveness)(MediumlID).

Patch Score Map. In Fig. 6, we compute the scores from
patches across the whole image and visualize the live prob-
ability in the overlapped heat map. The samples are from
the testing set of OULU-NPU protocol 1. The patch scores
across the whole face input image are primarily consistent,
except for some background and boundary parts, which is
expected as the spoof cues should be learned from the face
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Live Printl Print2 Screenl Screen2

Figure 6. Patch score map of 5 different types in Oulu-NPU Pro-
tocol 1. From left to right: Live, Printl, Print2, Screenl, and

Screen2. The number represents the live probability.

region but not the background’s biases.

4.7. Applications

Testing on each Capture Device. Following the ob-
servation in Sec. 4.6, we argue that instead of testing on
the whole dataset, it is more feasible to test the anti-
spoofing performance on each device separately (e.g., in the
CASIA-FASD dataset). We re-organize the testing dataset
in O&C&I to M and O&M&I to C protocols, which is split-
ting the testing data by their capture device ID into 2 (M1,
M2) and 3 (C1, C2, C3) groups, respectively. The cross-
dataset anti-spoofing performance on the new split dataset
of these two protocols is shown in Tab. 9. We observe
that anti-spoofing performance on both devices in the M
dataset are better than the average performance using the
whole dataset, which is reasonable as the testing sets are
smaller. However, only one device (the high-quality one
C3) in the C dataset is better than the average performance,
which aligns with the t-SNE visualization in Fig. 5. The
capture images of C2 have many noises and image com-
pression effects, which can lead to significant degradation
of the discriminative power of features. With the detailed
performance report on each device, we can further improve
the anti-spoofing system or improve the quality of the prob-
lematic capture devices as well.

Few-Shot Reference Anti-Spoofing. With the learned
patch embedding space which encodes intrinsic patch fea-
tures to discriminate between patch types, the distance be-
tween features in the embedding space can be used to mea-
sure the similarity between patch types. As the features are
already normalized in the space, we can compute the cosine
distance between features to enable a new application: few-
shot reference anti-spoofing. While there is a new capture
device, it is easier to acquire some live face image samples,
and those sample features can be used as the reference in the
embedding space. We compute the distances between other
testing features and live reference to obtain the similarity
scores. Higher similarity scores mean the samples are more
likely to be live. The 5-shot and 10-shot live reference anti-
spoofing performance are reported in Tab. 9. We can con-
clude that with the live reference features and the learned

0&C&Ito M O&M&I to C
(AUC: 98.46%) | (AUC: 94.58%)
MI | M2 | Cl | C2 | C3
PatchNet 99.54 | 98.63 | 94.29 | 88.49 | 98.13
PatchNet w/ 5-shot | 99.7 | 99.6 | 943 | 89.8 | 986
PatchNet w/ 10-shot | 99.8 | 99.6 | 953 | 90.7 | 99.2

Table 9. Split testing and few-shot live reference testing on each
capture device. The few-shot testing score is averaged by 10 ex-
periment runs. AUC(%) score is reported.

M1S2 C2L  M2S2 1L
i LSS
L - " 1

0.012 0.011 0.009 0.002

Method

oL

M2_L C3_L MI1_L

‘Query LS 0.33
Figure 7. Patch type retrieval using a live sample from O dataset as
the query. Top retrieval results are shown, and the numbers below
are the cosine similarity.

0.051

patch embedding space, the performance can be boosted a
lot in practical scenarios.

Patch Type Retrieval. The normalized patch embed-
ding space can be used for the patch type retrieval applica-
tion, and can boost the FAS performance on certain capture
devices. For example, after training the feature space with
M&C&I datasets to recognize 21 patch types, we can mea-
sure the similarity between testing patch types and train-
ing patch types. As shown in Fig. 7, we take a live sam-
ple from O dataset as the query, and retrieve the training
patch types by computing the cosine distance with each type
weight vector. The top-7 retrieval patch types are (M2_L,
C3.L,M1 L, M1.S2,C2_L,M2.S2,1 L). Some spoof types
from M dataset have higher ranking than live types from C2
and I datasets, which have low quality captures. To opti-
mize the performance while testing on O dataset, we can
1) remove ambiguous live types (C2_L, C1_L, I_.L) during
testing, or 2) re-define the class for (C2_L, C1_L, I.L) as
“spoof” for training. Both strategies can boost the perfor-
mance to 95.27% and 95.87% AUC, respectively.

5. Conclusions and Future Work

In this paper, we reformulate face anti-spoofing as a fine-
grained patch type recognition task and present a simple
training framework called PatchNet to efficiently learn the
patch embedding space which encodes the spoof-related
capture characteristics. The novel loss functions are de-
signed to enhance the feature discrimination power. Exten-
sive experiments on challenging FAS protocols verify the
effectiveness of the proposed method. We note that explo-
ration of a generic embedding space to discriminate differ-
ent captures is still at an early stage. Future directions in-
clude: 1) Learning a more generalized embedding space by
datasets with more variations or transferred from the mate-
rial perception task, and 2) Investigation into the Few-Shot
FAS protocols which have more practical values.
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