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Abstract

In this paper, we propose a new algorithm for the funda-
mental problem of reconstructing surfaces from a large set
of unorganized 3D data points. The local shapes of the
surface are recovered by variational implicit surface rep-
resented as a weighted combination of radial basis func-
tions. The variational implicit patches are then combined
together to form the overall surface via a set of blending
functions, which is also referred to as the partition-of-unity
method. The reconstruction algorithm first partitions the
input point set by octree subdivision and surface normal
estimation is performed so as to orientate the local varia-
tional implicit patches. A new graph optimization scheme
based on the belief propagation framework is proposed to
determine the global consistent orientation for the entire
set of data points. To achieve multi-scale reconstruction,
we propose a novel progressive reconstruction algorithm
which utilizes the Schur complement formula to reduce the
computational cost of iteratively updating the radial basis
function coefficients. Finally, we demonstrate the perfor-
mance of the proposed algorithm by showing experimental
results on some real-world 3D data sets.

1. Introduction

The shape of a 3D object is usually represented as a
3D point cloud. The acquisition of sample points may
be from a diversity of sources, such as range scanners or
stereo vision systems. However, the point cloud alone
only conveys partial information of an object and does not
provide a complete description of the surface. A more
suitable surface representation is needed for the purpose
of further processing, e.g. texture mapping, visualization
or rendering applications. Therefore, a number of algo-
rithms [1, 2, 7, 8, 11, 14] have been developed to reconstruct
a “full” surface model, such as polygonal meshes, from a
set of discrete samples on the objects. This problem of sur-
face reconstruction, which is to recover a digital 3D model
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Figure 1. The proposed algorithm is capable of
reconstructing fine-quality implicit surfaces from
an unorganized point cloud efficiently (left). A
multi-scale representation enables us to control
the level of detail by evaluating the implicit func-
tion at the desired resolution (right).

from a set of 3D data points for an existing physical object,
is ill-posed because much information might be lost during
the data acquisition process, thus it has been an important
research topic in the fields such as, computer graphics, com-
puter vision, scientific visualization, computer-aided design
(CAD) and medical imaging.

For the need of a general surface reconstruction algo-
rithm, we consider the fundamental problem of surface re-
construction from a large unorganized 3D data set with no
additional information, such as surface normal or topology,
assumed to be known in advance. The reconstruction al-
gorithm should be able to infer all necessary information
automatically and generate a piecewise smooth surface as
output. In essence, our method could be regarded as an
extension of two well-known techniques. Firstly, the un-
known surface is subdivided into local shape functions and
later smoothly blended together through a set of blending



functions, which is known as the partition-of-unity (POU)
method introduced by Ohtake et al. [14]. In addition, for
the choice of the underlying surface representation, we ap-
ply the variational technique developed by Turk et al. [23]
to find the local interpolation implicit function which is de-
fined as a linear combination of radial basis functions.

In our approach, the input sample points are firstly sub-
divided by an octree and local tangent planes are fitted at
each point to estimate its normal vector in order to orientate
the local variational patches. As the problem described by
Hoppe et al. [11], the main challenge facing the algorithm
is the selection of the normal directions so as to define the
globally consistent orientation for the entire data set. In-
stead of using their orientation propagation method based
on traversing a minimal spanning tree constructed over the
surface model, we propose to determine the globally con-
sistent orientation by propagating beliefs over local Rie-
mannian graphs with the surface sample points treated as
its nodes. The inside/outside test is performed by applying
the well-known Belief Propagation algorithm to infer the
maximum a posteriori (MAP) solution of the label of the
surface normal vectors.

The creation of variational implicit surfaces is some-
times criticized for its high time complexity. Moreover,
due to the global support of the basis functions, it requires
repetitive computation of RBF coefficients to progressively
reconstruct implicit surfaces in a coarse-to-fine fashion. In
this paper, we propose a novel algebraic approach based on
the Schur complement formula to simplify the computation
involved in the progressive reconstruction. The main con-
tributions of this work can be summarized as follows:

• We propose an efficient 3D surface reconstruction al-
gorithm based on the variational implicit surface rep-
resentation in the partition-of-unity framework. It is
very efficient in both time and memory storage;

• A novel graph optimization formulation is proposed
for robust estimation of the globally consistent orien-
tation for the entire data set. The graph optimization
is accomplished by using the Belief Propagation algo-
rithm to develop an efficient algorithm;

• A new iterative greedy algorithm utilizing the Schur
complement formula is proposed to efficiently update
the RBF coefficients for progressive implicit surface
reconstruction.

2. Background and Related Works

2.1. Implicit Surfaces

Generally speaking, in spite of the diversity of the under-
lying mathematical forms, implicit surfaces typically aim
to find a scalar-valued continuous function f , whose zero

level-set describes the unknown surface. The implicit func-
tion f partitions the space into two parts: inside and outside
of the surface, where it takes positive and negative values,
respectively. Compared to explicit surface models, implicit
surface modeling possesses the advantages of being robust
to noises and non-uniform sampling density, and easy to
convert into other representations and perform CSG opera-
tions.

The pioneering works on implicit surfaces include the
blobby surface [3] that are sum of implicit primitives such
as Gaussian blobs. Hoppe et al. [11] introduced the con-
cept of modeling surface as a signed distance field which
is defined as the distance to locally fitted tangent planes.
Curless and Levoy [7] proposed an efficient algorithm to
integrate a set of range scans to build the signed distance
function. Another important class of implicit modeling is
based on the variational formulation for surface reconstruc-
tion, which leads to the implicit surface solution represented
as a radial basis function (RBF). Its recent development will
be discussed in the next section.

A thorough description of the wide variety of implicit
surfaces is obviously beyond the scope of this paper. More
detailed introduction to implicit surfaces can be found in the
book by Bloomenthal et al. [5].

2.2. Variational Method and RBFs

The notion of interpolating implicit surfaces was firstly
introduced by Savchenko et al. [19], later developed by Turk
et al. [23] for shape transformation, and applied to a vari-
ety of applications successfully [9, 10]. Interpolating im-
plicit surface attempts to find a smooth embedding function
f : �d → � that exactly passes the specified locations by
using mathematical tools from variational calculus. There-
fore, this class of implicit surface is also known as varia-
tional implicit surface. In a nutshell, the variational method
imposes an additional smoothness constraint that minimizes
the aggregate curvature of the function, thus leading to the
smoothest function among all possible solution functions
satisfying the interpolation conditions. The variational ap-
proach is a general solution to the d-dimensional scattered
data interpolation problem.

Consider the following problem: given a set of N con-
straint points C = {c1, c2, . . . , cN} that are scattered on
or near the unknown surface with the corresponding scalar
fields h1, h2, . . . , hN . Find f that satisfies the interpola-
tion conditions: f(ci) = hi, i = 1, 2, . . . , N. To solve
the aforementioned energy minimization problem, the in-
terpolation function f is expressed in terms of a weighted
combination of radial basis functions, which can be written
as follows:



f(x) =
N∑

j=1

wjφ(x − cj) + P (x), (1)

where cj = (xj , yj , zj) are the locations of the constraints,
wj are the weights, and P (x) is a degree one polynomial
accounting for the linear and constant term of f . There is a
rich variety of radial basis functions suggested in the litera-
ture. For 3D interpolation, we adopt the pseudo-cubic basis
function φ(r) = r3, as also used in [23]. Solving for the un-
knowns, wj , and the coefficients of P (x) involves forming
a linear system given below:

(
A P
PT O

)(
w
λ

)
=

(
h
0

)
(2)

where Aij = φ(‖ci − cj‖). The polynomial part of the
interpolation function f in (1) has the form of P (x) =
λ0 + λ1x + λ2y + λ3z, and thus P is the matrix with
the i-th row being (1, xi, yi, zi). Note that the sub-matrix
A in (2) is positive-definite and a closed-form solution al-
ways exists under very mild conditions. However, because
RBFs are globally supported in nature, the linear system in
question is also dense and its size grows exponentially with
respect to the number of constraints, making it computa-
tionally intractable to solve by direct methods, such as LU
decomposition or SVD, because their computational com-
plexity is O(N3). To alleviate the problem of high compu-
tational cost, Carr et al. [6] applied the far field expansion
method for fast fitting and evaluation of variational inter-
polant of numerous basis functions. However, the drawback
of their method is that the far field expansion method is dif-
ficult to implement. By cooperating with the partition-of-
unity method described in the next section, the complexity
of variational implicit surface can be well controlled and
easily extended to handle with large models.

Another issue regarding variational interpolation is the
specification of non-zero valued constraints. Non-zero val-
ued constraints not only avoid trivial solution (in the case
that all the scalar fields equal to zero) but also provide guid-
ance for f to indicate the interior and exterior region of the
space. One commonly used strategy for creating such con-
straints is to project constraint points along their normal di-
rections [24, 23, 6, 10]. For more details about constraint
specification, the interested readers are referred to the orig-
inal paper by Turk et al. [24].

2.3. Partition-of-Unity Framework

The partition-of-unity method has attracted much atten-
tion in recent research of implicit surface modeling. The
concept behind it can be traced back to Shepard’s blend-
ing method [20], which was originally designed to build
a global function by subdividing the problem domain into
a set of sub-domains where locally defined functions are

solved and provides a good means of smoothly blending the
local solution functions to form a good approximation for
the global solution of interest. With ωi denoted as the set of
non-negative and compactly supported weighting functions
assigned to the local functions fi, the blended function f
can be expressed as below:

f(x) =
∑

i ωi(x)fi(x)∑
i ωi(x)

, (3)

Based on this framework, many hierarchical recon-
struction algorithms have been proposed. The Multi-level
Partition-of-Unity (MPU) implicits method introduced by
Ohtake et al. [14] used an octree-based adaptive approach
for surface reconstruction from a large and accurate data
set. Sharp features can be well preserved by local selection
of fitting models. Xie et al. later extended the MPU implicit
to handle noisy data sets [28]. They employed an active
contour method and a voting process for orientation deter-
mination. Tobor et al. [22] proposed a multi-scale recon-
struction algorithm by building a binary tree decomposition
and performing a bottom-up thinning operation.

3. Global Consistent Orientation Inference

3.1. Overview

As discussed in Section 2, the implicit surface consists
of many local variational interpolants, which are blended
as a pseudo-signed distance field through the partition-of-
unity method. To correctly blend the local shape functions,
they should have been properly and consistently oriented
in advance. In our approach, the input data set is firstly
subdivided by an octree for further local shape recovery and
the normal directions are estimated by fitting a local tangent
plane to each data point and its neighborhood [17, 11].

Given the normal vector ni of each point ci, we are un-
certain of which part of the model it is directed to, say, in-
side or outside. The goal of global consistent orientation
inference is to determine for each point, ci, a label xi such
that all the normal vectors are consistently aligned to be di-
rected to either interior or exterior regions subject to the
model. The overall optimization is formulated as solving a
graph labeling problem. The algorithm proceeds by itera-
tively constructing a local graph and applying a belief prop-
agation algorithm to find a label xi ∈ {0, 1}, which corre-
sponds to exterior and interior regions of the model, respec-
tively. Analogous to other orientation alignment schemes
[11, 29], the global consistent orientation is obtained by
flipping the normal vectors with labels different from that
of a pre-selected seed point.

3.2. Belief Propagation Optimization

In detail, let us reconsider the problem by starting from
a set of 3D data points that are geometrically close to each



other. We construct a Riemannian graph G = {V, E} with
each node in V corresponding to one of the 3D points.
Specifically, a Riemannian graph G is defined as an undi-
rected graph among which there exists an edge eij in E if vj

is one of the k-nearest-neighbor of vi, and vice versa. We
define the following energy on G:

E(X ) =
∑
i∈V

Ed(xi) +
∑

(i,j)∈E
Es(xi, xj), (4)

where
Ed(xi) = xi,

Es(xi, xj) = −1(xi+xj) · αij ,

Note that Ed(xi) is the data energy measuring how well
the estimated labels fits to our prior knowledge about the
model. Here we set Ed to be just the label of node i, and
it acts as an additional constraint that selects two of the op-
timal label sets X with more nodes labeled as zero. Intu-
itively, the consistency of two normal vectors can be defined
as their inner product, which is positive if they have con-
sistent orientations and negative otherwise. By letting αij

be −ni · nj , Es(xi, xj) behaves like a smoothness energy
which penalizes the inconsistent changes of normal orienta-
tions associated with two neighboring nodes. The optimal
labels for all nodes are obtained by minimizing the total en-
ergy E(X ).

In a sense, the graph G can be thought of as a joint prob-
ability of a set of binary random variables with the edges
indicating the dependency between distinct nodes. The in-
ference of marginal probability of a specific node means
that we have to sum over all the possible states of other
nodes, which can be a very laborious process. Belief Prop-
agation (BP) is an efficient probability inference algorithm
proposed by Pearl [18], which has recently been proven to
be very effective in many computer vision and image pro-
cessing problems [21, 25]. It comes with two variants: sum-
product and max-product. In this paper, we use the max-
product algorithm to find a MAP solution formulated earlier
in this section by taking negative log probabilities.

Briefly speaking, Belief Propagation works by iteratively
propagating messages or beliefs along edges over a graph.
Let us denote the message sent from node i to j as mi→j . In
our formulation, message mi→j is a two-dimensional vec-
tor, and can be regarded as the probability density function
that node j takes label of 0 or 1. The local message passing
mechanism is for each node to receive and update message
by forming product of incoming messages and local evi-
dence as the following equation:

mi→j(xj) = Z max
xj

(Ed(xi) · Es(xi, xj)·
∏

u∈Nbhd(i)\j

mu→i(xi)), (5)

Figure 2. Starting from a seed cell, the advancing-
front algorithm traverses the unchecked data
points of the model to perform orientation infer-
ence.

where Nbhd(i)\j denotes the neighbors of i other than j,
and Z is a normalization factor. Finally, the MAP solution
for each node i is computed as

x∗
i = Z max

xi

(Ed(xi) ·
∏

u∈Nbhd(i)

mu→i(xi)), (6)

For tree structured graphs, BP is guaranteed to converge
to a fixed message m∗ after at most T iterations depending
on the longest path of the graph. For graphs with loops,
Loopy BP [26] can be applied to obtain good approximation
results.

3.3. Advancing-Front Algorithm

Intuitively, to obtain the optimal label of each data point,
a graph consisting of all the data points should be con-
structed for the energy minimization procedure. However,
we choose to infer the normal orientation locally and itera-
tively propagate the orientation to obtain the global solution
due to the following two observations:

1. The interaction between normal orientations is essen-
tially a local property. As a result, local orientation
inference typically gives accurate results. That is the
reason that we construct a Riemannian graph that only
encodes the information of proximity.

2. Previous results provide additional information for fur-
ther inference.



Algorithm 1 OrientationPropagate(F = null)
Seed selection.
Find cell v containing the seed point, insert v into F .
while F not empty do

active cell v = F .front;
collect node set V;
construct Riemannian graph G with V;
perform BP on G;
update labels of V;
find and insert adjacent non-empty cells of v into F ;

end while
return

Therefore, we devise the following advancing-front al-
gorithm:

Initially, we have the position of each point associated
with its normal vector unaligned. Starting from a seed point
with its normal orientation as the basis for alignment. Echo-
ing the octree subdivision process, the approach proceeds
by iteratively marching an active cell or voxel to traverse
the unchecked data points until all the data points have
been checked. We adopt the seed selection procedure as
described in [11]. Our algorithm maintains a data struc-
ture of front F , which contains a queue of candidate cells
to be selected for orientation inference process in the next
iteration. The basic idea of the incremental algorithm is
straightforward: traversing all the non-empty leaves among
the octree in the order of connected components of visited
cells. The belief propagation inference is performed on a
graph constructed subject to the active cell. The sixth line of
Algorithm 1 involves a process of collecting points within
the active cell as the set of nodes for graph construction.
The process also searches adjacent cells for points whose
orientations have been determined in previous iterations to
provide evidence for orientation inference.

The main concern is the depth of octree, which depends
on the feature size. It is important to prevent the size of cell
from being too large such that unconnected components of
the modeled surface will be included in a cell. To keep the
graph remaining a manifold avoids mistakenly aligning the
orientation of an independent part of the model to another,
such as two opposite sheets close to each other. The depth
of the octree is determined by a user-specified parameter
because Algorithm 1 is not currently an adaptive algorithm.

4. Progressive Reconstruction

4.1. Schur Complement Formula

To establish a progressive or multi-scale representation
of implicit surfaces is attractive especially when dealing
with extremely large and complex models. Such models
are expensive to store, transmit and render. A multi-scale

Figure 3. Reconstructed implicit surfaces by us-
ing direct RBF updating (left) and Schur comple-
ment updating (right).

implicit surface can be used to compress or simplify the sur-
face representation by using the most significant data points
only. A coarse surface can be refined by adding additional
data points. However, because of the global support nature
of radial basis functions, adding only a few new data points
leads to complete re-computation of the resulting RBF coef-
ficients. In [13], Morse et al. used basis functions with com-
pact support to speed up the process of creating implicit sur-
faces by solving a sparse matrix. Although using compactly
supported RBFs [27] leads to more efficient computation in
determining the RBF coefficients, it has the drawback that
holes or irregular sampled regions may not be interpolated
or repaired well. In [15], Ohtake et al. introduced a multi-
level interpolation approach that combines quadrics multi-
plied by compactly supported radial weights and offsetting
functions.

In this paper, we propose an algebraic approach to alle-
viate the cost of iteratively updating globally supported ra-
dial weights by using the Schur complement formula [16].
Schur complement formula gives the closed-form expres-
sion for the inverse of a partitioned matrix. Firstly, we rear-
range the linear system in equation (2) as below:

(
O PT

P A

)(
λ
w

)
=

(
0
h

)
(7)

The matrix of our progressive reconstruction problem
can thus be expressed by the following 2 × 2 partitioned
matrix:

K =
(

K11 K12

K21 K22

)
(8)

where K11 is simply the linear system of (7) formed by
the existing RBF centers. The sub-matrix K12 = KT

21 con-
tains the interaction between the newly added centers and
existing centers. K22 is a square matrix corresponding to
the newly added centers. To update the old coefficients and



solve for the new ones, we need to solve the linear system
Kw = h. According to Schur complement formula, the
inverse matrix K−1 can be written in the following form:

K−1 =
(

K−1
11 + K−1

11 K12S
−1K21K

−1
11 −K−1

11 K12S
−1

−S−1K21K
−1
11 S−1

)

(9)
where

S = K22 − K21K
−1
11 K12

Compared with solving the overall linear system with
O(N3) techniques, e.g. LU decomposition or SVD, we can
see that the computation of K−1 involves only multiplica-
tion of the partitioned matrices, which has lower cost. Note
that K−1

11 , which is the inverse matrix corresponding to the
old RBF coefficients, is extensively used. By storing K−1

11 ,
we can exploit the Schur complement formula to solve the
new linear system with low cost.

4.2. Partition-of-unity Implicits

Algorithm 2 buildPOU(cell, ε, δ)
if fi is not created yet then

Select initial RBF center set C0 and create fi;
Evaluate the residual rj at each data point cj ;

end if
while max(|rj |) > ε and size(Ci) < δ do

Append new centers with largest residuals to form
Ci+1;
Re-compute fi by equation (9);
Refresh residual ri;

end while
if max(|rj |) > ε then

for each cell→child, invoke buildPOU(child, ε, δ);
end if
return

With the matrix machinery introduced in the previous
section, we are able to devise a simple greedy algorithm
to iteratively refine the local implicit fi to meet the desired
fitting accuracy ε. Initially, only a coarse set of data points
C0 are selected as RBF centers to compute fi. We evalu-
ate fi to calculate the residuals at each unused data points,
which will be used as the stopping criterion. If the maxi-
mum residual is less than the specified accuracy ε, the iter-
ative refinement procedure is stopped. Otherwise, the data
points with largest residuals are appended to form a new list
Ci of RBF centers and the coefficients are updated by ap-
plying the Schur complement formula. Combined with the
partition-of-unity framework, we recursively partition the
region of space occupied by the input set of data points, and
apply the above procedure to build the local RBF approx-
imations. Our formulation is similar with the octree-based

Table 1. Performance of the proposed algorithm.
Computation times are represented in seconds.

N level BP RBF

Bunny 35647 5 31.44 8.12

Santa 75781 5 67.89 4.53

Igea 134345 6 124.38 41.76

Armadillo 172970 6 163.42 46.82

algorithm proposed by Ohtake et al. [14]. The main dif-
ference is the iterative refinement procedure. Because of
the exact interpolation property of variational implicit sur-
faces, the algorithm attempts to enhance the accuracy of
local shape functions by using more RBF centers before
the subdivision. To prevent the local shape functions from
growing too large, we regularly examine if the size of Ci is
larger than a pre-defined threshold δ. If the size of Ci ex-
ceeds δ, we resort to subdivision for the purpose of better
approximation as well as complexity control. In practice,
for real-world models with large amount of data points, it
is difficult to model the surface with only a few local func-
tions. Therefore, it is advantageous to start from an appro-
priate level of the octree to skip the intermediate process.

The pseudo-code listed in Algorithm 2 illustrates the re-
cursive construction procedure of our algorithm. One draw-
back of the progressive RBF coefficient update by using
Schur complement formula is that it introduces accumu-
lated numerical errors during each iteration. The numerical
errors can be eliminated by solving the inverse matrix di-
rectly. This can be achieved by setting a sentinel counter in
the loop of Algorithm 2 to invoke a direct solution routine
when the iteration count gets large and the errors become
noticeable. In our implementation, we empirically set the
guarding variable to 10 for all the experiments.

5. Experimental Results

All of the examples presented in the paper are generated
on a standard PC with Pentium 4 3.4 GHz CPU and 1 GB
RAM. In addition, we use Bloomenthal’s implicit surface
polygonizer [4] to extract a triangular mesh of the recon-
structed implicit surface for visualization.

Many of the subproblems discussed above require exten-
sive searching for the nearest neighbors of a specific data
point, such as local tangent plane fitting and Riemannian
graph construction. We apply a spatial partitioning tech-
nique, say, k-D tree for solving the range searching problem
more efficiently. The input data set is scaled and inserted
into a unit bounding cube. Then, an octree-based hierarchy
is constructed and local variational implicits are computed



and refined until a desired accuracy is achieved. We use a
B-spline based weighting function as suggested in [14] for
partition-of-unity blending. The blended function can be
evaluated at different levels for multi-scale reconstruction.
Fig. 4 illustrates the capability of the proposed algorithm
to reconstruct implicit surfaces from real-world data sets
accurately and efficiently. Fig. 5 illustrates an example of
coarse-to-fine reconstruction. Table 1 summarizes the com-
putation time of several models evaluated at different octree
levels. We set the fitting accuracy to 5 × 10−4 for all cases.
The orientation propagation timings are also included.

6. Conclusions and Future Directions

In this paper, we presented a novel approach to recon-
struct implicit surface from unorganized points by employ-
ing the partition-of-unity method and variational technique.
To determine the global consistent oientation of the model
being recovered, we apply the belief propagation algorithm
to perform local orientation inference and iteratively ad-
vance the current inference result in a front-propagation
fashion. According to our experiment, the proposed ori-
entation inference algorithm can correctly align the normal
vectors to be orientated consistently. In addition, a novel
scheme is proposed to progressively refine the local varia-
tional shape functions. The greedy iterative refinement pro-
cedure can economically select a subset of sample points
to well approximate the unknown surface, and the use of
Schur complement formula enables efficient RBF coeffi-
cient updating. The main limitation of the proposed algo-
rithm is that it is not adaptive to non-uniform sampling den-
sity and not robust to noise, because it currently relies on
reliable normal vector estimation from the data set. There-
fore, one of our future directions is to extend this work to
handle noisy input data. To correctly determine the normal
orientation, it is important not to include separated surface
components into the graph. Currently, we have to choose
an appropriate level of the octree for orientation propaga-
tion depending on the feature size of the model. We plan
to devise a more robust propagation method to preserve the
manifold property while constructing the local graphs. One
possible direction is to introduce prioritized front growing
similar with the incremental region growing algorithm pro-
posed by Xie et al. [29], such that orientation inference is
performed on features, such as ridges and sharp corners, af-
ter the orientation of flat regions has been determined. A
local graph can thus be constructed by collecting nodes em-
braced by the feature. In our current implementation, we
perform local tangent plane fitting and orientation inference
at each input data point. When dealing with models having
large amount of data points, the sampling density is dense
and fitting an implicit surface to a subset of the data points
is usually enough to approximate the entire data set. Be-

Figure 4. Examples of reconstructed implicit sur-
faces by the proposed algorithm.

sides, it is not necessary to augment one interior/exterior
constraint for each surface constraint when solving the lin-
ear system of equation (2) [24, 23, 6, 10]. It will thus be ad-
vantageous to perform partial orientation inference on only
some representative points by using the simplification meth-
ods proposed by Pauly et al. [17]. It is interesting to note
that the graph cuts algorithm [12] is essentially applicable
to the binary optimization problem in this work. We also
plan to conduct some experiments to investigate its feasibil-
ity and compare the performance of the two different algo-
rithms.



Figure 5. Coarse-to-fine reconstruction. From leftmost: point rendered model (Rabbit: 67038 points), Schur
complement refinement at level 2 (the second to fourth from left), finest implicit surfaces reconstructed at
octree level 3, 4, 5, respectively (the third from right to rightmost). The Schur complement updating enables us
to control the desired resolution with more flexibility.
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