Detecting Doubly Compressed Images Based on Quantization Noise Model and Image Restoration

Yi-Lei Chen and Chiou-Ting Hsu Department of Computer Science, National Tsing Hua University, Taiwan

Introduction

- Forgery on JPEG images
 - Recompression must be involved
 - How to characterize the doubly compressed properties?
- Related work
 - Quantization table inconsistency [Ye et al. 2007]
 - Measuring the block inconsistency resulted from different quantization tables
 - To estimate the primary quantization table
 - Less effective for recompressed images
 - JPEG ghosts [H. Farid 2009]
 - Detecting by manual recompression
 - To estimate the primary quality factor
 - Exhaustive test for all possible quality factors
 - No theoretical formulation

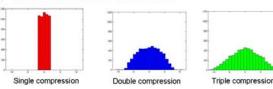
- The two models are both sensitive to image content
- Motivation
 - A theoretical model to locate forged regions
 - Effective to recompressed images
 - Insensitive to image content

Quantization noise model

- For each 8x8 block.
 - Quantization noise

$$\mathbf{A}\mathbf{x} = \mathbf{c} = \mathbf{c'} + \mathbf{n'} = \mathbf{c''} + \mathbf{n''}$$
 What's the difference between $\mathbf{n'}$ and $\mathbf{n''}$?

- A : DCT component basis (64x64 Matrix)
- X : intensity of RAW image (64x1 vector)
- quantization noise of single compression (64x1 vector)
- n": quantization noise of double compression (64x1 vector)


- Quantization constraint set theorem
 - Bounded by quantization step

$$-\left\lfloor \frac{q'}{2} \right\rfloor \le c' - c = n' \le \left\lfloor \frac{q'}{2} \right\rfloor \quad \text{(uniform quantizer)}$$

After recompression,

$$-\left\lfloor \frac{q'}{2} \right\rfloor \leq c' - c \leq \left\lfloor \frac{q'}{2} \right\rfloor \\ -\left\lfloor \frac{q''}{2} \right\rfloor \leq c'' - c' \leq \left\lfloor \frac{q''}{2} \right\rfloor \qquad \qquad -\left(\left\lfloor \frac{q'}{2} \right\rfloor + \left\lfloor \frac{q'''}{2} \right\rfloor \right) \leq c'' - c = n'' \leq \left\lfloor \frac{q'}{2} \right\rfloor + \left\lfloor \frac{q'''}{2} \right\rfloor$$

Quantization noise distribution

- Modelina
 - Single compression

$$p(\mathbf{n}_{k} \mid w_{1}) = \prod_{i=1}^{m} p(n_{k,i} \mid w_{1}) = \prod_{i=1}^{m} U(c_{k,i} - \hat{c}_{k,i} \mid -q_{i}, q_{i})$$

Recompression

$$p(\mathbf{n}_{k} \mid w_{2}) = \prod_{i=1}^{\dim} p(\mathbf{n}_{k,i} \mid w_{2}) = \prod_{i=1}^{\dim} N(c_{k,i} - \hat{c}_{k,i} \mid 0, \sigma^{2}_{i})$$

- Unknown information
 - The uncompressed DCT coefficient $C_{k,i}$

Ground truth estimation

- To eliminate compression artifacts
- Image restoration techniques
- Deblocking [Kin et al. 2003]
 - Filtering in DCT domain

- Low frequency compensation
 - VQ based approach [Liaw et al. 2002]
 - Modification
 - Compensation in DCT domain (1st~15th DCT component)
 - Only considering the magnitude of QN

Experimental results

Robustness of QN model

- Almost independent to image content
- 500 images for each quality setting

QF2		50	60	70	80	90
50	Proposed	49.0	83.7	94.7	98.3	99.4
	[Ye et al. 07]	58.5	62.2	82.0	93.2	98.7
	[H.Farid 09]	0.84	59.3	84.0	94.0	96.8
60	Proposed	76.8	49.1	89.9	97.8	99.5
	[Ye et al. 07]	42.6	56.5	00.0	94.6	98.1
	[H.Farid 09]	45.8	1.12	72.7	96.6	97.0
70	Proposed	82.7	84.1	49.2	95.7	99.5
	[Ye et al. 07]	34.5	38.6	56.8	76.4	97.4
	[H.Farid 09]	37.8	41.3	1.92	74.3	95.1
80	Proposed	66.1	89.4	88.5	49.4	99.2
	[Ye et al. 07]	59.9	45.1	33.9	57.3	97.5
	[H.Farid 09]	47.6	39.5	32.8	4.03	94.2
90	Proposed	57.2	66.1	65.4	93.7	49.9
	[Ye et al. 07]	53.7	52.4	52.1	53.0	57.9
	[H.Farid 09]	40.5	40.5	44.2	40.5	12.8

90 1

60~90

- Forgery detection
 - MRF
 - To optimize quantization noise

QF1 = 50

OF2 = 80