REGION-BASED COLOR TRANSFER FROM MULTI-REFERENCE WITH GRAPH-THEORETIC REGION CORRESPONDENCE ESTIMATION

Wan-Chien Chiou and Chiou-Ting Hsu Department of Computer Science, National Tsing Hua University, Taiwan

Introduction

- Color transfer
 - To transfer color characteristics from reference image(s) to a target image
- Motivation
- Automatically transferring color from multi-reference
- Incorporating spatially adjacent relationships to determine the best-matched region pair
 - Graph-theoretic region correspondence estimation

Graph theoretic region correspondence estimation

- Preprocessing
 - Selecting reference images by CBIR [Li and Hsu 2008]
 - Mean-shift region segmentation
- Modeling [Li and Hsu 2008]
 - Representing each image as an attributed graph

 $G_T = (V_T, E_T, \mathbf{T})$ target

 $G_{s}^{i} = (V_{s}^{i}, E_{s}^{i}, \mathbf{S}^{i})$ the i-th reference Adjacency matrix $T_{ab} = \begin{cases} \mu_{ab}, \text{ if } (x_a, x_b) \in E_T \end{cases}$

0, otherwise

* Edge weight: $\mu_{ab} \propto \exp\{-d(x_a, x_b)\}$

- Region mapping function $f(x_a, y_m^i) = \exp\{-(d(x_a, y_m^i) + w_{am}^i)\}$

 - The neighboring dissimilarity between x_a and y_m^i

$$w_{am}^{i} = \sum_{b=1}^{|V_{T}|} \sum_{n=1}^{|V_{S}|} T_{ab} S_{mn}^{i} d(x_{b}, y_{n}^{i})$$

- A weighted sum of distance between all neighboring regions
 - Insensitive to different segmentation results

Determining the best-matched region $\{(x_a, y_a^{i^*}) | x_a \in V_T\}$ n

$$i^*, i^* \leftarrow \operatorname*{argmax}_{m,i} \{ f(x_a, y_m^i) | 1 \le i \le K \}$$

% m* is the best-matched region and i* is its corresponding image

Performance measurement

Colorfulness dissimilarity $\triangle C$ [Xiang et al. 2008]

[Reinhard et al. 2004] [Xiang et al. 2008] ΔC =8.448, E=10.638 ΔC =14.112, E=6.714 Original

segmentation + ∆C=1.2467, E=8.7124 [Xiang et al. 2008] ∆C=7.459, E=8.084

- Related work
 - Global color transfer [Reinhard et al. 2004]
 - The whole image is treated as a single entity
 - Ineffective to images with complex content
 - Depending on the similarity between reference and target Local color transfer
 - Conducting color transfer for each region [Tai et al. 2005]
 - Using multi-reference [Xiang et al. 2008]
 - The best-matched reference region is determined in terms of only color distributions

Automatic color transfer

Color transfer procedure for each pixel z

Chromatic channels $\widetilde{\alpha}_{z} = \frac{\sigma_{y_{x_{z}}^{l}}^{\alpha}}{\widetilde{\alpha}_{z}} (\alpha_{z} - \mu_{x_{z}}^{\alpha}) + \mu^{\alpha}$

$$\widetilde{\beta}_{z} = \frac{\sigma_{y_{x_{a}}^{\beta}}^{\beta}}{\sigma_{x_{a}}^{\beta}} \left(\beta_{z} - \mu_{x_{a}}^{\beta}\right) + \mu_{y_{a}^{\beta}}^{\beta}$$

$$\tilde{\ell}_z = \frac{\sigma_s^\ell}{\sigma_T^\ell} \left(\ell_z - \mu_T^\ell \right) + \mu_s^\ell$$

- Incorporating the idea of intrinsic component
 - Eliminating the effect of light changes
 - Estimating reflectance-related image ρ [Finlayson et al. 2004]
 - ≻ Replacing the edge weight with reflectance similarity $\mu_{ab} \propto \exp\{-d(x_a, x_b)\}$

$$d(x_a, x_b) = \left\| \mu_{x_a}^{\rho} - \mu_{x_b}^{\rho} \right\|$$

Reducing color-bleeding artifact

â

Weighted color transfer procedure for each pixel z

$$z = \frac{r_z^{x_a} \widetilde{\alpha}_z + \sum_{x_b \in \mathcal{H}(x_a)} r_z^{x_b} \widetilde{\alpha}_z^{x_b}}{r_z^{x_a} + \sum_{x_b \in \mathcal{H}(x_a)} r_z^{x_b}} \qquad \widetilde{\alpha}_z^{x_b} = \frac{\sigma_{y_z^{\prime}}^{\alpha}}{\sigma_{x_b}^{\alpha}} (\alpha_z - \mu_{x_b}^{\alpha}) + \mu_{y_z^{\prime}}^{\alpha}$$

* η(·): neighboring region * Performing the same procedure in β channel

Experimental results

Quantitative measures over 100 test images

	[Reinhard et al. 2004]	[Xiang et al. 2008]	Proposed
Averaged ∆C	10.36	10.08	5.39
Average E	10.20	9.07	9.26

Both subjective evaluation and quantitative measures show that our proposed algorithm outperforms the previous work

$$\widetilde{\beta}_{z} = \frac{\sigma_{y_{x_{a}}^{\ell}}^{\beta}}{\sigma_{x_{a}}^{\beta}} \left(\beta_{z} - \mu_{x_{a}}^{\beta}\right) + \mu_{x_{a}}^{\beta}$$

minance channel
$$\sigma_{x_a}^{\ell}$$