
# Texture and Surface Appearance

October 11, 2004

CS5520 Image-Based Rendering © Chun-Fa Chang, Fall 2004

# Two-plane light field (s,t) (u,v) Levoy and Hanrahan 1996 CS5520 Ima Gostleridete al. 1996 C Chun-Fa Chang, Fall 2004



## Surface Light Field -- Summary

- May be considered a compression scheme for light field data.
- 3D geometry required!
- · Questions:
  - (1) Do we need detailed 3D geometry?
  - (2) Isn't this texture mapping?

### In Retrospect

- No lighting change in light fields or surface light fields?
- How is it different from texture mapping?
- · Somehow related:
  - Microfacet-based BRDF (See [Ashihkmin et al, SIGGRAPH 2000])
  - Meso-structure (e.g., brick surface).

CS5520 Image-Based Rendering © Chun-Fa Chang, Fall 2004

### Game Plan

- First, a quick introduction of texture mapping.
- Then, a quick look at BRDF (10/14 or later).
- Then, BTF.

### **Texture Mapping**

- The simplest form: like wrapping a picture on an object.
- Texture: 2D image or a simple pattern (like a checkerboard)
- · Surface: could be any shape

CS5520 Image-Based Rendering © Chun-Fa Chang, Fall 2004

### **Procedural Texture**

- A simple example: checkerboard.
- Solid texture. Example: wood carving.
- · More advacned: Perlin noise.



CS5520 Image-Based Rendering © Chun-Fa Chang, Fall 2004

# Bump Map and Displacement Map

- Examples:
  - Golf ball
- Bump Map vs. Displacement Map:
  - Bump Map: only the looks change
  - Displ. Map: the actual surface points change.

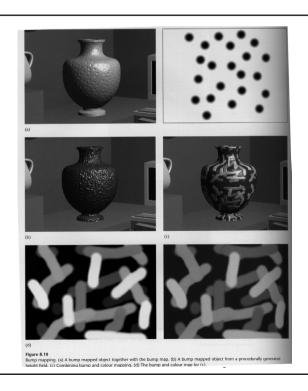



Figure 8.10 of "3D Computer Graphics, 3<sup>rd</sup> Ed." by Alan Watt

# **Environment Map**

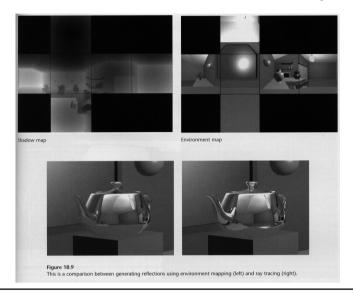



Figure 18.9 of "3D Computer Graphics, 3<sup>rd</sup> Ed." by Alan Watt

# More Examples



geometric model



texture mapped

# More Examples





**Environment Map** 

Bump Map