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Motivations
� �My ray traced images have a lot more pixels than 

the TV screen.  Why do they look like @#$%?�
� How to compute the pixel colors for the following 

pattern?

Antialiasing with Line Samples
Rendering Techniques '00 (Proceedings of 
the 11th Eurographics Workshop on 
Rendering), pp. 197-205
Thouis R. Jones, Ronald N. Perry
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Part I: Sampling Theorem
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Example of Aliasing in 
Computer Graphics



3

CS5502 Fall 2006
© Chun-Fa Chang

Examples of Aliasing in 1D

� See Figure 14.2 (p.394) of Watt�s book 
for other examples.
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An Intuition �
Using a Single Frequency

� It�s easy to figure out for a sin wave.

� What about any signal (usually a 
mixture of multiple frequencies)?

� Enter Fourier Transform�
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Sampling

� 1D Signal: x ! f(x) becomes i ! f(i)

� 2D Image: x, y ! f(x, y)
� For grayscale image, f(x, y) is the intensity 

of pixel at (x, y).
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Reconstruction

� If the samples are �dense� enough, then 
we can recover the original signal.

� Question is: How dense is enough?
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Fourier Transform

� Can we separate signal into a set of 
signals of single frequencies? 

dxexfF xj∫
∞
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Basis Functions

� An example:
X=[x1, x2, �, xn]
U=[u1, u2, �, un]
V=[v1, v2, �, vn]
Let X = a*U + b*V,  how to find a and b?

� If U and V are orthogonal, then a and b 
are the projection of X onto U and V.
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Compared to Fourier 
Transform

� Consider a continuous signal as a infinite-
dimensional vector

[ f(ε), f(2ε), f(3ε),�.. ]

� Consider each frequency ω a basis, then F(ω) 
is the projection of f(x) onto that basis.

dxexfF xj∫
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Sampling
� Spatial domain: 

multiply with a 
pulse train.

� Frequency 
domain: 
convolution!
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Convolution

� To start with, image that f(x) is nonzero 
only in the range of [-a, a].
� Then we only need to consider g(x) in the 

range of [x-a, x+a] 
� Multiplication in spatial domain results in 

convolution in frequency domain (and 
vice versa).

∫ ′′−′=⊗= xdxxgxfxgxfxh )()()()()(
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An Intuition for Convolution

� Does it make sense to you that 
multiplication in one domain becomes 
convolution in the other domain?

� Look at this example:

� What are the coefficients of P1*P2?
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� Consider xn, �, x2, x1, x 0 as basis.  

� Projections of P1 and P2 to the basis 
are (a1, b1, c1, d1) and (a2, b2, c2, d2) 

� P1(x)*P2(x) results in: (a1, b1, c1, d1) ⊗
(a2, b2, c2, d2) in the transformed space.
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� The fact is: you have been doing convolution 
since elementary school!

� Example: 222*111 is computed as 
(2,2,2) ⊗ (1,1,1)
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Reconstruction

� Frequency 
domain:

� Spatial 
domain: 
convolve with 
Sinc function
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Reconstruction Kernel

� For perfect reconstruction, we need to 
convolve with the sinc function.
� It�s the Fourier transform of the box 

function.
� It has infinite �support�

� May be approximated by Gaussian, 
cubic, or even triangle �tent� function.
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Nyquist Limit

� Nyquist Limit = 2 * max_frequency
� Undersampling: sampling below the 

Nyquist Limit.
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Part II: Antialiasing
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Changes within a Pixel

� A lot can change within a pixel:
� Shading
� Edge
� Texture

� Point sampling at the center often 
produces undesirable result.
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Pixel Coverage

� What should be the pixel colors for 
these?

� Can we simply use the covered areas of 
blue and white?  (Hint: convolve with 
box filter.)

� Do we have enough data to compute 
the coverage?
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Antialiasing

� Consider a ray tracer.  Is it often 
impossible to find the partial coverage 
of an edge.

� Each ray is a point sample.
� We may use many samples for each 

pixel ! slower performance.
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Antialiasing � Uniform 
Sampling

� Also called supersampling

� Wasteful if not much changes within a 
pixel.
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Filtering

� How do we reduce NxN supersamples
into a pixel?
� Average?
� More weight near the center?

� Let�s resort to the sampling theorem. 
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Reconstruction

� Frequency 
domain:

� Spatial 
domain:
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A Few Observations

� In theory, a sample influences not only 
its pixel, but also every pixels in the 
image.

� What does it mean by removing high 
frequencies?
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Other Than Uniform Sampling?

� So far, the extra samples are taken 
uniformly in screen space.

� Other ways to take extra samples:
� Adaptive sampling
� Stochastic (or randomized) sampling
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Antialiasing � Adaptive 
Sampling

� Feasible in software, but difficult to 
implement in hardware. 

� Increase samples only if necessary.
� But how do we know when is 

�necessary�?
� Check the neighbors.
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Antialiasing � Stochastic 
Sampling 

� Keep the same number of samples per 
pixel.

� Replace the aliasing effects with noise 
that is easier to ignore.



16

CS5502 Fall 2006
© Chun-Fa Chang

EWA for Texture Mapping

� Paul Heckbert, �Survey of 
Texture Mapping� IEEE 
CG&A, Nov. 1986.  (Figures)

� Green & Heckbert, �Creating 
Raster Omnimax Images from 
Multiple Perspective Views 
Using The Elliptical Weighted 
Average Filter� IEEE CG&A, 
6(6), pp. 21-27, June 1986.


	Sampling Theorem & Antialiasing
	Motivations
	Part I: Sampling Theorem
	Example of Aliasing in Computer Graphics
	Examples of Aliasing in 1D
	An Intuition – Using a Single Frequency
	Sampling
	Reconstruction
	Fourier Transform
	Basis Functions
	Compared to Fourier Transform
	Sampling
	Convolution
	An Intuition for Convolution
	
	
	Reconstruction
	Reconstruction Kernel
	Nyquist Limit
	Part II: Antialiasing
	Changes within a Pixel
	Pixel Coverage
	Antialiasing
	Antialiasing – Uniform Sampling
	Filtering
	Reconstruction
	A Few Observations
	Other Than Uniform Sampling?
	Antialiasing – Adaptive Sampling
	Antialiasing – Stochastic Sampling
	EWA for Texture Mapping

