Global Illumination

CS5502 Fall 2006 (c) Chun-Fa Chang

Can you get this with ray tracing?

Rendering Equation

$$I(x, x') = g(x, x')[\varepsilon(x, x') + \int_{s} \rho(x, x', x'')I(x', x'')dx'']$$

- g() is the "visibility" function
- ρ() is related to BRDF:

$$\rho(x, x', x'') = \rho(\theta'_{in}, \phi'_{in}, \theta'_{ref}, \phi'_{ref}) \cos \theta \cos \theta'_{ref}$$

From Watt's p.277

CS5502 Fall 2006 (c) Chun-Fa Chang

How to Solve It?

- We must have:
 - $-\varepsilon$ (): model of the light emitted
 - $-\rho$ (): BRDF for each surface
 - g(): method to evaluate visibility
- Integral evaluation → Monte Carlo
- Recursive equation → Ray Tracing
- The problem is view independent


Ray Tracing Revisited

- The reflected intensity (or color) at a surface point is computed by:
 - Local reflection model (no interaction with other objects): ambient, diffuse, and specular.
 - Global model: perfect reflection and refraction.
- What if we spawn many reflected rays?

CS5502 Fall 2006 (c) Chun-Fa Chang

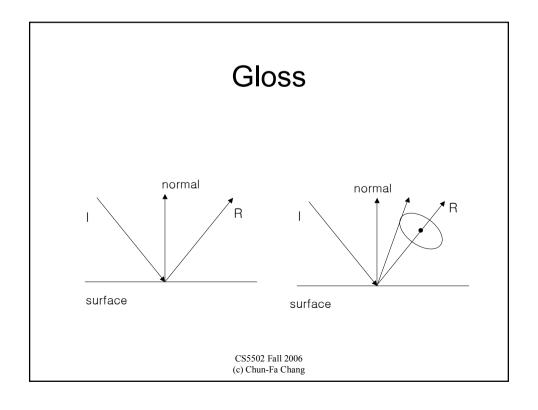
Global Illumination Algorithms

- Radiosity (topic of the next lecture).
- Distributed Ray Tracing.
- RADIANCE
- Photon Map

CS5502 Fall 2006 (c) Chun-Fa Chang

Distributed Ray Tracing

 Distribute a group of rays at a hit point to sample the "reflection lobe" (similar to a 2D slice of BRDF).

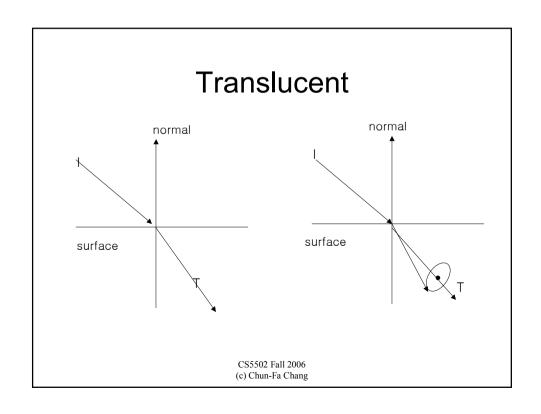

 May also distribute rays along camera aperture, time, and pixel region to produce effects of depth of fields, motion blur, and antialiasing.

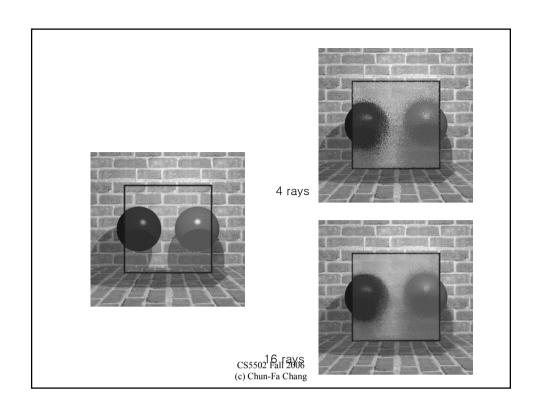
> CS5502 Fall 2006 (c) Chun-Fa Chang

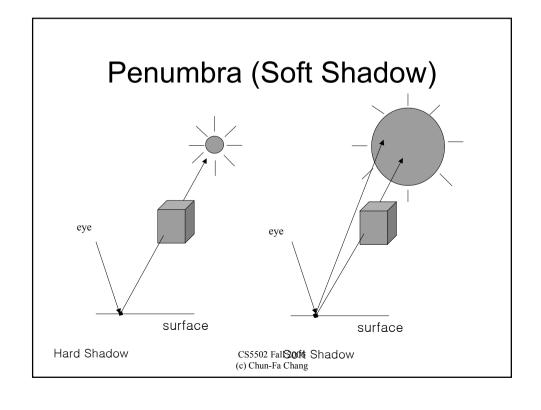
Why Distributed Ray Tracing?

- Anti-Aliasing
- Features
 - Gloss (fuzzy reflections)
 - Fuzzy translucency
 - Penumbras (soft shadows)
 - Depth of field
 - Motion blur

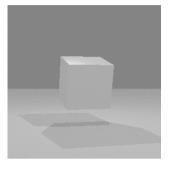
Anti-Aliasing Supersampling • Jittering – Stochastic Method CS5502 Fall 2006 (c) Chun-Fa Chang

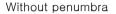

Fuzzy Reflection

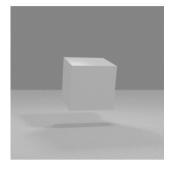




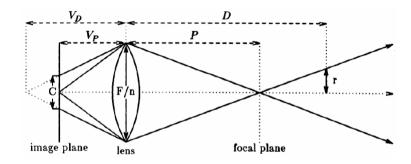
4 rays, 37 seconds


64 rays, 956 seconds





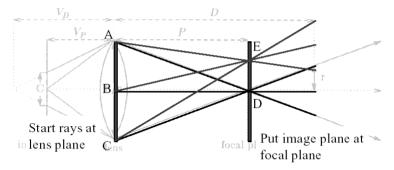
Soft shadow - cube



With penumbra

CS5502 Fall 2006 (c) Chun-Fa Chang

Depth of Field


F – focal length *n* – aperture number

 $V_D = FD/(D-F)$

 $V_P = FP/(P-F)$ $r = \frac{1}{2} (F/n) (D-P)/P$ $R = (-V_p/D) r$

C - circle of confusion $C = (|V_D - V_P|/V_D) (F/n) R = \frac{1}{2} C$

Depth of Field

Standard ray tracing:

Pixel D uses ray BD Pixel E uses ray BE All rays emanate from B

Distributed ray tracing:

Pixel D uses rays AD, BD, CD Pixel E uses rays AE, BE, CE Rays emanate from lens plane

CS5502 Fall 2006 (c) Chun-Fa Chang

Depth of Field

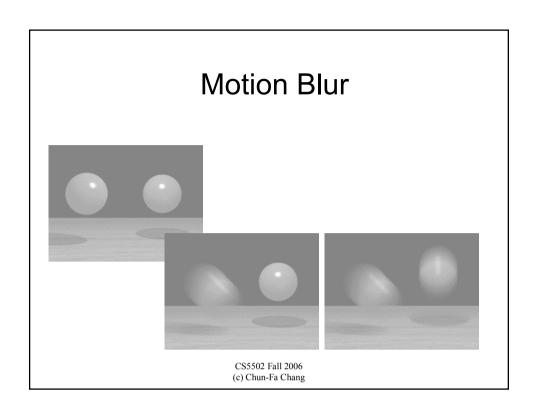
F-Stop = 5.8

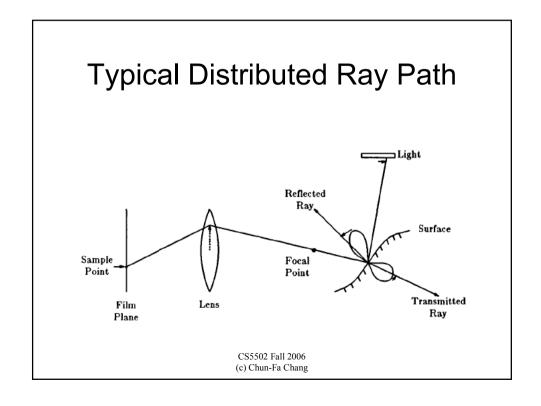
F-Stop = 2.8

Depth of Field

Focal Distance = 13

Focal Distance = 11


CS5502 Fall 2006 (c) Chun-Fa Chang


Motion Blur

- Sampling in time
- Each element in the cell stands for a time slice
- Jitter time slice to the current time
- Move object via the current time slice

6	10	2	13
3	14	12	8
15	0	7	11
5	9	4	1

Current time = Time Slice + Jitter Time e.g. time slice at left-upper = 6 + rand()

