Numerical Optimization Unit 8: Quadratic Programming, Active Set Method, and Sequential Quadratic Programming

Che-Rung Lee

Scribe: 陳南熹

April 27, 2011

Quadratic programming

The General form

$$
\min_{\vec{x}} g(\vec{x}) = \frac{1}{2} \vec{x}^T G \vec{x} + \vec{x}^T \vec{c}
$$

$$
s.t. \quad \vec{a}_i^T \vec{x} = b_i \quad i \in \mathcal{E}
$$

$$
\vec{a}_i^T \vec{x} \ge b_i \quad i \in \mathcal{I}
$$

The Lagrangian

$$
\mathcal{L}(\vec{x}, \vec{\lambda}) = \frac{1}{2} \vec{x}^T G \vec{x} + \vec{x}^T \vec{c} - \vec{\lambda}^T (A \vec{x} - \vec{b})
$$

$$
A = \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_m \end{bmatrix} \in \mathbb{R}^{m \times n} \text{ (assuming } m \le n)
$$

KKT condition

 $\nabla \mathcal{L}(\vec{x},\vec{\lambda}) = 0$ $\vec{a}_i^T \vec{x} = b_i \quad i \in \mathcal{E}$ $\vec{a}_i^T \vec{x} \ge b_i \quad i \in \mathcal{I}$ $\lambda_i > 0$ $i \in \mathcal{I}$ $\lambda_i(\vec{a}_i^T \vec{x} - \vec{b}_i) = 0, \quad i \in \mathcal{I}$

 \bullet If G is positive definite and $\vec x^*, \vec \lambda^*$ satisfy KKT conditions, then $\vec x^*$ is the global solution of the optimization problem (Homework)

KKT Matrix

Let's first consider the equality constraints only

$$
\nabla \mathcal{L}(\vec{x}, \vec{\lambda}) = 0 \Rightarrow \begin{aligned} G\vec{x} - A^T \vec{\lambda} &= -\vec{c} \\ A\vec{x} &= \vec{b} \end{aligned}
$$
\n
$$
\Rightarrow \begin{bmatrix} G & -A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{\lambda} \end{bmatrix} = \begin{bmatrix} -\vec{c} \\ \vec{b} \end{bmatrix}
$$
\n
$$
\Rightarrow \begin{bmatrix} G & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \vec{x} \\ -\vec{\lambda} \end{bmatrix} = \begin{bmatrix} -\vec{c} \\ \vec{b} \end{bmatrix}
$$

The matrix $\begin{bmatrix} G & A^T \ A & 0 \end{bmatrix}$ $A \quad 0$ $\Big]$ is called the KKT matrix.

- If A has full row-rank and the reduced Hessian $Z^{\mathcal{T}}GZ$ is positive definite, where span $\{Z\}$ is the null space of span $\{A^{\mathcal{T}}\}$ then the <code>KKT</code> matrix is nonsingular. (Homework)
- \bullet If there are only equality constraints, solve (1) directly can get optimal solution.

(1)

A general strategy for linear equality constraints is variable elimination.

Variable elimination

- Let $A\vec{x}=\vec{b}$ be the linear equality constraints. $A\in \mathbb{R}^{m\times n},$ $\vec{x}\in \mathbb{R}^n,$ and $\vec{b} \in \mathbb{R}^m$. we assume $m < n$.
- We can choose *m* linearly independent columns to be "basic variables" and use them to solve the constraints. Others are called "nonbasic variables", setting to 0. Let

$$
AP = [B|N], \left(\begin{array}{c} \vec{x}_B \\ \vec{x}_N \end{array}\right) = P^T \vec{x}
$$

where P is a permutation matrix.

$$
\vec{b}=A\vec{x}=APP^T\vec{x}=B\vec{x}_B+N\vec{x}_N.
$$

Variable elimination 2/2

Therefore, $\vec{x}_B = B^{-1}b - B^{-1}N\vec{x}_N$. The original constrained problem becomes an unconstrained problem

$$
\min_{\vec{x}} f(\vec{x}) \qquad \text{s.t.} \qquad A\vec{x} = \vec{b} \quad \Longrightarrow \quad \min_{\vec{x}_N} f\left(\begin{bmatrix} B^{-1}b - B^{-1}N\vec{x}_N \\ \vec{x}_N \end{bmatrix}\right)
$$

- For nonlinear equality constraints, variable elimination may not feasible.
- For example,

$$
\min_{x,y} x^2 + y^2
$$

s.t. $(x - 1)^3 = y^2$

The solution is at $(x, y) = (1, 0)$. Using variable elimination, the problems becomes min $_x x^2 + (x-1)^3$ which is unbounded.

• For inequality constraints, we can use the active set method.

Active set method

Active set method solves constrained optimization problems by searching solutions in the feasible sets.

- **If constraints are linear and one can guess the active constrains for** the optimal solution, then one can use the active constraints to reduce the number of unknowns, and then perform algorithms for unconstrained optimization problems.
- Problem: how to guess the set of active constraints.
- **•** Linear programming is an active set method.

Active set method for convex QP

Consider the following example

Example

$$
\min_{x} g(\vec{x}) = (x_1 - 1)^2 + (x_2 - 2.5)^2
$$
\ny
\ns.t. $x_1 - 2x_2 + 2 \ge 0$ -(1)
\n $-x_1 - 2x_2 + 6 \ge 0$ -(2)
\n $-x_1 + 2x_2 + 2 \ge 0$ -(3)
\n $x_1, x_2 \ge 0$ -(4),(5)
\n• Initial step $\vec{x}_0 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
\n• The working set $W_0 = \{(3), (5)\}$

Solve the EQP

Example

$$
\min_{\vec{x}} g(\vec{x}) = x_1^2 - 2x_1 + 1 + x_2^2 - 5x + \frac{25}{4}
$$

$$
\min_{\vec{x}} \vec{x} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} -2 \\ -5 \end{pmatrix}^T \vec{x} + \frac{29}{4}
$$

s.t.
$$
\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \vec{x} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}
$$

Since it has equality constraints only, using KKT system to solve the QP.

$$
K = \left(\begin{array}{rrr} 2 & 0 & -1 & 0 \\ 0 & 2 & 2 & 1 \\ -1 & 2 & 2 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right) \left(\begin{array}{c} \vec{x} \\ -\vec{\lambda} \end{array}\right) = \left(\begin{array}{c} 2 \\ 5 \\ -2 \\ 0 \end{array}\right)
$$

Optimality check

Example

- The solution of the KKT system is $\vec{x}_1 = \begin{pmatrix} 2 & 1 \ 0 & 0 \end{pmatrix}$
- 0 $\bigg), \vec{\lambda}_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ −1 \setminus
- **•** Both Lagrangian multipliers are negative
	- \Rightarrow This is not the optimal solution.
	- ⇒ Remove one of the constraint $W_1 = \{(5)\}\)$ and solve the KKT system again.

$$
\begin{pmatrix} 2 & 0 & 0 \ 0 & 2 & 1 \ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \vec{x}_2 \\ -\vec{\lambda}_2 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ -2 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{\lambda}_2 = -5
$$

• Let $\vec{p}_1 = \vec{x}_2 - \vec{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ be the search direction, and search $\alpha_1 \in [0, 1]$, such that $\vec{x}_2^+ = \vec{x}_1 + \alpha_1 \vec{p}_1$ is feasible.

Feasibility check

Example

• The feasibility check:
$$
\vec{x}_1 + \alpha_1 \vec{p}_1 = \begin{pmatrix} 2 - \alpha_1 \\ 0 \end{pmatrix} \Rightarrow \alpha_1 = 1
$$

Move to $\vec{x}_2 = \vec{x}_2^+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

• But $\vec{\lambda}_2$ < 0, it is not the optimal solution. \Rightarrow Remove one more constraint $\mathcal{W}_2 = \emptyset$

$$
\left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right) \left(\begin{array}{c} \vec{x}_3 \end{array}\right) = \left(\begin{array}{c} 2 \\ 5 \end{array}\right) \Rightarrow \vec{x}_3 = \left(\begin{array}{c} 1 \\ 2.5 \end{array}\right)
$$

Let
$$
\vec{p}_2 = \begin{pmatrix} 1 \\ 2.5 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2.5 \end{pmatrix}
$$
 be the search direction.
\n
$$
\vec{x}_3^+ = \vec{x}_2 + \alpha_2 \vec{p}_2 = \begin{pmatrix} 1 \\ 2.5\alpha_2 \end{pmatrix}, \quad \alpha_2 \in [0, 1]
$$

Example

\n- For
$$
\alpha_2 = 1
$$
, constraint (1) will be invalided: $\Rightarrow x_1 - 2x_2 + 2 \geq 0 \Rightarrow \alpha_2 \leq 0.6$.
\n- Move to $\vec{x}_3 = \begin{pmatrix} 1 \\ \frac{5}{2} \cdot 0.6 \end{pmatrix} = \begin{pmatrix} 1 \\ 1.5 \end{pmatrix}$, and add (1) to the working set, $\mathcal{W}_3 = \{(1)\}$.
\n

• Solve the KKT conditions:

$$
\left(\begin{array}{ccc}2&0&1\\0&2&-2\\1&-2&0\end{array}\right)\left(\begin{array}{c}\vec{x}_4\\-\vec{\lambda}_4\end{array}\right)=\left(\begin{array}{c}2\\5\\-2\end{array}\right)\qquad\vec{x}_4=\left(\begin{array}{c}1.4\\1.7\end{array}\right)\\ \vec{\lambda}_4=0.8
$$

Since $\lambda \geq 0$ and all constraints are satisfied, it is the optimal solution.

Gradient projection method

A special case of inequality constrains are bounded constraints

$$
\min_{\vec{x}} q(\vec{x}) = \frac{1}{2} \vec{x} G \vec{x} + \vec{x}^T \vec{c}
$$
\n
$$
\text{s.t.} \quad \vec{l} \le \vec{x} \le \vec{u} \quad \text{(which means } l_i \le x_i \le u_i \text{ for all } i\text{)}
$$

which can be solved by gradient project method.

Algorithm: Gradient projection method

1 Given \vec{x}_0 .

• For
$$
k = 0, 1, 2, \ldots
$$
 until converge

- (a) Find a search direction \vec{g} .
- (b) Construct a piece wise linear function $x(t) = p(\vec{x} + t\vec{g}, \vec{l}, \vec{u})$
- (c) In each line sequent of $x(t)$ find the optimal solution \vec{x}^c

(d) Use
$$
\vec{x}^c
$$
 as an initial guess to solve $\min_{\vec{x}} q(\vec{x})$

$$
\text{s.t. } \left\{ \begin{array}{ll} x_i = x_i^c & i \in A(\vec{x}^c) \\ l_i \le x_i \le u_i & i \notin A(\vec{x}^c) \end{array} \right.
$$

In the algorithm $1/2$

- \bullet For 2(a), the search direction can be any descent direction, such as $-\nabla q$.
- \bullet For 2(b), the piecewise linear function is computed as

$$
p(\vec{x}, \vec{l}, \vec{u})_i = \begin{cases} l_i & \text{if } x_i < l_i \\ x_i & \text{if } x_i \in [l_i, u_i] \\ u_i & \text{if } x_i > u_i \end{cases}
$$

For each element x_i , compute \bar{t}_i as

$$
\bar{t}_i = \begin{cases}\n(l_i - x_i)/g_i & \text{if } g_i < 0, \text{ and } l_i > -\infty \\
(u_i - x_i)/g_i & \text{if } g_i > 0, \text{ and } u_i < +\infty \\
\infty & \text{otherwise}\n\end{cases}
$$

\n- \n
$$
\text{Sort } \{\bar{t}_1, \bar{t}_2, \ldots, \bar{t}_n\}
$$
\n to get\n $t_0 = 0 < t_1 < t_2 < \ldots < t_{m-1} < \infty = t_m$ \n
\n- \n For each $[t_{j-1}, t_j], x(t) = x(t_{j-1}) + (t - t_{j-1})\vec{p}^{j-1}$,\n where\n $p_j^{j-1} = \n \begin{cases}\n g_i & \text{if } t_{j-1} < \bar{t}_i \\
 0 & \text{otherwise}\n \end{cases}$ \n
\n

For 2(c), we search optimal solution segment by segment $[t_{j-1},\,t_j].$ Let $\Delta t = t - t_{j-1}, x(\Delta t) = x(t_{j-1}) + \Delta t \vec{p}^{j-1}.$

$$
q(x(\Delta t)) = \vec{c}^{T}(x(t_{j-1}) + \Delta t \vec{p}^{j-1}) +
$$

\n
$$
\frac{1}{2}(x(t_{j-1} + \Delta t \vec{p}^{j-1})^{T} G(x(t_{j-1} + \Delta t \vec{p}^{j-1}))
$$

\n
$$
= \frac{1}{2}a(\vec{p}^{j-1})\Delta t^{2} + b(\vec{p}^{j-1})\Delta t + c(\vec{p}^{j-1})
$$

for some function
$$
a, b, c
$$
 of \vec{p}^{j-1} .
Optimal $\Delta t^* = \frac{-b(\vec{p}^{j-1})}{a(\vec{p}^{j-1})}$ and $t^* = t_{j-1} + \Delta t^*$.

- Recall the Newton's method for unconstrained problem. It builds a quadratic model at each x_K and solve the quadratic problem at every step.
- SQP uses similar idea: It builds a QP at each step, $f: \mathbb{R}^n \to \mathbb{R}, \qquad c: \mathbb{R}^n \to \mathbb{R}^m$

$$
\min_{\vec{x}} f(\vec{x}) \qquad s.t. \quad c(\vec{x}) = 0
$$

- Let $A(\vec{x})$ be the Jacobian of $c(\vec{x})$: $A(\vec{x}) = \begin{pmatrix} \nabla c_1 & \nabla c_2 & \cdots & \nabla c_m \end{pmatrix}^T$
- The Lagrangian $\mathcal{L}(\vec{x},\vec{\lambda}) = f(\vec{x}^*) \lambda^T c(\vec{x})$
- The KKT condition: $\nabla f(\vec{x}^*) A(\vec{x}^*)^{\mathsf{T}} \vec{\lambda}^* = 0$, $c(\vec{x}^*) = 0$

Newton's method

• Let
$$
F(\vec{x}, \vec{\lambda}) = \begin{bmatrix} \nabla_x \mathcal{L}(\vec{x}, \vec{\lambda}) \\ c(\vec{x}) \end{bmatrix} = \begin{bmatrix} \nabla f(\vec{x}) - A(\vec{x})^T \vec{\lambda} \\ c(\vec{x}) \end{bmatrix}
$$
. The optimal solution $\vec{x}^*, \vec{\lambda}^*$ must satisfy the KKT condition $\Rightarrow F(\vec{x}^*, \vec{\lambda}^*) = 0$.

• Using Newton's method to solve $F = 0$.

• The Jacobian
$$
\nabla F(\vec{x}, \vec{\lambda}) = \begin{bmatrix} \nabla_{xx} \mathcal{L} & -A(\vec{x})^T \\ A(\vec{x}) & 0 \end{bmatrix}
$$

• The Newton step

$$
\left[\begin{array}{c}\vec{x}_{k+1} \\ \vec{\lambda}_{k+1}\end{array}\right] = \left[\begin{array}{c}\vec{x}_k \\ \vec{\lambda}_k\end{array}\right] + \left[\begin{array}{c}\vec{p}_k \\ \vec{\ell}_k\end{array}\right],
$$

where

$$
\begin{bmatrix} \nabla_{xx} \mathcal{L} & -A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} \vec{p}_k \\ \vec{\ell}_k \end{bmatrix} = \begin{bmatrix} -\nabla f_k + A_k^T \vec{\lambda}_k \\ -c_k \end{bmatrix}
$$
 (2)

(We use $A_k = A(\vec{x}_k)$, $f_k = f(\vec{x}_k)$, and $c_k = c(\vec{x}_k)$.)

Alternative formulation

• To simply that, we examine the first equation

$$
\nabla_{xx}\mathcal{L}\vec{p}_k - A_k^T \vec{\ell}_k = -\nabla f_k + A_k^T \vec{\lambda}_k
$$

Since $A(\mathsf{x}_k)^\mathsf{T} (\vec{\lambda}_k + \vec{\ell}_k) = A(\mathsf{x}_k)^\mathsf{T} \vec{\lambda}_{k+1}$, we can rewrite [\(2\)](#page-16-0) as $\left[\begin{array}{cc} \nabla_{xx}\mathcal{L} & A_k^{\mathcal{T}} \\ A_k & 0 \end{array} \right]$ $\left[\begin{array}{c} \vec{p}_k \ \vec{-\lambda}_{k+1} \end{array}\right] = \left[\begin{array}{c} -\nabla f_k \ -c_k \end{array}\right]$ $-c_k$ 1 (3)

If A_k is of full row-rank and $Z^{\mathcal{T}} \nabla^2_{xx} \mathcal{L} Z$ is positive definition, where Z is the null space of span A_k , then the above equation solves the following QP

$$
\min_{\vec{\rho}} \frac{1}{2} \vec{\rho}^T \nabla_{xx} \mathcal{L} \vec{\rho} + \nabla_x f_k^T \vec{\rho}
$$

$$
s.t. \quad A_k \vec{p} + \vec{c}_k = 0
$$

• For inequality, we can are the similar technique: $A_k\vec{p} + c_k \ge 0$

Algorithm: The sequential quadratic programming

1 Given \vec{x}_0 . **2** For $k = 0, 1, 2, \ldots$ until converge **Q** Solve min
 \vec{p}_k 1 $\frac{1}{2} \vec{p}_k^T \nabla_{xx}^2 \mathcal{L} \vec{p}_k + \nabla f_k^T \vec{p}_k$ Subject to $\nabla c_i(\vec{x}_k)^T \vec{p}_k + c_i(\vec{x}_k) = 0 \quad i \in \mathcal{E}$ $\nabla c_i(\vec{x}_k)^T \vec{p}_k + c_i(\vec{x}_k) \geq 0 \quad i \in \mathcal{I}$

2 Set $\vec{x}_{k+1} = \vec{x}_k + \vec{p}_k$

For inequality constraints, linearization may cause inconsistent problem. For example, consider the constraints

$$
c_1 : x - 1 \le 0
$$

$$
c_2 : x^2 - 4 \ge 0
$$

The feasible region is $x < -2$.

• The linearization of c_1 and c_2 at $x = 1$ becomes

$$
\begin{array}{l} \nabla c_1^{\mathcal{T}}\vec{p}+c_1(x)\leq 0\\ \nabla c_2^{\mathcal{T}}\vec{p}+c_2(x)\geq 0\end{array}\Rightarrow\begin{array}{l} \rho\leq 0\\ 2\rho-3\geq 0\end{array},
$$

for which feasible region is empty.