1 Polynomial of matrix A

1.1 Characteristic polynomial of matrix A

$$
P_{A}(x)=|A-x I| .
$$

example: given

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right], \\
P_{A}(x)=|A-x I|=\left|\begin{array}{cc}
1-x & 4 \\
3 & 2-x
\end{array}\right|=x^{2}-3 x-10 .
\end{gathered}
$$

Let $P_{A}(x)=0$, then $x_{1}=-5, x_{2}=2$, which are the eigenvalues of matrix A. This polynomial encodes several important properties of the matrix, most notably its eigenvalues, its determinant and its trace. [wikipedia]

1.2 Cayley-Hamilton theorem

Let $P_{A}(x)$ be the Characteristic polynomial of matrix A, then

$$
P_{A}(A)=0 .
$$

try it:

$$
\begin{aligned}
P_{A}(A) & =A^{2}-3 A-10 I \\
& =\left[\begin{array}{cc}
13 & 12 \\
9 & 16
\end{array}\right]-3\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right]-10\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

A bogus proof: $p(A)=\operatorname{det}(A I-A)=\operatorname{det}(A-A)=0$. formal proof:

Since $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, are root of $P_{A}(x)=0$.

1.3 express a matrix by its characteristic polynomial

We can use polynomials of A to express any functions of A if A is diagonalizable.

$$
\begin{gathered}
f(x)=x^{-1}=a_{1} x^{1}+\ldots+a_{i} x^{i} . \\
A^{-1}=f(A) .
\end{gathered}
$$

example: given

$$
A=\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right]
$$

the eigenvalues of A are $\lambda_{1}=5, \lambda_{2}=-2$.

$$
\begin{aligned}
P(A) & =A^{-1}=x^{2}+b x+c \\
P(5)=f(5) & =1 / 5=(1 / 5)^{2}+(1 / 5) b+c
\end{aligned}
$$

$$
0-2
$$

$$
\begin{aligned}
& P_{A}(x)=\sum_{i=1}^{n} a_{i} x^{i} \\
& \Rightarrow P_{A}(A)=\sum_{i=1}^{n} a_{i} A^{i} \\
& =\sum_{i=1}^{n} a_{i}\left(X \Lambda X^{-1}\right)^{i} \\
& =\sum_{i=1}^{n} a_{i} X \Lambda^{i} X^{-1} \\
& =X\left(\sum_{i=1}^{n} a_{i} \Lambda^{i}\right) X^{-1} \\
& =X\left[\begin{array}{cccccc}
\sum_{i=1}^{n} a_{i} \lambda_{1}^{i} & & & & \\
0 & \sum_{i=1}^{n} a_{i} \lambda_{2}^{i} & & & 0 & \\
0 & & \sum_{i=1}^{n} a_{i} \lambda_{3}^{i} & & & \\
& & & \ddots & & \sum_{i=1}^{n} a_{i} \lambda_{n}^{i}
\end{array}\right] X^{-1} \\
& =X\left[\begin{array}{cccccc}
P_{A}\left(\lambda_{1}\right) & & & & \\
& P_{A}\left(\lambda_{2}\right) & & & 0 & \\
0 & & P_{A}\left(\lambda_{3}\right) & & & \\
& & & \ddots & & P_{A}\left(\lambda_{n}\right)
\end{array}\right] X^{-1} \\
& =0,
\end{aligned}
$$

$$
\begin{gathered}
P(-2)=f(-2)=-1 / 2=(-1 / 2)^{2}+(-1 / 2) b+c \\
\Rightarrow b=-2.9, c=-10.3 \\
\Rightarrow P(x)=x^{2}-2.9 x-10.3 \\
P(A)=A^{2}-2.9 A-10.3 I=A^{-1}
\end{gathered}
$$

.(check by hand)
We can replace the operation on matrix A by with a corresponding polynomial, the coeffients of the polynomial are computed similarly.

1.4 interpolation and approximation of polynomial

- Interpolation

$$
P(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

find a_{n-1}, \ldots, a_{0}, such that for all $\lambda_{i}, P\left(\lambda_{i}\right)=f\left(\lambda_{i}\right)$.

$$
\left[\begin{array}{ccccc}
\lambda_{1}^{n-1} & \lambda_{1}^{n-2} & \ldots & \lambda_{1} & 1 \\
\lambda_{2}^{n-1} & \lambda_{2}^{n-2} & \ldots & \lambda_{2} & 1 \\
\vdots & & & & \vdots \\
\lambda_{n}^{n-1} & \lambda_{n}^{n-2} & \ldots & \lambda_{n} & 1
\end{array}\right] *\left[\begin{array}{c}
a_{n-1} \\
a_{n-2} \\
\vdots \\
a_{1} \\
a_{0}
\end{array}\right]=\left[\begin{array}{c}
f\left(\lambda_{1}\right)-\lambda_{1}^{n} \\
f\left(\lambda_{2}\right)-\lambda_{2}^{n} \\
\vdots \\
f\left(\lambda_{n}\right)-\lambda_{n}^{n}
\end{array}\right]
$$

That is the form of $A x=b$, where $A \in \mathbb{R}^{n \times n} ; x, b \in \mathbb{R}^{n \times 1}$.

- Approximation use low-dimensional polynomial to approximate high-dimensional poltnomial.

$$
P(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{1} x+a_{0}
$$

find a_{n-1}, \ldots, a_{0}, such that for all $\lambda_{i}, P\left(\lambda_{i}\right) \approx f\left(\lambda_{i}\right)$.

$$
\left[\begin{array}{ccccc}
\lambda_{1}^{k} & \lambda_{1}^{k-2} & \ldots & \lambda_{1} & 1 \\
\lambda_{2}^{k} & \lambda_{2}^{k-2} & \ldots & \lambda_{2} & 1 \\
\vdots & & & & \vdots \\
\lambda_{n}^{k} & \lambda_{n}^{k-2} & \ldots & \lambda_{n} & 1
\end{array}\right] *\left[\begin{array}{c}
a_{k} \\
a_{k-1} \\
\vdots \\
a_{1} \\
a_{0}
\end{array}\right] \approx\left[\begin{array}{c}
f\left(\lambda_{1}\right) \\
f\left(\lambda_{2}\right) \\
\vdots \\
f\left(\lambda_{n}\right)
\end{array}\right]
$$

That is the form of $A x \approx b$, where $A \in \mathbb{R}^{n \times k} ; x \in \mathbb{R}^{k \times 1} ; b \in \mathbb{R}^{n \times 1}$, and $k<n$. We can treat it as a least squares problem and solve x for the polynomial coefficients.

1.5 Krylov subspace

An m-dimentional Krylov subspace of A is defined as follows:

$$
\mathcal{K}_{m}\left(A, \vec{q}_{1}\right)=\operatorname{span}\left\{\vec{q}_{1}, A \vec{q}_{1}, A^{2} \vec{q}_{1}, \ldots, A^{m-1} \vec{q}_{1}\right\} .
$$

Different \vec{q}_{1} results in different subspace $\mathcal{K}_{m}\left(A \vec{q}_{1}\right)$.

$$
0-3
$$

Since the above operation is numerically unstable, we use Arnoldi mehtod to generate an equvalent subspace. The basic idea of Arnoldi method is similar to Gram-Schmidt process.
for $i=1 \ldots m$ do $\vec{y}_{i}=A \vec{q}_{i}$ orthogonalize \vec{y}_{i} against current subspace Q_{i} such that $\vec{y}_{i}=Q_{i} \vec{h}_{i}+\vec{z}$ if $\|\vec{z}\|$ euqals 0 then reach invariant subspace breaktheloop end
$\vec{q}_{i+1}=\vec{z} /\|\vec{z}\|$ $Q_{i+1}=\left[Q_{i} q_{i+1}\right]$
end
Then $\operatorname{span}\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}, \ldots, \vec{q}_{m}\right\}=\operatorname{span}\left\{\vec{q}_{1}, A \vec{q}_{1}, A^{2} \vec{q}_{1}, \ldots, A^{m-1} \vec{q}_{1}\right\}$.

