Advanced Numerical Methods
Lecture Notes 10: $3.5 \& 3.6$ Eigenvalue problems 5, 2012
Lecturer: Che-Rung Lee
Scribe: Carl Yu

1 Symmetric Eigenvalue problems

- Bisection method
- Singular value decomposition (SVD)

1.1 Bisection method

Suppose $z_{1}<z_{2}$, the number of eigenvalues of A in the interval $\left[z_{1}, z_{2}\right)$ equals to (number of negative eigenvalues of $\left(A-z_{2} I\right)$) - (number of negative eigenvalues of $\left.\left(A-z_{1} I\right)\right)$

Figure 1: Bisection method

Question : $B=A-3 I$, what's the property between A and B 's eigenvector and eigenvalue ?
$\Rightarrow B$'s eigenvector $=A$'s eigenvector
$\Rightarrow B$'s eigenvalue $=A$'s eigenvalue make a left shift of 3
Theorem : LDLT decomposition :

1. When A is symmetric, one can decompose $A=L D L^{T}$
<proof >

$$
\begin{aligned}
A & =L U=L D\left(D^{-1} U\right), \text { where } D=\operatorname{diag}(U) \\
A^{T} & =\left(D^{-1} U\right)^{T} D^{T} L^{T}=A, \text { where } L=\left(D^{-1} U\right)^{T} \\
\Rightarrow A & =L D L^{T}
\end{aligned}
$$

```
Algorithm 1 Bisection method ( \(A, a, b, \varepsilon\) )
    1. \(n_{a}=\) number of negative eigenvalues of \((A-a I)\)
    2. \(n_{b}=\) number of negative eigenvalues of \((A-b I)\)
    3. if \(\left(n_{a}=n_{b}\right)\)
    4. stop
    5. enque( \(\left.a, n_{a}, b, n_{b}\right)\)
    6. while queue is not empty
    7. deque(low, \(\left.n_{l}, u p, n_{u}\right)\)
    8. if \(\left(n_{u}==n_{l}\right)\)
    9. stop
    10. else if (up \(-l o w<\varepsilon\) )
    11. report eigenvalue \(=\frac{u p+l o w}{2}\)
    12. else
    13. \(\quad\) mid \(=\frac{u p+\text { low }}{2}\)
    14. \(\quad n_{m}=\) number of negative eigenvalues of \((A-\operatorname{mid} * I)\)
    15. \(\operatorname{enque(low,~} n_{l}\), mid, \(n_{m}\) )
    16. enque(mid, \(\left.n_{m}, u p, n_{u}\right)\)
    17. end if
    18. end while
```

Note : In Cholesky decomposition, matrix A has to be both symmetric and positive definite.
However, in LDLT decomposition, matrix A only has to be symmetric.
2. $\operatorname{Inertia}(A)=\operatorname{Inertia}\left(L D L^{T}\right)$

As long as L is nonsingular $\Rightarrow \operatorname{Inertia}(A)=\operatorname{Inertia}(D)$
$<$ proof $>$ Suppose exists B such that $B=Y^{-1} A Y, A$ and B are similiar.

$$
\begin{aligned}
A & =X \Lambda X^{-1} \\
\Rightarrow B & =Y^{-1} A Y=Y^{-1} X \Lambda X^{-1} Y=Z \Lambda Z^{-1}
\end{aligned}
$$

3. Suppose A is symmetric tridiagonal

$$
\begin{aligned}
A-z I & =\left[\begin{array}{cccc}
a_{1}-z & b_{1} & & \\
b_{1} & a_{2}-z & \ddots & \\
& & \ddots & \ddots \\
\\
& & b_{n-1} & a_{n-1}-z
\end{array}\right] \\
& =L D L^{T} \\
& =\left[\begin{array}{ccc}
1 & & \\
l_{1} & 1 & \\
& \ddots & \ddots \\
& & l_{n-1} \\
& 1
\end{array}\right]\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]\left[\begin{array}{cccc}
1 & l_{1} & & \\
& 1 & \ddots & \\
& & \ddots & l_{n-1} \\
& & & 1
\end{array}\right] \\
\text { where } d_{i} & =\left(a_{i}-z\right)-\frac{b_{i-1}^{2}}{d_{i-1}}
\end{aligned}
$$

Question : What if the d_{i} have zeros?
\Rightarrow Then z is A 's eigenvalue.

Question : How to calculate Inertia (D) ?
\Rightarrow From the above, we can calculate how many d_{i} that is positive, negative or zero.
Example : $D \in \mathbb{R}^{5 \times 5}$

$$
D=\left[\begin{array}{lllll}
d_{1} & & & & \\
& d_{2} & & & \\
& & d_{3} & & \\
& & & d_{4} & \\
& & & & d_{5}
\end{array}\right]
$$

where $d_{1}, d_{2}>0, d_{3}, d_{4}<0, d_{5}=0 \Rightarrow \operatorname{Inertia}(D)=(2,1,2)$

1.2 Singular value decomposition (SVD)

$A \in \mathbb{R}^{m \times n}$, and $m>n$, there exist orthogonal matrix U and V such that $A=U \Sigma V^{T}$,
where $\Sigma=\left(\begin{array}{cccc}\sigma_{1} & & & \\ & \sigma_{2} & & \\ & & \ddots & \\ & & & \sigma_{n}\end{array}\right)$ with $\sigma_{1} \geq \sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0, U \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$
$U=\left(\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \cdots, \overrightarrow{u_{n}}\right), V=\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \cdots, \overrightarrow{v_{n}}\right)$, and $\sigma_{1}, \sigma_{1}, \cdots, \sigma_{n}$ are called the singular values of A

(a) $m>n$
(b) $m<n$

Figure 2: Singular value decomposition

1. $\quad A \overrightarrow{v_{i}}=\sigma_{i} \overrightarrow{u_{i}}$
<proof $>$

$$
\begin{aligned}
A V & =U \Sigma\left(V^{T} V\right) \\
& =U \Sigma \\
\Rightarrow\left(A \overrightarrow{v_{1}}, A \overrightarrow{v_{2}}, \cdots, A \overrightarrow{v_{n}}\right) & =\left(\sigma_{1} \overrightarrow{u_{1}}, \sigma_{2} \overrightarrow{u_{2}}, \cdots, \sigma_{n} \overrightarrow{u_{n}}\right)
\end{aligned}
$$

2. $\quad A^{T} A \overrightarrow{v_{i}}=\sigma_{i}^{2} \overrightarrow{v_{i}}$
$A A^{T} \overrightarrow{u_{i}}=\sigma_{i}^{2} \overrightarrow{u_{i}}$
$<$ proof $>\quad A=U \Sigma V^{T}, \quad A^{T}=V \Sigma U^{T}$

$$
\begin{aligned}
A^{T} A & =V \Sigma U^{T} U \Sigma V^{T} \\
& =V \Sigma^{2} V^{T} \\
& =V \Sigma^{2} V^{-1}, \text { since } A^{T} A \text { is symmetric } \\
\Rightarrow A^{T} A \overrightarrow{v_{i}} & =\sigma_{i}^{2} \overrightarrow{v_{i}} \\
& =\left(\begin{array}{lll}
\sigma_{1}^{2} \overrightarrow{v_{1}} & & \\
& \ddots & \\
& & \sigma_{n}^{2} \overrightarrow{v_{n}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
A A^{T} & =U \Sigma V^{T} V \Sigma U^{T} \\
& =U \Sigma^{2} U^{T} \\
& =\left(U \mid U^{\prime}\right)\left(\begin{array}{ccc|ccc}
\sigma_{1}^{2} & & & & \\
& \ddots & (n) & & & \\
& (n) & \sigma_{n}^{2} & & & \\
\hline & & & 0 & (m-n) & \\
& & & (m-n) & \ddots & \\
& & & & & 0
\end{array}\right)\binom{U^{T}}{\hline U^{\prime T}}
\end{aligned}
$$

Note : $A^{T} A$ and $A A^{T}$ are both symmetric

$$
<\text { proof }>
$$

$$
\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A
$$

$$
\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}
$$

Note : $\quad A^{T} A \in \mathbb{R}^{n \times n}$, the Σ of $A^{T} A$ is $\left(\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}\right)$
However, since $A A^{T} \in \mathbb{R}^{m \times m}$, the Σ of $A A^{T}$ is $\left(\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}, 0, \cdots, 0\right)$ which has (m-n) zeros.
3. $\|A\|_{2}=\sigma_{1}$

Definition : For vector $\vec{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right),\|\vec{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, p=1,2, \cdots, \infty$
For matrix A, $\|A\|_{p}=\max _{\|\vec{x}\|_{p}=1}\|A \vec{x}\|_{p}$
<proof $>$

$$
\begin{aligned}
\|\vec{x}\|_{2}^{2} & =\vec{x}^{T} \vec{x} \\
\max \|A \vec{x}\|^{2} & =\max (A \vec{x})^{T}(A \vec{x}) \\
& =\max \vec{x}^{T} A^{T} A \vec{x} \\
& =\max \frac{\vec{x}^{T} A^{T} A \vec{x}}{\vec{x}^{T} \vec{x}}, \text { where }\|\vec{x}\|_{p}=1 \\
& =\sigma_{1}^{2}
\end{aligned}
$$

Example : $\left\|A^{-1}\right\|_{2}=\frac{1}{\sigma_{n}}$
4. Calculate Singular value decomposition (using givens rotation)

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right) \\
& \Rightarrow U_{1} A=\left(\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
\hline \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} & \mathbf{x}
\end{array}\right), U_{1} \text { is the rotation matrix of column } 3 \text { and } 4 . \\
& \Rightarrow U_{2} U_{1} A=\left(\begin{array}{cccc}
x & x & x & x \\
\hline \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\hline 0 & x & x & x
\end{array}\right), U_{2} \text { is the rotation matrix of column } 2 \text { and } 3 . \\
& \Rightarrow U_{3} U_{2} U_{1} A=\left(\begin{array}{cccc}
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
0 & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\hline 0 & x & x & x \\
0 & x & x & x
\end{array}\right), U_{3} \text { is the rotation matrix of column } 1 \text { and } 2 \text {. } \\
& \Rightarrow U_{3} U_{2} U_{1} A V_{4}=\left(\begin{array}{cc|cc}
x & x & \mathbf{x} & 0 \\
0 & x & \mathbf{x} & \mathbf{x} \\
0 & x & \mathbf{x} & \mathbf{x} \\
0 & x & \mathbf{x} & \mathbf{x}
\end{array}\right), V_{4} \text { is the rotation matrix of row } 3 \text { and } 4 . \\
& \Rightarrow U_{3} U_{2} U_{1} A V_{4} V_{5}=\left(\begin{array}{c|cc|c}
x & \mathbf{x} & 0 & 0 \\
0 & \mathbf{x} & \mathbf{x} & x \\
0 & \mathbf{x} & \mathbf{x} & x \\
0 & \mathbf{x} & \mathbf{x} & x
\end{array}\right), V_{5} \text { is the rotation matrix of row } 2 \text { and } 3 . \\
& \Rightarrow U_{6} U_{3} U_{2} U_{1} A V_{4} V_{5}=\left(\begin{array}{cccc}
x & x & 0 & 0 \\
0 & x & x & x \\
\hline \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x}
\end{array}\right), U_{6} \text { is the rotation matrix of column } 3 \text { and } 4 . \\
& \Rightarrow U_{7} U_{6} U_{3} U_{2} U_{1} A V_{4} V_{5}=\left(\begin{array}{cccc}
x & x & 0 & 0 \\
\hline \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\
\hline 0 & 0 & x & x
\end{array}\right), U_{7} \text { is the rotation matrix of column } 2 \text { and } 3 . \\
& \left.\Rightarrow U_{7} U_{6} U_{3} U_{2} U_{1} A V_{4} V_{5} V_{8}=\left(\begin{array}{cc|cc}
x & x & \mathbf{0} & \mathbf{0} \\
0 & x & \mathbf{x} & \mathbf{0} \\
0 & 0 & \mathbf{x} & \mathbf{x} \\
0 & 0 & \mathbf{x} & \mathbf{x}
\end{array}\right)\right), V_{8} \text { is the rotation matrix of row } 3 \text { and } 4 . \\
& \Rightarrow U_{9} U_{7} U_{6} U_{3} U_{2} U_{1} A V_{4} V_{5} V_{8}=\left(\begin{array}{cccc}
x & x & 0 & 0 \\
0 & x & x & 0 \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x}
\end{array}\right), U_{9} \text { is the rotation matrix of column } 3 \text { and } 4 . \\
& =U A V_{0}^{T}-\overline{\overline{6}} C=\left(\begin{array}{cccc}
a_{1} & b_{1} & 0 & 0 \\
0 & a_{2} & b_{2} & 0 \\
0 & 0 & a_{3} & b_{3} \\
0 & 0 & 0 & a_{4}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
B & =C^{T} C \\
\Rightarrow G_{1}^{T} B G_{1} & =G_{1}^{T} C^{T} C G_{1}, \text { where } G_{1} \text { is the rotation matrix of column } 1 \text { and } 2 \text { in matrix } B \\
& =\underbrace{G_{1}^{T} C^{T}}_{B^{\prime}} \underbrace{\left(C G_{1}\right)}_{B^{\prime T}}
\end{aligned}
$$

Note : Since $G_{1}^{T} C^{T}$ and $C G_{1}$ are mutually transposed, we only have to look one part and the other part is its transpose.

$$
\begin{array}{rl}
C G_{1} & =\left(\begin{array}{llll}
x & x & 0 & 0 \\
0 & x & x & 0 \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right)\left(\begin{array}{cc|cc}
\cos & -\sin & 0 & 0 \\
\sin & \cos & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
x & x & 0 & 0 \\
x & x & x & 0 \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right), \text { we try to transform it to a bidiagonal form } \\
\Rightarrow G_{2} C G_{1} & =\left(\begin{array}{llll}
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} \\
0 & \mathbf{x} & \mathbf{x} & \mathbf{0} \\
\hline 0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right), G_{2} \text { is the rotation matrix of row } 1 \text { and } 2 . \\
\Rightarrow G_{2} C G_{1} G_{3} & =\left(\begin{array}{llll}
x & \mathbf{x} & 0 & 0 \\
0 & \mathbf{x} & \mathbf{x} & 0 \\
0 & \mathbf{x} & \mathbf{x} & x \\
0 & \mathbf{0} & \mathbf{0} & x
\end{array}\right), G_{3} \text { is the rotation matrix of column } 2 \text { and } 3 . \\
\Rightarrow G_{4} G_{2} C G_{1} G_{3} & =\left(\begin{array}{llll}
x & x & 0 & 0 \\
\hline \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & 0 & \mathbf{x} & \mathbf{x} \\
\hline 0 & 0 & 0 & x
\end{array}\right), G_{4} \text { is the rotation matrix of row } 2 \text { and } 3 . \\
\Rightarrow G_{4} G_{2} C G_{1} G_{3} G_{5} & =\left(\begin{array}{ll|ll}
x & x & \mathbf{0} & \mathbf{0} \\
0 & x & \mathbf{x} & 0 \\
0 & 0 & \mathbf{x} & \mathbf{x} \\
0 & 0 & \mathbf{x} & \mathbf{x}
\end{array}\right), G_{5} \text { is the rotation matrix of column } 3 \text { and } 4 . \\
\Rightarrow G_{6} G_{4} G_{2} C G_{1} G_{3} G_{5} & =\left(\begin{array}{lll}
x & x & 0
\end{array} 0\right. \\
0 & x
\end{array} x
$$

$$
\begin{aligned}
B & =C^{T} C \\
& =\left(\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
b_{1} & a_{2} & 0 & 0 \\
0 & b_{2} & a_{3} & 0 \\
0 & 0 & b_{3} & a_{4}
\end{array}\right)\left(\begin{array}{cccc}
a_{1} & b_{1} & 0 & 0 \\
0 & a_{2} & b_{2} & 0 \\
0 & 0 & a_{3} & b_{3} \\
0 & 0 & 0 & a_{4}
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{cccc}
a_{1}^{2} & a_{1} b_{1} & 0 & 0 \\
a_{1} b_{1} & a_{2}^{2}+b_{1}^{2} & a_{2} b_{2} & 0 \\
0 & a_{2} b_{2} & a_{3}^{2}+b_{2}^{2} & a_{3} b_{3} \\
0 & 0 & a_{3} b_{3} & a_{4}^{2}+b_{3}^{2}
\end{array}\right)}_{\text {tridiagonal }}
\end{aligned}
$$

Note : Since we have run so many QR decompositions,
the $U_{\infty} \underbrace{C_{\infty}}_{\Sigma} V_{\infty}^{T}$ in the end will become $\left(\begin{array}{cccc}x & x \rightarrow 0 & 0 & 0 \\ 0 & x & x \rightarrow 0 & 0 \\ 0 & 0 & x & x \rightarrow 0 \\ 0 & 0 & 0 & x\end{array}\right)$

