Lecture Notes 7: Eigenvalue Problem

Lecturer: Che-Rung Lee
Scribe: Zhen-Yu Peng

3 Eigenvalue Problem

3.1 Definition

- Given an $n \times n$ matrix A, an eigenvalue λ of A is a scalar such that $A \vec{x}=\lambda \vec{x}$ for a nonzero vector \vec{x}, \vec{x} is call an eigenvector.
- If there exists n linearly independent eigenvectors $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$, we said A is diagonalizable.

$$
\begin{aligned}
& X=\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \ldots, \vec{x}_{n}\right] \\
A X= & {\left[A \vec{x}_{1}, A \vec{x}_{2}, A \vec{x}_{3}, \ldots, A \vec{x}_{n}\right] } \\
& =\left[\lambda_{1} \vec{x}_{1}, \lambda_{2} \vec{x}_{2}, \lambda_{3} \vec{x}_{3}, \ldots, \lambda_{n} \vec{x}_{n}\right] \\
= & X\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

then

$$
\begin{aligned}
& A=X\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right] X^{-1} \\
& \Rightarrow A=X \Lambda X^{-1} \\
& \Rightarrow \Lambda=X^{-1} A X
\end{aligned}
$$

- Given λ, its eigenvector $=$?

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x} \\
\Leftrightarrow & A \vec{x}-\lambda \vec{x}=\overrightarrow{0} \\
\Leftrightarrow & (A-\lambda I) \vec{x}=\overrightarrow{0}
\end{aligned}
$$

then we can use kernel to find the eigenvectors correspond to λ.

$$
\operatorname{ker}(A-\lambda I)=\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}\right\}
$$

- Given \vec{x}, its eigenvalue $=$?

$$
\begin{aligned}
& A \vec{x}=\lambda \vec{x} \\
\Rightarrow & \vec{x}^{T} A \vec{x}=\vec{x}^{T} \lambda \vec{x} \\
\Rightarrow & \left.\lambda=\frac{\vec{x}^{T} A \vec{x}}{\vec{x}^{T} \vec{x}} \quad \text { (Rayleigh } \quad \text { quotient }\right)
\end{aligned}
$$

3.2 Power Method

- We can use this algorithm to find the eigenvector whose eigenvalue is the largest.
- Algorithm

1. Choose a random vector $\vec{v}_{0},\left\|\vec{v}_{0}\right\|=1$.
2. For $\mathrm{i}=1,2,3, \ldots$, until converge.
3. $\quad \vec{y}_{i}=A \vec{v}_{i-1}$
4. $\quad \vec{v}_{i}=\frac{\vec{y}_{i}}{\left\|\overrightarrow{y_{i}}\right\|}$
end for
5. $\vec{x}=\vec{v}_{i}, \lambda=\frac{\vec{x}^{T} A \vec{x}}{\vec{x}^{T} \vec{x}}$

- How do we know the eigenvector is converged?

$$
\begin{gathered}
\left.\begin{array}{c}
\vec{v}_{1}=\alpha_{1} A \vec{v}_{0} \\
\vec{v}_{2}=\alpha_{2} A \vec{v}_{1}=\alpha_{2} A^{2} \vec{v}_{0} \\
\vec{v}_{3}=\alpha_{3} A \vec{v}_{2}=\alpha_{3} A^{3} \vec{v}_{0} \\
\vdots \\
\vec{v}_{i}=\alpha_{i} A \vec{v}_{i-1}=\alpha_{i} A^{i} \vec{v}_{0} \\
\text { Let } A=X \Lambda X^{-1}, \Lambda=\left[\begin{array}{llll}
\lambda_{1} & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right],\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right| \\
\\
\\
\\
\\
\\
\\
\end{array}\right]-2
\end{gathered}
$$

$$
\begin{aligned}
& A^{k}=\underbrace{\left(X \Lambda X^{-1}\right)\left(X \Lambda X^{-1}\right) \cdots\left(X \Lambda X^{-1}\right)}_{k} \\
& =X \Lambda^{k} X^{-1} \\
& =X\left[\begin{array}{llll}
\lambda_{1}^{k} & & & \\
& \lambda_{2}^{k} & & \\
& & \ddots & \\
& & & \lambda_{n}^{k}
\end{array}\right] X^{-1} \\
& \Rightarrow \vec{v}_{k}=\alpha_{k} A^{k} \vec{v}_{0} \\
& =\alpha_{k} X \Lambda^{k} X^{-1} \vec{v}_{0} \text {, Let } \vec{z}=X^{-1} \vec{v}_{0} \\
& =\alpha_{k} X \Lambda^{k} \vec{z} \\
& =\alpha_{k} \lambda_{1}^{k} X\left[\begin{array}{llll}
1 & & & \\
& \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} & & \\
& & \ddots & \\
& & & \left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}
\end{array}\right] \vec{z} \text {, because } \lim _{k \rightarrow \infty}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}=0 \\
& =\alpha_{k} \lambda_{1}^{k} X\left[\begin{array}{cccc}
1 & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right] \vec{z} \\
& =\alpha_{k} \lambda_{1}^{k} X\left[\begin{array}{c}
\vec{z}(1) \\
0 \\
\vdots \\
0
\end{array}\right], \vec{z}(1) \text { is the first element in } \vec{z} \\
& =\alpha_{k} \lambda_{1}^{k}\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \ldots, \vec{x}_{n}\right]\left[\begin{array}{c}
\vec{z}(1) \\
0 \\
\vdots \\
0
\end{array}\right] \\
& =\alpha_{k} \lambda_{1}^{k} \vec{z}(1) \vec{x}_{1} \text {, because } \alpha_{k} \lambda_{1}^{k} \vec{z}(1)=1 \\
& =\vec{x}_{1}
\end{aligned}
$$

- Shift Power Method

We can shift the eigenvalue to speed up.

$$
\begin{aligned}
B & =A-\mu I=X \Lambda X^{-1}-\mu\left(X X^{-1}\right)=X(\Lambda-\mu I) X^{-1} \\
& =X\left[\begin{array}{cccc}
\lambda_{1}-\mu & & & \\
& \lambda_{2}-\mu & & \\
& & \ddots & \\
& & & \lambda_{n}-\mu
\end{array}\right] X^{-1} \\
\vec{r}_{k} & =A \vec{v}_{k}-\frac{\vec{v}_{k}^{T} A \vec{v}_{k}}{\vec{v}_{k}^{T} \vec{v}_{k}} \vec{v}_{k}
\end{aligned}
$$

Converge rate: $\lim _{k \rightarrow \infty} \frac{\left\|r_{k}\right\|}{\left\|r_{k-1}\right\|}=\frac{\left|\lambda_{2}\right|}{\lambda_{1} \mid}$
If the rate is very small, the speed of convergence will be fast. Choose μ which makes $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$ as small as possible.

- Invert Power Method

We can find the eigenvector whose eigenvaule is the smallest.

$$
\begin{aligned}
B & =A^{-1}=\left(X \Lambda X^{-1}\right)^{-1}=X \Lambda^{-1} X^{-1} \\
& =X\left[\begin{array}{llll}
\frac{1}{\lambda_{1}} & & & \\
& \frac{1}{\lambda_{2}} & & \\
& & \ddots & \\
& & & \frac{1}{\lambda_{n}}
\end{array}\right] X^{-1}
\end{aligned}
$$

- Shift and Invert Power Method

$$
\begin{aligned}
B & =(A-\mu I)^{-1}=X(\Lambda-\mu I)^{-1} X^{-1} \\
& =X\left[\begin{array}{llll}
\frac{1}{\lambda_{1}-\mu} & & & \\
& \frac{1}{\lambda_{2}-\mu} & & \\
& & \ddots & \\
& & & \frac{1}{\lambda_{n}-\mu}
\end{array}\right] X^{-1}
\end{aligned}
$$

