Lecture Notes 6: Givens roration

Lecturer: Che-Rung Lee
Scribe: Sheng-Kai Wu

1 Givens roration

- Example: Given $(x, y)=(1,2), \theta=\frac{\pi}{3},(u, v)=$?

Let $a=\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right), b=x+y i, c=u+v i$
$\Rightarrow c=a \cdot b=\cos \left(\frac{\pi}{3}\right) x-\sin \left(\frac{\pi}{3}\right) y+\left(\sin \left(\frac{\pi}{3}\right) x+\cos \left(\frac{\pi}{3}\right) y\right) i$
Then we can know the rotation matrix from (x, y) to (u, v),

$$
\binom{u}{v}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

- Example: Given $\binom{x}{y}$ and $\binom{u}{v}, x^{2}+y^{2}=u^{2}+v^{2}$, compute the rotation matrix.

Let $\vec{w}=\binom{x}{y}, \vec{z}=\binom{u}{v}$

$$
\begin{aligned}
& \cos \angle(\vec{w}, \vec{z})=\frac{\vec{w}^{T} \vec{z}}{\|\vec{w}\|\|\vec{z}\|}=\frac{x v+y u}{x^{2}+y^{2}} \\
& \sin \theta=\sqrt{1-\cos ^{2} \theta}
\end{aligned}
$$

- Use new vectors \vec{q}_{1}, \vec{q}_{2}, where $\left\|\vec{q}_{1}\right\|=\left\|\vec{q}_{2}\right\|=1$, to express \vec{w}, \vec{z}

$$
\begin{aligned}
& \cos \theta=\frac{\vec{w}^{T} \vec{z}}{\|\vec{w}\|\|\vec{z}\|} \\
& A=(\vec{w} \cdot \vec{z})=\left(\begin{array}{ll}
\vec{q}_{1} & \vec{q}_{2}
\end{array}\right)\left(\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right) \text { by QR decomposition } \\
& \vec{w}=r_{11} \overrightarrow{q_{1}}, \quad \vec{z}=r_{12} \vec{q}_{1}+r_{22} \vec{q}_{2}, \quad \vec{q}_{1} \perp \overrightarrow{q_{2}}, \quad \overrightarrow{q_{1}} \| \vec{w}, \quad \operatorname{span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=\operatorname{span}(\{\vec{w}, \vec{z}\}) . \\
& \vec{w}^{T} \vec{z}=\left(r_{11} \vec{q}_{1}\right)^{T}\left(r_{12} \vec{q}_{1}+r_{22} \vec{q}_{2}\right)=r_{11} \cdot r_{12}
\end{aligned}
$$

- Plane (Givens) rotation matrix:

The formation of plane rotation matrix will be like

$$
G_{i, j, \theta}=\left(\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & \cos \theta & 0 & -\sin \theta & 0 \\
0 & 0 & I & 0 & 0 \\
0 & \sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 0 & I
\end{array}\right)
$$

where i is the row which contains $\cos \theta$ and $-\sin \theta ; \mathrm{j}$ is the row which contains $\sin \theta$ and $\cos \theta$

If we want to rotate \vec{a} to \vec{b}, instead of direct rotation, we rotate to $\overrightarrow{a^{\prime}}$ first, then rotate to \vec{b}. The rotation matrice are as following:

$$
\begin{aligned}
\overrightarrow{a^{\prime}} & =\left(\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right) \vec{a} \\
\vec{b} & =\left(\begin{array}{ccc}
\cos \theta_{2} & 0 & -\sin \theta_{2} \\
0 & 1 & 0 \\
\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right) \overrightarrow{a^{\prime}}
\end{aligned}
$$

- Using Givens rotation to compute QR decomposition:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
& G_{1\left(1,2, \theta_{1}\right)} A=\left(\begin{array}{ccc}
a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\
0 & a_{22}^{(1)} & a_{23}^{(1)} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=A^{(1)} \\
& G_{2\left(1,3, \theta_{2}\right)} A^{(1)}=\left(\begin{array}{ccc}
a_{11}^{(2)} & a_{12}^{(2)} & a_{13}^{(2)} \\
0 & a_{22}^{(1)} & a_{23}^{(1)} \\
0 & a_{32}^{(2)} & a_{33}^{(2)}
\end{array}\right)=A^{(2)} \\
& G_{3\left(2,3, \theta_{3}\right)} A^{(2)}=\left(\begin{array}{ccc}
a_{11}^{(2)} & a_{12}^{(2)} & a_{13}^{(2)} \\
0 & a_{22}^{(3)} & a_{23}^{(3)} \\
0 & 0 & a_{33}^{(3)}
\end{array}\right)=A^{(3)} \\
& Q=G_{1}^{T} G_{2}^{T} G_{3}^{T}, \quad G_{3} G_{2} G_{1} A=R, \quad A=\left(G_{1} G_{2} G_{3}\right)^{T} R
\end{aligned}
$$

- Time complexity

$$
\begin{aligned}
T(m, n) & =(m-1)(4 n+C)+T(m-1, n-1) \\
& =\sum_{k=1}^{n} 4 k(m-1+k-n) \\
& =\sum_{k=1}^{n} 4 k(m-n-1)+4 k^{2} \\
& =(m-n-1) \times 4 \times \frac{n(n+1)}{2}+4 \times \frac{n(n+1)(2 n+1)}{6} \\
& \approx 2 m n^{2}(\text { for finding } \mathrm{R})
\end{aligned}
$$

To find Q, the time complexity is also $2 m n^{2}$.

- Givens rotation is uasually applied to sparse matrices.

2 Block matrix decomposition

Matrix decomposition can also use block form and parallelization to speed up the performance

- Block LU

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)=L U \\
L & =\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right), \quad U=\left(\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right)
\end{aligned}
$$

where L_{11}, L_{22}, L_{33} are lower triangular matrice, and U_{11}, U_{22}, U_{33} are upper triangular matrice.

$$
\begin{array}{ll}
A_{11}=L_{11} U_{11} & \text { Step } 1: L U\left(A_{11}\right) \Rightarrow L_{11}, U_{11} \\
A_{21}=L_{21} U_{11} & \text { Step } 2: L_{21}=A_{21} U_{11}^{-1} \\
A_{31}=L_{31} U_{11} & \text { Step } 2: L_{31}=A_{31} U_{11}^{-1} \\
A_{12}=L_{11} U_{12} & \text { Step } 2: U_{12}=L_{11}^{-1} A_{12} \\
A_{22}=L_{21} U_{12}+L_{22} U_{22} & \text { Step } 3: L U\left(A_{22}-L_{21} U_{12}\right) \Rightarrow L_{22}, U_{22} \\
A_{32}=L_{31} U_{12}+L_{32} U_{22} & \text { Step } 4: L_{32}=\left(A_{32}-L_{31} U_{12}\right) U_{22}^{-1} \\
A_{13}=L_{11} U_{13} & \text { Step } 2: U_{13}=L_{11}^{-1} A_{13} \\
A_{23}=L_{21} U_{13}+L_{22} U_{23} & \text { Step } 4: U_{23}=L_{22}^{-1}\left(A_{23}-L_{21} U_{13}\right) \\
A_{33}=L_{31} U_{13}+L_{32} U_{23}+L_{33} U_{33} & \text { Step } 5: L U\left(A_{33}-L_{31} U_{13}-L_{32} U_{23}\right) \Rightarrow L_{33}, U_{33}
\end{array}
$$

Let us have these four operations:

1. $\mathrm{P}\left(A_{i i}\right): \mathrm{LU}\left(A_{i i}\right)$,
2. $\mathrm{L}\left(A_{i j}\right):$ compute $\left(L_{i j}\right)$,
3. $\mathrm{U}\left(A_{i j}\right)$: compute $\left(U_{i j}\right)$,
4. $\mathrm{S}\left(A_{i j}\right)$: update $\left(A_{i j}\right)$

The following DAG (directed acyclic graph) shows that the dependence of each operation. In other words, each operation can only start to compute until all its previous operations are done.

- Block QR

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)=Q R, \quad Q^{T} Q=I \\
R & =\left(\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
0 & 0 & R_{33}
\end{array}\right)
\end{aligned}
$$

where R_{11}, R_{22}, R_{33} are upper triangular matrices.
Using block Givens method for block matrix decomposition
(Reason: Givens method is element orient, not vector orient.)

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}=\binom{\sqrt{x^{2}+y^{2}}}{0}
$$

Block version:

$$
\begin{aligned}
& \left(\begin{array}{cc}
C & -S \\
S & C
\end{array}\right)\binom{X}{Y}=\binom{R}{0} \\
& \Rightarrow A=\binom{X}{Y}=Q R
\end{aligned}
$$

$$
G=\left(\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & C & 0 & -S & 0 \\
0 & 0 & I & 0 & 0 \\
0 & S & 0 & C & 0 \\
0 & 0 & 0 & 0 & I
\end{array}\right)
$$

Let us have these four operations:

1. $\mathrm{F}\left(A_{i j}\right): A_{i j}=Q R_{i j}$
2. $\mathrm{F}\binom{A_{i j}}{A_{k j}}:\binom{A_{i j}}{A_{k j}}=Q R$
3. $\mathrm{Q}\left(A_{i j}\right)$: apply Q to $A_{i j}$
4. $\mathrm{Q}\binom{A_{i j}}{A_{k j}}$: apply Q to $\binom{A_{i j}}{A_{k j}}$

The following diagram shows that the dependence of each operation. In other words, each operation can only start to compute until all its previous operations are done.

