Lecture Notes 3: Strassen's algorithm

Lecturer: Che-Rung Lee
Scribe: Po-Yi Hsu 100062647

1.4 Strassen's algorithm

1.4.1 Complex number multiplication

- Let $x=a+b i, y=c+d i$. Then $x y=(a c-b d)+(a d+b c) i$. To compute $x y$, we use total 4 multiplications and 3 additions.
- Can we trade multiplications with additions?

$$
\left.\left.\begin{array}{rl}
s & =(a+b)(c+d) \\
t & =a c+b c+a d+b d \\
w & =(a-b)(c-d)
\end{array}=a c-b c-a d+b d\right)(c+d)=a c-b c+a d-b d\right)
$$

- We can choose between 4 equations from (1) to (4) and form new equations. They all work fine. If we choose (1), we get

$$
x y=(a c-b d)+(s-a c-b d) i
$$

- Since equation (1) need 1 multiplication and 2 additions, each $a c, b d$ needs 1 multiplication. Now we need only 3 multiplications and 5 additions to compute $x y$. So we succeed to reduce the number of multiplications.

1.4.2 Polynomial multiplication

- Let

$$
\begin{aligned}
& p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \\
& q(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}
\end{aligned}
$$

Then

$$
r(x)=p(x) q(x)=c_{2 n} x^{2 n}+c_{2 n-1} x^{2 n-1}+\cdots+c_{1} x+c_{0}
$$

which

$$
c_{k}=\sum_{i, j=0, i+j=k}^{k} a_{i} b_{j}
$$

- e.g. If $p(x)=3 x^{2}+2 x+1, q(x)=4 x^{2}+5 x+6$. Then $r(x)=12 x^{4}+23 x^{3}+32 x^{2}+17 x+6$
- If we multiply two polynomials directly, we need total n^{2} multiplications and $n^{2}-1$ additions. The time complexity is $O\left(n^{2}\right)$.
- Since polynomial multiplication is expensive, we try to trade polynomial multiplications with polynomial additions.
- Let

$$
\begin{aligned}
& p(x)= \underbrace{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{\frac{n+1}{2}} x^{\frac{n+1}{2}}}_{p_{1}(x)}+\underbrace{\underbrace{a_{n-1}^{2}}_{p_{2}(x)} x^{\frac{n-1}{2}}+\cdots+a_{1} x+a_{0}}_{q_{1}(x)} \\
& q(x)=\underbrace{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{\frac{n+1}{2}} x^{\frac{n+1}{2}}}_{q_{2}(x)}+\underbrace{b_{\frac{n-1}{2}}^{x^{\frac{n-1}{2}}+\cdots+b_{1} x+b_{0}}} \\
& p_{1}(x)=a_{n} x^{n}+\cdots+a_{\frac{n+1}{2}} x^{\frac{n+1}{2}}=\left(a_{n} x^{\frac{n-1}{2}}+\cdots+a_{\frac{n+1}{2}}\right) x^{\frac{n+1}{2}} \\
& p_{2}(x)=a_{\frac{n-1}{2}} x^{\frac{n-1}{2}}+\cdots+a_{0} \\
& q_{1}(x)=b_{n} x^{n}+\cdots+b_{\frac{n+1}{2}} x^{\frac{n+1}{2}}=\left(b_{n} x^{\frac{n-1}{2}}+\cdots+b_{\frac{n+1}{2}}\right) x^{\frac{n+1}{2}} \\
& q_{2}(x)=b_{\frac{n-1}{2}} x^{\frac{n-1}{2}}+\cdots+b_{0}
\end{aligned}
$$

- Then

$$
\begin{aligned}
& p(x)=p_{1}(x) x^{\frac{n+1}{2}}+p_{2}(x) \\
& q(x)=q_{1}(x) x^{\frac{n+1}{2}}+q_{2}(x)
\end{aligned}
$$

- So we can rewrite

$$
\begin{align*}
r(x) & =p(x) q(x) \\
& =\left(p_{1}(x) x^{\frac{n+1}{2}}+p_{2}(x)\right)\left(q_{1}(x) x^{\frac{n+1}{2}}+q_{2}(x)\right) \\
& =\underbrace{p_{1}(x) q_{1}(x) x^{n+1}}_{T\left(\frac{n}{2}\right)}+(\underbrace{p_{1}(x) q_{2}(x)}_{T\left(\frac{n}{2}\right)}+\underbrace{p_{2}(x) q_{1}(x)}_{T\left(\frac{n}{2}\right)}) x^{\frac{n+1}{2}}+\underbrace{p_{2}(x) q_{2}(x)}_{T\left(\frac{n}{2}\right)} \tag{5}
\end{align*}
$$

- Now we try to compute it's time complexity.

$$
\begin{aligned}
T(n) & =\frac{4 T\left(\frac{n}{2}\right)+n}{} \\
& =4\left(4 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n \\
& =16 T\left(\frac{n}{4}\right)+2 n+n \\
& =16\left(4 T\left(\frac{n}{8}\right)+\frac{n}{4}\right)+2 n+n \\
& =64 T\left(\frac{n}{8}\right)+4 n+2 n+n \\
\quad & \vdots \\
& =4^{\lg n} T(1)+\left(2^{\lg n} n+\cdots+4 n+2 n+n\right) \\
& =n^{2}+O\left(n^{2}\right) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

So the time complexity is still $O\left(n^{2}\right)$, we need to try other methods.

- We can rewrite equation (5) to $r(x)=r_{1}(x) x^{2 m}+r_{2}(x) x^{m}+r_{3}(x)$.

Let $s=\left(p_{1}+p_{2}\right)\left(q_{1}+q_{2}\right)=p_{1} q_{1}+p_{2} q_{1}+p_{2} q_{1}+p_{2} q_{2}$ (for convenience: $p_{1}, p_{2}, q_{1}, q_{2}, r_{1}, r_{2}, r_{3}$ represent $\left.p_{1}(x), p_{2}(x), q_{1}(x), q_{2}(x), r_{1}(x), r_{2}(x), r_{3}(x)\right)$. Then

$$
\begin{align*}
& r_{1}=p_{1} q_{1} \\
& r_{3}=p_{2} q_{2} \tag{6}\\
& r_{2}=s-r_{1}-r_{3}
\end{align*}
$$

- From equation (6), we need total 3 polynomial multiplications and 4 polynomial additions. Now the time complexity is

$$
\begin{aligned}
T(n) & =3 T\left(\frac{n}{2}\right)+4 \cdot \frac{n}{2} \\
& =3 T\left(\frac{n}{2}\right)+2 n \\
& =3\left(3 T\left(\frac{n}{4}\right)+2 \cdot \frac{n}{2}\right)+2 n \\
& =9 T\left(\frac{n}{4}\right)+3 n+2 n \\
& =9\left(3 T\left(\frac{n}{8}\right)+2 \cdot \frac{n}{4}\right)+3 n+2 n \\
& =27 T\left(\frac{n}{8}\right)+\frac{9}{4} \cdot 2 n+\frac{3}{2} \cdot 2 n+2 n \\
& \vdots \\
& =C_{1} T(1)+C_{2} \\
C_{1} & =3^{\log _{2} n}=n^{\log _{2} 3} \doteqdot n^{1.585} \\
C_{2} & =2 n\left(1+\frac{3}{2}+\frac{9}{4}+\cdot+\left(\frac{3}{2}\right)^{\left(\log _{2} n\right)-1}\right) \\
& =2 n\left(\frac{\left(\frac{3}{2}\right)^{\log _{2} n}-1}{\frac{3}{2}-1}\right) \\
& =4 n\left(\frac{3}{2}\right)^{\log _{2} n}-4 n \\
& =4 n \frac{3^{\log _{2} n}}{n}-4 n \\
& =4 \cdot 3^{\log _{2} n}-4 n \\
& =4 C_{1}-4 n
\end{aligned}
$$

- So the total time complexity reduce to $O\left(n^{\log _{2} 3}\right)$, down from $O\left(n^{2}\right)$.

