Advanced Numerical Method Homework 1

Matrix Multiplication

Due: Oct 12, 2011

1. (20%) Let $A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1P} \\ A_{21} & A_{21} & \cdots & A_{2P} \\ \vdots & \vdots & & \vdots \\ A_{M1} & A_{M2} & \cdots & A_{MP} \end{pmatrix}$ and $B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1N} \\ B_{21} & B_{21} & \cdots & B_{2N} \\ \vdots & \vdots & & \vdots \\ B_{P1} & B_{P2} & \cdots & B_{MN} \end{pmatrix}$. Assume dim $(A)_2 = \dim(B)_1$ and dim $(A_{IK})_2 = \dim(B_{KJ})_1$ for $I = 1, \dots, M, J = 1, \dots, N$, and $K = 1, \dots, P$. Show that for

$$C = AB = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1N} \\ C_{21} & C_{21} & \cdots & C_{2N} \\ \vdots & \vdots & & \vdots \\ C_{M1} & C_{M2} & \cdots & C_{MN} \end{pmatrix}, C_{IJ} = \sum_{K=1}^{P} A_{IK} B_{KJ}.$$

- 2. (40%) Implement matrix-matrix multiplication using the following methods
 - (a) Basic formulation
 - (b) Block formulation
 - (c) Numerical library from processor venders.

Compare their performance for different matrix sizes. For block formulation, test different block sizes.

- 3. (40%) Implement polynomial multiplication by using the following methods
 - (a) Direct method.
 - (b) Divide and conquer method.
 - (c) Fast Fourier method.

Compare their performance for different sizes of polynomial.