| Full Orthogonal Method (FOM) | Conjugate Gradient (CG) |
| :---: | :---: |
| 1. $q_{1}=b /\\|b\\|, Q_{1}=\left[q_{1}\right], T_{1}=q_{1}^{T} A q_{1}$, | 1. $r_{0}=b-A x_{0}, p_{0}=r_{0}$ |
| $\left(A q_{1}=q_{1} T_{1}+\beta_{1} q_{2}\right)$ | 2. For $k=1,2, \ldots$ |
| 2. For $k=1,2, \ldots$ | (a) $\delta_{k}=\frac{r_{k-1}^{T} r_{k-1}}{r_{k-1}^{T} A p_{k-1}}$. |
| (a) $y_{k}=\\|b\\| T_{k}^{-1} e_{1}$. (b) $x_{k}=x_{k-1}+\delta_{k} p_{k-1}$ <br> (b) If $\left\\|r_{k}\right\\|=\left\|\beta_{k} y_{k}(k)\right\|$ is small enough, (c) $r_{k}=r_{k-1}-\delta_{k} A p_{k-1}$ <br> Return $x_{k}=Q_{k} y_{k}$. (d) If $\left\\|r_{k}\right\\|$ is small enough, <br> (c) Expand $Q_{k+1}=\left[Q_{k} \quad q_{k+1}\right]$ and Return $x_{k}$. <br> $T_{k+1}=\left[\begin{array}{ll}T_{k} & t_{k} \\ \beta_{k} e_{k}^{T} & q_{k+1}^{T} A q_{k+1}\end{array}\right]$ by (e) $\gamma_{k}=\frac{r_{k}^{T} r_{k}}{r_{k-1}^{T} r_{k-1}}$ <br> Lanczos method. (f) $p_{k}=r_{k}+\gamma_{k} p_{k-1}$ <br> $\left(A Q_{k+1}=Q_{k+1} T_{k+1}+\beta_{k+1} q_{k+2} e_{k+1}^{T}\right)$  |  |

Theorem $1 C G$ is FOM for symmetric positive definite matrices.
Outline of the proof (From FOM to CG)

1. $T_{k}=L_{k} U_{k}$
2. $y_{k}=T_{k}^{-1}\|b\| e_{1}=U_{k}^{-1} L_{k}^{-1}\|b\| e_{1}$
3. $x_{k}=Q_{k} y_{k}=x_{k-1}+\delta_{k} p_{k}$
4. $r_{k}=r_{k-1}-A p_{k}$
5. $p_{k}=r_{k}+\gamma_{k} p_{k-1}$
6. Derive $\delta_{k}$ and $\gamma_{k}$

Step I:

$$
\begin{aligned}
T_{k} & =\left(\begin{array}{lllll}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)=L_{k} U_{k} \\
L_{k} & =\left(\begin{array}{ccccc}
1 & & & \\
\lambda_{1} & 1 & & \\
& \lambda_{2} & 1 & \\
& & \ddots & \ddots
\end{array}\right) \\
U_{k} & =\left(\begin{array}{lllll}
\mu_{1} & \beta_{1} & & \\
& \mu_{2} & \beta_{2} & & \\
& & \mu_{3} & \beta_{3} & \\
& & & \ddots & \ddots
\end{array}\right)
\end{aligned}
$$

Step II:

$$
\begin{aligned}
& T_{k}^{-1}=U_{k}^{-1} L_{k}^{-1} \\
& L_{k}^{-1}=\left(\begin{array}{rrrrr}
1 & & & & \\
-\lambda_{1} & 1 & & & \\
\lambda_{1} \lambda_{2} & -\lambda_{2} & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
(-1)^{k-1} \lambda_{1} \lambda_{2} \cdots \lambda_{k-1} & \cdots & \cdots & -\lambda_{k-1} & 1
\end{array}\right) \\
& U_{k}^{-1}=\left(\begin{array}{cc}
U_{k-1}^{-1} & -\beta_{k-1} / \mu_{k} U_{k-1}^{-1} e_{k} \\
0 & 1 / \mu_{k}
\end{array}\right) \\
& y_{k}=\left(\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\vdots \\
\eta_{k}
\end{array}\right)=T_{k}^{-1}\|b\| e_{1}=\|b\| U_{k}^{-1} L_{k}^{-1} e_{1}=\|b\| U_{k}^{-1} z_{k} \\
& z_{k}=\left(\begin{array}{c}
\zeta_{1} \\
\zeta_{2} \\
\vdots \\
\zeta_{k}
\end{array}\right)=\binom{z_{k-1}}{\zeta_{k}} \\
& \zeta_{k}=-\lambda_{k-1} \zeta_{k-1}=(-1)^{k-1} \lambda_{1} \lambda_{2} \cdots \lambda_{k-1}
\end{aligned}
$$

Step III:

$$
\begin{aligned}
x_{k} & =Q_{k} y_{k}=\|b\| Q_{k} U_{k}^{-1} z_{k} \\
& =\left(\begin{array}{ll}
Q_{k-1} & q_{k}
\end{array}\right)\left(\begin{array}{cc}
U_{k-1}^{-1} & -\beta_{k-1} / \mu_{k} U_{k-1}^{-1} e_{k} \\
0 & 1 / \mu_{k}
\end{array}\right)\binom{z_{k-1}}{\zeta_{k}} \\
& =Q_{k-1} U_{k-1}^{-1}-\beta_{k-1} Q_{k-1} U_{k-1}^{-1} e_{k} / \mu_{k}+q_{k} / \mu_{k}\binom{z_{k-1}}{\zeta_{k}} \\
& =Q_{k-1} U_{k-1}^{-1} z_{k-1}+\left(-\beta_{k-1} Q_{k-1} U_{k-1}^{-1} e_{k}+q_{k}\right) \frac{\zeta_{k}}{\mu_{k}} \\
& =x_{k-1}+\left(-\beta_{k-1} Q_{k-1} U_{k-1}^{-1} e_{k}+q_{k}\right) \frac{\zeta_{k}}{\mu_{k}}
\end{aligned}
$$

Let $\hat{p}_{k}=\left(-\beta_{k-1} Q_{k-1} U_{k-1}^{-1} e_{k}+q_{k}\right) \frac{\zeta_{k}}{\mu_{k}}$. Observe that

$$
\begin{aligned}
\hat{p}_{k} & =\zeta_{k} Q_{k} U_{k}^{-1} e_{k} \\
& =\frac{\beta_{k-1} \lambda_{k}}{\mu_{k}} \hat{p}_{k-1}+\frac{\zeta_{k}}{\mu_{k}} q_{k}
\end{aligned}
$$

Step IV:

Consider the residual $r_{k+1}=b-A x_{k}$.

$$
\begin{aligned}
r_{k+1} & =b-A x_{k} \\
& =b-A\left(x_{k-1}+\hat{p}_{k}\right) \\
& =\left(b-A x_{k-1}\right)-A \hat{p}_{k} \\
& =r_{k}-A \hat{p}_{k}
\end{aligned}
$$

Also,

$$
\begin{aligned}
r_{k+1} & =b-A x_{k} \\
& =b-A Q_{k} y_{k} \\
& =b-\left(Q_{k} T_{k}+\beta_{k} q_{k+1} e_{k}\right) y_{k} \\
& =b-Q_{k} T_{k} y_{k}+\beta_{k} q_{k+1} \eta_{k}
\end{aligned}
$$

Since $T_{k} y_{k}=\|b\| e_{1}$ and $q_{1}=b /\|b\|$,

$$
b-Q_{k} T_{k} y_{k}=b-\|b\| Q_{k} e_{1}=b-\|b\| q_{1}=0 .
$$

In addition, $\eta_{k}$ is the last element of $U_{k}^{-1} z_{k}$, which is $\zeta_{k} / \mu_{k}$. As the result, $r_{k+1}=-\beta_{k} \zeta_{k} / \mu_{k} q_{k+1}$. From the LU decomposition, we know that $\beta_{k} / \mu_{k}=\lambda_{k}$. Combining with (), we have

$$
\begin{equation*}
r_{k}=\zeta_{k} q_{k} . \tag{1}
\end{equation*}
$$

Since $\left\|q_{k}\right\|=1,\left\|r_{k}\right\|=\left|\zeta_{k}\right|$.
Step V:
Let $p_{k}=\mu_{k} \hat{p}_{k}$.

$$
\begin{aligned}
p_{k} & =\beta_{k-1} \lambda_{k-1} \hat{p}_{k-1}+\zeta_{k} q_{k} \\
& =\frac{\beta_{k-1}}{\mu_{k-1}} \lambda_{k-1} p_{k-1}+r_{k} \\
& =\left(\lambda_{k-1}\right)^{2} p_{k-1}+r_{k} .
\end{aligned}
$$

Let $\delta_{k}=1 / \mu_{k}$ and $\gamma_{k}=\left(\lambda_{k-1}\right)^{2}$.

$$
\left\{\begin{array}{l}
x_{k}=x_{k-1}+\delta_{k} p_{k},  \tag{2}\\
r_{k}=r_{k-1}-\delta_{k} A p_{k}, \\
p_{k}=\gamma_{k} p_{k-1}+r_{k}
\end{array}\right.
$$

Step VI:
How to compute $\delta_{k}$ and $\gamma_{k}$ ?

$$
\gamma_{k}=\lambda_{k-1}^{2}=\frac{\zeta_{k}^{2}}{\zeta_{k-1}^{2}}=\frac{\left\|r_{k}\right\|}{\left\|r_{k-1}\right\|}=\frac{\left(r_{k}, r_{k}\right)}{\left(r_{k-1}, r_{k-1}\right)}
$$

We know that $r_{k}$ is parallel to $q_{k}$, which means they are orthogonal. Multiplying $r_{k-1}^{T}$ to (2), we have

$$
\delta_{k}=\frac{\left(r_{k-1}, r_{k-1}\right)}{\left(r_{k-1}, A p_{k}\right)} .
$$

