
CUDA Programming

Week 4. Shared memory and register



Outline
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• Example of matrix-matrix multiplication

• Homework



SHARED MEMORY AND BANK 
CONFLICTION



Memory bank

• To achieve high memory bandwidth, shared 
memory is divided into equally-sized memory 
modules, called banks

• Memory read/write made of n addresses in n
distinct banks can be serviced simultaneously

• There are 16 banks, which are organized such 
that successive 32-bit words are assigned to 
successive banks and each bank has a 
bandwidth of 32 bits per two clock cycles.



Bank conflict

• If two addresses of a memory request fall in 
the same memory bank, there is a bank 
conflict and the access has to be serialized.



No bank conflict

__shared__ float 
shared[32];

float data =

shared[BaseIndex + tid];

Or 

float data =

shared[BaseIndex + 
3*tid];



Another example

• Random  access



2 way bank conflict

• 2-way

__shared__ double 
shared[32];

double data = 
shared[BaseIndex + 
tid];



4 way bank conflict

__shared__ char shared[32];

char data = shared[BaseIndex + tid];

Solution: 

char data = shared[BaseIndex + 4 * tid];



8 way bank conflict

• For example, a structure of 4 
floats. 



Broadcast

• No bank conflict for 
broadcast

• Right: This access 
causes either no bank 
conflicts if the word 
from bank 5 is the 
broadcast during the 
first step or 2-way 
bank conflicts.



How to avoid bank conflict?

• The old fashion method: (don’t use it)

• For array of structures, bank conflict can be 
reduced by changing it to structure of array.

• Memory padding

__shared__ int shared_lo[32];

__shared__ int shared_hi[32];

double dataIn;

shared_lo[BaseIndex+tid]= __double2loint(dataIn);

shared_hi[BaseIndex+tid]= __double2hiint(dataIn);

double dataOut =__hiloint2double(shared_hi[BaseIndex+tid],

shared_lo[BaseIndex+tid]);



MEMORY PADDING



Example: C=A*B

__global__ void matMult(const float* a, size_t lda,

const float* b, size_t ldb, float* c, size_t ldc, int n){

__shared__ float matA[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float matB[BLOCK_SIZE][BLOCK_SIZE];

const int tidc = threadIdx.x;

const int tidr = threadIdx.y;

const int bidc = blockIdx.x * BLOCK_SIZE;

const int bidr = blockIdx.y * BLOCK_SIZE;

...

for(j = 0; j < n; j += BLOCK_SIZE) {

matA[tidr][tidc] = a[(tidr+bidr)*lda+tidc+j];

matB[tidr][tidc] = b[(tidr+j)*ldb+tidc+bidc];

__syncthreads();

for(i = 0; i < BLOCK_SIZE; i++) 

result += matA[tidr][i] * matB[i][tidc];

...



Memory access pattern

• Suppose block size = 16

• The memory access of matA[tidr][i]

• The memory access of matB[i][tidc]

Bank conflict



Memory padding

• When declaring the shared memory, pad extra 
space

• When access the memory, the addresses 
become 0, 17(=1 mod 16), 34(=2 mod 16) …

matB[BLOCK_SIZE][BLOCK_SIZE+1];



REGISTER ALLOCATION



Register partition

• In G80, 8,192 registers in each SM. 

– Each register is 4byte long.  32KB

• The automatic variables declared in a CUDA 
kernel are placed into registers

• Register file is the fastest and the largest 
on‐chip memory

– Keep as much data as possible in registers



Register allocation example

TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SP0 SP7

(a) Pre-“optimization”

Thread Contexts

32KB Register File

16KB Shared Memory

………

SP0 SP7

(b) Post-“optimization”

Insufficient 

registers to allocate 

3 blocks

Thread Contexts

X



Example: Configuration 1

• Assume that each block has 256 thread, and 
each thread uses 10 registers. 

– 3 Blocks can run on each SM

– Requires 256*3*10=7,680 registers (<8,192)

– 768/32=24 warps.   

• Suppose for every 4 instructions there is a 
memory load.  Each takes 200 cycles. 

– For normal instruction, a warp takes 4 cycle

– 4x4x24=384 cycles > 200 cycles



Example: Configuration 2

• If a compiler can 11 registers to change the 
dependence pattern so that 8 independent 
instructions exist for each global memory load

– Each block needs 256*11=2,816 registers 

– Only two blocks can run on each SM

• However, one only needs 200/(8*4) = 7 Warps 
to tolerate the memory latency

• Two Blocks have 16 Warps. The performance 
can be actually higher!



CASE STUDY
Vasily Volkov’s matrix-matrix multiplication



Some analysis

• Counter i in “for( int i = 0; i < n; i++ )” 
consumes 2KB in registers for block size = 512

– Similarly, i++ translates into 512 increments

• Use smaller block size

– If block size=64, 64 increments and 256 bytes

– But we need that many threads to hide 
communication



Smaller block size

• Strip‐mine longer vectors into shorter at the 
program level if necessary

– E.g. instead of using “float a;” and BS=512 use 
“float a*8+;” and BS=64

– Instead of “a += b;”, BS=512 use “a*0+ += b*0+; …; 
a*7+ += b*7+;”, BS=64

– Use more registers for a, but less space for i, as 
well as less computation for increasing i.



Matrix‐Matrix Multiply: C=C+A*B

• Keep A’s and C’s blocks in registers

• Keep B’s block in a shared storage

• No other sharing is needed if C’s height = BS.

– BS=64 is the best result from experiments 

• Choose large enough width of C’s block

– 16 is enough as 2/(1/64+1/16) = 26‐way reuse

• Choose a convenient thickness for A’s and B’s 
blocks



__global__ void sgemmNN( const float *A, int lda, 

const float *B, int ldb, float* C, int ldc, int k, 

float alpha, float beta ){

// Compute pointers to the data

A += blockIdx.x*64+threadIdx.x +threadIdx.y*16;

B += threadIdx.x+(blockIdx.y*16+threadIdx.y)*ldb;

C += blockIdx.x*64+threadIdx.x+(threadIdx.y+

blockIdx.y * ldc ) * 16;

// declare the shared memory

__shared__ float bs[16][17];

Declare on chip float c[16] =  

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

Code



The framework

const float *Blast = B + k;

do{

#pragma unroll

for( int i = 0; i < 16; i += 4 )

bs[threadIdx.x][threadIdx.y+i] = B[i*ldb]; 

// Read next B’s block

B += 16;

__syncthreads();

... // the computation part: next slide

__syncthreads();

__} while( B < Blast );

//Store C’s block to memory

for( int i = 0; i < 16; i++, C += ldc )

C[0] = alpha*c[i] + beta*C[0];

}



#pragma unroll

// The bottleneck: Read A’s columns

for( int i = 0; i < 16; i++, A += lda ){

c[0] += A[0]*bs[i][0]; 

c[1] += A[0]*bs[i][1]; 

c[2] += A[0]*bs[i][2]; 

c[3] += A[0]*bs[i][3];

c[4] += A[0]*bs[i][4]; 

c[5] += A[0]*bs[i][5]; 

c[6] += A[0]*bs[i][6]; 

c[7] += A[0]*bs[i][7];

c[8] += A[0]*bs[i][8]; 

c[9] += A[0]*bs[i][9]; 

c[10] += A[0]*bs[i][10];

c[11] += A[0]*bs[i][11]; 

c[12] += A[0]*bs[i][12];

c[13] += A[0]*bs[i][13];

c[14] += A[0]*bs[i][14];

c[15] += A[0]*bs[i][15];

}

A

B

C

Outer product



Some statistics

• The table from Vasily’s talk

• This record keeps a while until Feb 2010



HOMEWORK



Prefix Sum 

• EX: a = [3 1 7 0 4 1 6 3].  The prefix sum of a is 
[0 3 4 11 11 15 16 22].

• One of the fundamental tool in many 
algorithms

– Radix sort, compression, etc

• The sequential code

ps[0] = 0; 

For(int j=1, j<n; j++) 

ps[j] = ps[j-1] + a[j-1];



Parallel prefix sum

for d = 1 to log2 n do
for all k in parallel do

if k >=2 d then
x[k] = x[k – 2 d-1] + x[k]



Homework

• Play with Vasily’s code SGEMM

– In the repository of the google group

• Read parallel prefix sum implementation on 
GPU

– http://http.developer.nvidia.com/GPUGems3/gpu
gems3_ch39.html

– Implement your own

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

