CUDA Programming

Week 4. Shared memory and register

Outline

Shared memory and bank confliction
Memory padding

Register allocation

Example of matrix-matrix multiplication
Homework

SHARED MEMORY AND BANK
CONFLICTION

Memory bank

* To achieve high memory bandwidth, shared
memory is divided into equally-sized memory
modules, called banks

 Memory read/write made of n addresses in n
distinct banks can be serviced simultaneously

 There are 16 banks, which are organized such
that successive 32-bit words are assigned to
successive banks and each bank has a
bandwidth of 32 bits per two clock cycles.

Bank conflict

* |f two addresses of a memory request fall in
the same memory bank, there is a bank
conflict and the access has to be serialized.

No bank conflict

__shared__ float
shared|[32];

float data =
shared[Baselndex + tid];
Or

float data =

shared[Baselndex +
3*tid];

Thread 0

Bank 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Bank 0 Thread 0
Bank 1 Thread 1
Bank 2 Thread 2
Bank 3 Thread 3
Bank 4 Thread 4
Bank 5 Thread 5
Bank 6 Thread 6
Bank 7 Thread 7
Bank 8 Thread 8
Bank 9 Thread 9
Bank 10 Thread 10
Bank 11 Thread 11 r
Bank 12 Thread 12 ’
Bank 13 Thread 13
Bank 14 Thread 14
Bank 15 Thread 15

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

/

'L Bank 15

Another example

e Random access

Thread 0

Thread 1

Thread 2

Thread 3

Bank 0

Bank 1

Bank 2

Bank 3

Thread 4

Thread 5

Thread 6

Bank 4

Bank 5

Bank 6

Thread 7

Thread 8

Thread 9

Bank 7

Bank 8

Bank 9

Thread 10

Thread 11

Bank 10

Bank 11

Thread 12

Thread 13

Thread 14 "

Thread 15

Bank 12

Bank 13

Bank 14

Bank 15

2 way bank conflict

* 2-way

__shared__ double
shared[32];

double data =
shared[Baselndex +
tid];

4 way bank conflict

__shared__ char shared[32];
char data = shared[Baselndex + tid];

Solution:

char data = shared[Baselndex + 4 * tid];

8 way bank conflict

* For example, a structure of 4
floats.

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10 ’

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

Bank 15

Broadcast

* No bank conflict for
broadcast

* Right: This access
causes either no bank
conflicts if the word
from bank 5 is the
broadcast during the
first step or 2-way
bank conflicts.

Threa

d o

Threa

d1

Threa

d 2

Threa

d 3

Threa

d 4

Threa

d 5

Threa

d 6

Threa

d7

Threa

d8

Thre

ad9

Threa

d 10

Threa

d 11

Threa

d 12

Threa

d 13

Thre

ad 14

Thre

ad 15

ank 0

ank 1

ank 2

ank 3

ank 4

ank 5

ank 6

ank 7

ank 8

ank 9

ank 10

Bank D Thread 0
Bank 1 Thread 1
Bank 2 Thread 2
Bank 3 Thread 3
Bank 4 Thread 4
Bank 5 Thread 5
Bank 6 Thread 6
Bank 7 Thread 7
Bank 8 Thread 8
Bank 9 Thread 9
Bank 10 Thread 10
Bank 11 Thread 11
Bank 12 Thread 12
Bank 13 Thread 13
Bank 14 Thread 14
Bank 15 Thread 15

How to avoid bank conflict?

* The old fashion method: (don’t use it)

__shared int shared 1lo[32];

__shared int shared hi[32];

double dataln;

shared lo[BaselIndex+tid]= _ double2loint(dataln);

shared hi[BaselIndex+tid]= _ double2hiint(dataln);

double dataOut = hiloint2double (shared hi[BaselIndex+tid],

shared lo[BaselIndex+tid]);

* For array of structures, bank conflict can be
reduced by changing it to structure of array.

* Memory padding

MEMORY PADDING

Example: C=A*B

__global void matMult(const float* a, size t 1lda,
const float* b, size t 1ldb, float* c, size t 1ldc, int n) {
shared float matA[BLOCK SIZE] [BLOCK SIZE];
__shared float matB[BLOCK SIZE] [BLOCK SIZE];
const int tidc = threadldx.x;
const int tidr = threadIdx.y;
const int bidc blockIdx.x * BLOCK SIZE;
const int bidr blockIdx.y * BLOCK SIZE;

for(j = 0; j < n; j += BLOCK SIZE) ({
matA[tidr] [tidec] = a[(tidr+bidr) *1lda+tidc+j];
matB[tidr] [tidc] = b[(tidr+j) *1ldb+tidc+bidc];
__syncthreads() ;

for(i = 0; i < BLOCK SIZE; i++)
result += matA[tidr][i] * matB[i] [tidc];

Memory access pattern

e Suppose block size =16
* The memory accessof matA[tidr] [1]

* The memory accessofmatB[i] [tidc]

Memory padding

* When declaring the shared memory, pad extra

space
matB[BLOCK SIZE] [BLOCK SIZE+1];

* When access the memory, the addresses
become 0, 17(=1 mod 16), 34(=2 mod 16) ...

REGISTER ALLOCATION

Register partition

* |In G&O, 8,192 registers in each SM.
— Each register is 4byte long. =»32KB

e The automatic variables declared in a CUDA
kernel are placed into registers

* Register file is the fastest and the largest
on-chip memory

— Keep as much data as possible in registers

Register allocation example

Thread Contexts

A A

SPO SP7

32KB Register File

A A

16KB Shared Memory

)

A A
_

%

(a) Pre-“optimization”

Insufficient

3 blocks

registers to allocate

~N

-

Thread Contexts
)

)

SPO SP7

32KB Register File , ;

~

16KB Shared Memory

D)

)

/

(b) Post-“optimization”

Example: Configuration 1

 Assume that each block has 256 thread, and
each thread uses 10 registers.

— 3 Blocks can run on each SM
— Requires 256*3*10=7,680 registers (<8,192)
— 768/32=24 warps.

* Suppose for every 4 instructions there is a
memory load. Each takes 200 cycles.

— For normal instruction, a warp takes 4 cycle
— 4x4x24=384 cycles > 200 cycles

Example: Configuration 2

* |f a compiler can 11 registers to change the
dependence pattern so that 8 independent
instructions exist for each global memory load

— Each block needs 256*11=2,816 registers
— Only two blocks can run on each SM

* However, one only needs 200/(8*4) = 7 Warps
to tolerate the memory latency

* Two Blocks have 16 Warps. The performance
can be actually higher!

Vasily Volkov’s matrix-matrix multiplication

CASE STUDY

Some analysis

 Counteriin “for(inti=0;i<n;i++)”
consumes 2KB in registers for block size =512

— Similarly, i++ translates into 512 increments

* Use smaller block size
— If block size=64, 64 increments and 256 bytes

— But we need that many threads to hide
communication

Smaller block size

e Strip-mine longer vectors into shorter at the
program level if necessary

— E.g. instead of using “float a;” and BS=512 use
“float a[8];” and BS=64

— Instead of “a +=b;”, BS=512 use “a[0] += b[O0]; ...;
a[7] +=b[7],”, BS=64

— Use more registers for a, but less space for i, as
well as less computation for increasing i.

Matrix-Matrix Multiply: C=C+A*B

Keep A’s and C’s blocks in registers
Keep B’s block in a shared storage
No other sharing is needed if C’s height = BS.

— BS=64 is the best result from experiments
Choose large enough width of C’s block
— 16 is enough as 2/(1/64+1/16) = 26-way reuse

Choose a convenient thickness for A’s and B’s
blocks

Code

__global void sgemmNN(const float *A, int 1lda,
const float *B, int 1ldb, float* C, int 1ldc, int k,
float alpha, float beta) {

// Compute pointers to the data

A += blockIdx.x*64+threadIdx.x +threadIdx.y*16;

B += threadIdx.x+ (blockIdx.y*16+threadIdx.y) *1db;

C += blockIdx.x*64+threadIdx.x+ (threadIdx.y+

blockIdx.y * 1ldc) * 16;

// declare the shared memory

__shared float bs[16][17];

Declare on chip float c[1l6] =
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

The framework

const float *Blast = B + k;
do {
#pragma unroll
for(int 1 = 0; 1 < 16; i += 4)
bs[threadIdx.x] [threadIdx.y+i] = B[i*1ldb];
// Read next B’s block
B += 16;
___syncthreads() ;
// the computation part: next slide
__syncthreads() ;
__} while(B < Blast);

//Store C’s block to memory

for(int 1 = 0; i < 16; i++, C += ldc)
C[0] = alpha*c[i] + beta*C[O0];

}

#pragma unroll

// The bottleneck: Read A’s columns

for(int i = 0; 1 < 16; i++, A += 1lda) {
c[0] += A[0]*bs[i][0];
c[1l] += A[0]*bs[i][1];

8
c[2] += A[0]*bs[i][2];
c[3] += A[0]*bs[i][3];
c[4] += A[0]*bs[i][4];
c[5] += A[0]*bs[i][5];
c[6] += A[0]*bs[i][6];
c[7] += A[O0]*bs[1i][7]; A C
c[8] += A[0]*bs[i][8];
c[9] += A[0]*bs[i][9];
c[10] += A[O]*bs[1][10];
c[11l] += A[O]*bs[1i][11];
c[1l2] += A[O]*bs[i][12];

c[13] += A[0]*bs[i] [13];
c[14] += A[0]*bs[i] [14]; Outer product

c[15] += A[O0]*bs[i][15];

Some statistics

* The table from Vasily’s talk

T s e | ourcode

Registers per thread 15 30
Shared memory per thread 8.3 KB 1.1 KB
Vector length 512 B4
Occupancy (8800 GTX) 67% 33%
Performance (8800 GTX) 128 Gflop/s 205 Gflop/s

* This record keeps a while until Feb 2010

HOMEWORK

Prefix Sum

e EX:a=[31704163]. The prefix sum of a is
03411111516 22].

* One of the fundamental tool in many
algorithms
— Radix sort, compression, etc

* The sequential code

Parallel prefix sum

Xo

x,

X2

X5

L

Xs

%o

x,

e B Y B N e |

5 (X X,)

z(xo"xs)

Z(x,--x;)

2(x,..x,)

E(xyX,)

2(x,..x,)

5 (%)

Z(x4..x,)

\.

Z(x,--%,)

Z(x,..x.)

Z(x,-x)

Z(x,--x;)

Z(x,..x)

e TS

2 (%5--X)

Z(x,.-x.)

Z(%p-%)

Z(x,..x,)

E(x,-%)

ford=1to log, ndo
for all k in parallel do

if Kk >=2 7 then
x[k] = x[k — 2 %-1] + x[K]

Homework

* Play with Vasily’s code SGEMM

— In the repository of the google group

* Read parallel prefix sum implementation on
GPU

— http://http.developer.nvidia.com/GPUGems3/gpu

gems3_ch39.htm|
— Implement your own

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

