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SHARED MEMORY AND BANK
CONFLICTION



Memory bank

* To achieve high memory bandwidth, shared
memory is divided into equally-sized memory
modules, called banks

 Memory read/write made of n addresses in n
distinct banks can be serviced simultaneously

 There are 16 banks, which are organized such
that successive 32-bit words are assigned to
successive banks and each bank has a
bandwidth of 32 bits per two clock cycles.



Bank conflict

* |f two addresses of a memory request fall in
the same memory bank, there is a bank
conflict and the access has to be serialized.



No bank conflict

__shared__ float
shared|[32];

float data =
shared[Baselndex + tid];
Or

float data =

shared[Baselndex +
3*tid];
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Another example

e Random access

Thread 0

Thread 1

Thread 2

Thread 3

Bank 0

Bank 1

Bank 2

Bank 3

Thread 4

Thread 5

Thread 6

Bank 4

Bank 5

Bank 6

Thread 7

Thread 8

Thread 9

Bank 7

Bank 8

Bank 9

Thread 10

Thread 11

Bank 10

Bank 11

Thread 12

Thread 13

Thread 14 "

Thread 15

Bank 12

Bank 13

Bank 14

Bank 15




2 way bank conflict

* 2-way

__shared__ double
shared[32];

double data =
shared[Baselndex +
tid];




4 way bank conflict

__shared__ char shared[32];
char data = shared[Baselndex + tid];

Solution:

char data = shared[Baselndex + 4 * tid];



8 way bank conflict

* For example, a structure of 4
floats.
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Broadcast

* No bank conflict for
broadcast

* Right: This access
causes either no bank
conflicts if the word
from bank 5 is the
broadcast during the
first step or 2-way
bank conflicts.
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How to avoid bank conflict?

* The old fashion method: (don’t use it)

__shared  int shared 1lo[32];

__shared  int shared hi[32];

double dataln;

shared lo[BaselIndex+tid]= _ double2loint(dataln);

shared hi[BaselIndex+tid]= _ double2hiint(dataln);

double dataOut = hiloint2double (shared hi[BaselIndex+tid],

shared lo[BaselIndex+tid]);

* For array of structures, bank conflict can be
reduced by changing it to structure of array.

* Memory padding



MEMORY PADDING



Example: C=A*B

__global  void matMult(const float* a, size t 1lda,
const float* b, size t 1ldb, float* c, size t 1ldc, int n) {
shared float matA[BLOCK SIZE] [BLOCK SIZE];
__shared  float matB[BLOCK SIZE] [BLOCK SIZE];
const int tidc = threadldx.x;
const int tidr = threadIdx.y;
const int bidc blockIdx.x * BLOCK SIZE;
const int bidr blockIdx.y * BLOCK SIZE;

for(j = 0; j < n; j += BLOCK SIZE) ({
matA[tidr] [tidec] = a[ (tidr+bidr) *1lda+tidc+j];
matB[tidr] [tidc] = b[ (tidr+j) *1ldb+tidc+bidc];
__syncthreads() ;

for(i = 0; i < BLOCK SIZE; i++)
result += matA[tidr][i] * matB[i] [tidc];



Memory access pattern

e Suppose block size =16
* The memory accessof matA[tidr] [1]

* The memory accessofmatB[i] [tidc]




Memory padding

* When declaring the shared memory, pad extra

space
matB[BLOCK SIZE] [BLOCK SIZE+1];

* When access the memory, the addresses
become 0, 17(=1 mod 16), 34(=2 mod 16) ...




REGISTER ALLOCATION



Register partition

* |In G&O, 8,192 registers in each SM.
— Each register is 4byte long. =»32KB

e The automatic variables declared in a CUDA
kernel are placed into registers

* Register file is the fastest and the largest
on-chip memory

— Keep as much data as possible in registers



Register allocation example
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Example: Configuration 1

 Assume that each block has 256 thread, and
each thread uses 10 registers.

— 3 Blocks can run on each SM
— Requires 256*3*10=7,680 registers (<8,192)
— 768/32=24 warps.

* Suppose for every 4 instructions there is a
memory load. Each takes 200 cycles.

— For normal instruction, a warp takes 4 cycle
— 4x4x24=384 cycles > 200 cycles



Example: Configuration 2

* |f a compiler can 11 registers to change the
dependence pattern so that 8 independent
instructions exist for each global memory load

— Each block needs 256*11=2,816 registers
— Only two blocks can run on each SM

* However, one only needs 200/(8*4) = 7 Warps
to tolerate the memory latency

* Two Blocks have 16 Warps. The performance
can be actually higher!



Vasily Volkov’s matrix-matrix multiplication

CASE STUDY



Some analysis

 Counteriin “for(inti=0;i<n;i++)”
consumes 2KB in registers for block size =512

— Similarly, i++ translates into 512 increments

* Use smaller block size
— If block size=64, 64 increments and 256 bytes

— But we need that many threads to hide
communication



Smaller block size

e Strip-mine longer vectors into shorter at the
program level if necessary

— E.g. instead of using “float a;” and BS=512 use
“float a[8];” and BS=64

— Instead of “a +=b;”, BS=512 use “a[0] += b[O0]; ...;
a[7] +=b[7],”, BS=64

— Use more registers for a, but less space for i, as
well as less computation for increasing i.



Matrix-Matrix Multiply: C=C+A*B

Keep A’s and C’s blocks in registers
Keep B’s block in a shared storage
No other sharing is needed if C’s height = BS.

— BS=64 is the best result from experiments
Choose large enough width of C’s block
— 16 is enough as 2/(1/64+1/16) = 26-way reuse

Choose a convenient thickness for A’s and B’s
blocks



Code

__global  void sgemmNN( const float *A, int 1lda,
const float *B, int 1ldb, float* C, int 1ldc, int k,
float alpha, float beta ) {

// Compute pointers to the data

A += blockIdx.x*64+threadIdx.x +threadIdx.y*16;

B += threadIdx.x+ (blockIdx.y*16+threadIdx.y) *1db;

C += blockIdx.x*64+threadIdx.x+ (threadIdx.y+

blockIdx.y * 1ldc ) * 16;

// declare the shared memory

__shared  float bs[16][17];

Declare on chip float c[1l6] =
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};



The framework

const float *Blast = B + k;
do {
#pragma unroll
for( int 1 = 0; 1 < 16; i += 4 )
bs[threadIdx.x] [threadIdx.y+i] = B[i*1ldb];
// Read next B’s block
B += 16;
___syncthreads() ;
// the computation part: next slide
__syncthreads() ;
__} while( B < Blast );

//Store C’s block to memory

for( int 1 = 0; i < 16; i++, C += ldc )
C[0] = alpha*c[i] + beta*C[O0];

}



#pragma unroll

// The bottleneck: Read A’s columns

for( int i = 0; 1 < 16; i++, A += 1lda ) {
c[0] += A[0]*bs[i][0];
c[1l] += A[0]*bs[i][1];

8
c[2] += A[0]*bs[i][2];
c[3] += A[0]*bs[i][3];
c[4] += A[0]*bs[i][4];
c[5] += A[0]*bs[i][5];
c[6] += A[0]*bs[i][6];
c[7] += A[O0]*bs[1i][7]; A C
c[8] += A[0]*bs[i][8];
c[9] += A[0]*bs[i][9];
c[10] += A[O]*bs[1][10];
c[11l] += A[O]*bs[1i][11];
c[1l2] += A[O]*bs[i][12];

c[13] += A[0]*bs[i] [13];
c[14] += A[0]*bs[i] [14]; Outer product

c[15] += A[O0]*bs[i][15];




Some statistics

* The table from Vasily’s talk

T s e | ourcode

Registers per thread 15 30
Shared memory per thread 8.3 KB 1.1 KB
Vector length 512 B4
Occupancy (8800 GTX) 67% 33%
Performance (8800 GTX) 128 Gflop/s 205 Gflop/s

* This record keeps a while until Feb 2010



HOMEWORK



Prefix Sum

e EX:a=[31704163]. The prefix sum of a is
03411111516 22].

* One of the fundamental tool in many
algorithms
— Radix sort, compression, etc

* The sequential code



Parallel prefix sum
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Homework

* Play with Vasily’s code SGEMM

— In the repository of the google group

* Read parallel prefix sum implementation on
GPU

— http://http.developer.nvidia.com/GPUGems3/gpu

gems3_ch39.htm|
— Implement your own
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