(CS5321 Numerical Optimization Homework 3

Due April 8

1. (50%) The Rosenbrock function f(z,y) = (1 — z)? + 100(y — 2%)? is
shown below, whose minimizer is at (1,1).!
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(a) Derive the gradient and the Hessian of f(z,vy).

(b) Read the Matlab code polyline.m and polymod.m in

(d)

http://wwwd.ncsu.edu/"ctk/matlab_darts.html

and explain which line search algorithm they are implemented.

Use (z9,y0) = (—1.2,1.0) to test the steepest descent method
with the line search algorithm, implemented in steep.m (in the
same repository as (b)), and plot its trace {(xy, yx)}. When calling
steep, the code is like [x, ...]=steep(x0,Q@rosenbrock, ...).
You may modify the code to recode the {(zx,yx)} and use the
plotting code from homework 2.

Implement Newton’s method with line search algorithm, and test
it with (xg,y0) = (—1.2,1.0). Plot its trace and compare the
results, such as the number of iterations, to (c).

You can find reference of this function in MO and Wikipedia.
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2. (25%) We had shown in class that when the line-search algorithm satis-

fies the Wolfe conditions, cos? 0;||V f¢||* — 0, where cos ), =

—PE Vi
IV fe Dl

(Assume ||pg|| # 0 and ||V fx]| # 0.) Therefore, if the search direction
of a method satisfies |cosfy| > § for all k, then we can prove that

(a)

|cos 0|

Assume the matrix norm used satisfies the submultiplicative prop-
erty, ie. [[AB|| < [|A|||B||. Prove that 1/||Z] = 1/(||BZ||[|B~|))
for any nonsingular matrix B.

1] = 1B~ B < ||B~"|||BZ]|
Therefore, 1/||7]| > 1/(||BZ]||B~"])).

In the Newton-like methods, we replace the Hessian matrix with a
symmetric positive definite matrix By, and use p, = —B,, 'V fi as
the search direction. Use (a) to prove that if By, is well conditioned,
i.e. || Belll| By ]| £ M for some constant M, then

1
| cos ;| > U

(Hint: you may use the following property directly: For any sym-
metric positive definite matrix B, @' Bii > 1/||B~!||, where @ is a
unit vector, ||| = 1.)

_q"
\Y
% (by the definition of cos6y.)
k1 Pk
_ ’ﬁZkak’ . _— _1
= m (by the relation Pk = _Bk ka)
> ”ﬁfHQ — (by the property @’ Bu > 1/||B!]].)
IV fellll2k 1 Bl
A ,
= W (cancel out one ||pkl|)
k
P
> ] (by (@)

1BV fullll Bell B

_ 175 (by the relation pjy = —Bk_Ika.)

2 11 B 1B,

= 1/|IBil|IB;Y|| = 1/M  (cancel out ||py|| and use the assumption.)
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. (25%) Prove the formula of SR1.

a) Verify the Sherman-Morrison-Woodbury formula.
(a) y y

For A= A+ ab”,
G g AaaTt
1+0TA- G

(Hint: prove AA~' = A1A=1))

17T A—1
AATY = (A+a") At - ATab AT
14+ 0TA-q

—127T A—1 1T A—121T A—1
- AA—l_m+dgTA—l_ab Aﬁab A
1+0TA G 1+0TA G
_ I+&57A_1—6bTA 1 (bTA 1@)a ibT A1
1+0TA-G
— T4+ abrA Y —at A 1LAP:
1+0TA-G
o Afl—»B’TAfl
ATTA = (A -2 228 ) a+an)
1+bTA- LG
17T 4—1 17T A—1=7T
:A_lA—A abAAA 1T A=ab* A= ab
1+0bTA-1G 1+ bTA-1G
A A7LGT + (BT A @) AT
1+bTA lq
— T+ A gt — A? E‘Tw
l—l—bTA lq



(b) Use (a) and the fact that By is symmetric to prove that if By =
(G — Br—10k) (§k — Br—1pi)"
(Jk — Br-1Pk)" P
(P — Biy3in) (P — By )"
7~ B

B+ , then

Bl =B+

Let @ = §, — Br—1pk, b = @/p, where p = a'pj, = (Y — Bi_1pi) b =
Ut Py — Pr Br_1pk. Then we can rewrite By = By_1 +ab’. Compute the
following terms

B Yda = B (4 — Brapr) = Byl iUk — De (1)
Z;»I‘Bk‘_fll = %(?jk - Bk—lﬁk)TBk_fll = %(Bk_lly_}f - ﬁk)T (2>
B = (B~ )" G~ B
_ %(g,{Bk_ll — ) (@ — Broaii)
= %(ifBgflﬁk — U Dk — DU + Pr Be—1Dk)
1

= ;(fBEjﬁk — G Pk — p) (3)
By the Sherman-Morrison-Woodbury formula,

BL,ab" B,
1+ "B d
_ gl (B Lok — 0k) (B gk —00) o,
= b e s (using(1)(2)(3))
+ (U Bi-aY — Gy e — p)/p

B—l—»_—» B—l—»__,T
= B - ( kily_];ﬂ E?lk)_(, kiﬁk_, 2 (scaling by p)

p+ (yk Bk_1?/k — Y Pk — p)
(ﬁk - Bk_jﬂjk)(ﬁk - B];j1gk)T

L~ B i)

Bl = B -

= B+ (flipping the sign.)



