
2010/11/22

1

Theory of computation

Can computer do anything?
 Which computer are we talking about?
 Supercomputers, Cloud, PC, iPhone, quantum computer, …
 We ill se an abstract m del (T rin machine) We will use an abstract model (Turing machine).

 There are two important problems
 Can computer solve all kinds of problems?

 There are some problems unsolvable by today’s machines or any
future algorithmic machine.
 Ex: The halting problem

 Whi h bl b l d Which problems can be solved
efficiently by computers?
 There are problems too complex

to be solvable in practice.
 The P-NP classification

Turing machines
 Introduced by Alan M. Turing in 1936
 Conceptual device that consists
 A control unit that can read and write symbols on a tape A control unit that can read and write symbols on a tape
 The tape extends indefinitely at both ends
 Each cell on the tape can store a finite set of symbols

 At any time, it must be in one of a finite number of states
 Computation starts in the start state, and stops in the halt state

Turing machine operation
 Inputs at each step
 State
 Val e at c rrent ta e siti n Value at current tape position

 Actions at each step
 Write a value at current tape position
 Move read/write head
 Change state

2010/11/22

2

An example of a Turing machine

* 1 0 1 *01

Church-Turing thesis
 Church-Turing thesis: a Turing machine can compute any

computable function.
 Not proven but generally accepted Not proven, but generally accepted

 Function
 A mapping of a set of input values and a set of output values.
 Each input is assigned a single output

 Computing a function Computing a function
 Determining the output value associated with a given input

 Noncomputable function
 A function that cannot be computed by any algorithm

Which problems cannot be solved by TM?
 Any problem that can be solved on a computer has a

solution expressed in some language
 Any programming language comprising the features of this  Any programming language comprising the features of this

language can surely express a solution to the problem

 The halting problem: for a given program (encoded as a
bit stream), return 1 if the program will eventually halt, or
0 if the program will run forever

 A wrong algorithm: run the program to see if it can halt.
 If the program halts, then return 1.
 If the program doesn’t halts for 10 years, ….

 A problem is solvable means it needs be answered in a
finite number of operations.

An example

While x is not 0
x = x + 1

 Consider this program
 x is a positive integer

 Not considering the finite representation

 If the input x is 0, the program halts.

end

 Otherwise, it does not halt.

2010/11/22

3

Self-reference and self-terminating
 Self-reference: use the encoded program as the input

 Self-terminating: if a program with self-reference can halt,
then it is called self-terminating.
 The example program is not self-terminating.

The undecibility of the halting program
Theorem: the halting problem is noncomputable.
Proof:

Is this new program
self-terminating?

Maybe,…maybe not
But must be one of them.

Proof (continue) Problem classification
 Among solvable problems, some problems appear easier

than the others.
 H t l if bl b d th i diffi lti ? How to classify problems based on their difficulties?
 Classification may be based on time, space, or other computing

resources.
 Unless otherwise noted, “complexity” means “time complexity.”

 Answer: The complexity of a problem is measured by the time
complexity of the “best” algorithm to solve it.

 Unfortunately, finding a best solution or knowing it is the
best is difficult for most problems.
 Ex: The complexity of “searching a list” is O(N).

2010/11/22

4

Class P
 Class P is the set of decision problems that can be solved

by a Turing machine in a polynomial time.
 Decision problem is a problem whose answer is either yes or  Decision problem is a problem whose answer is either yes or

no.
 The halting problem is a decision problem.

 If the problem size is N, polynomial time means the running
time is dominated by a polynomial function of N

 Exponential function f(N)=2N is always larger than the
polynomial p(N)=Nk for any constant k if N is large enoughpolynomial p(N)=N for any constant k if N is large enough.

 Most computer scientists consider the problems in class
P can be solved practically

Class NP
 Class NP is the set of problems that the “yes”-answers

can be verified by a Turing machine in polynomial time.
 The halting problem is in not NP The halting problem is in not NP.

 A million dollar question: P=NP?

 The Clay Math Institute’s first millennium prize problem
 A new proof by Vinay Deolalikar (Aug 2010)

 http://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf

