Theory of computation

Can computer do anything?

Which computer are we talking about?
Supercomputers, Cloud, PC, iPhone, quantum computer, ...
We will use an abstract model (Turing machine).

There are two important problems

Can computer solve all kinds of problems?
There are some problems unsolvable by today’s machines or any
future algorithmic machine.
Ex:The halting problem
Which problems can be solved
efficiently by computers?
There are problems too complex
to be solvable in practice.
The P-NP classification

Turing machines

Introduced by Alan M. Turing in 1936

Conceptual device that consists
A control unit that can read and write symbols on a tape
The tape extends indefinitely at both ends
Each cell on the tape can store a finite set of symbols

Control
unit

Tape Read/write head

{INEENNENNNRE

At any time, it must be in one of a finite number of states
Computation starts in the start state, and stops in the halt state

Turing machine operation

Inputs at each step
State
Value at current tape position
Actions at each step
Write a value at current tape position
Move read/write head
Change state

2010/11/22



An example of a Turing machine

S 1| [efefrfof] [ 16
T

Current state  Current cell Value Direction to move New state

content to write to enter

START . » Left ADD
ADD (1] 1 Right RETURN
ADD 1 0 Left CARRY

ADD # * Right HALT
CARRY (1] 1 Right RETURN
CARRY 1 0 Left CARRY

CARRY i 1 Left OVERFLOW

OVERFLOW » * Right RETURN
RETURN a (1] Right RETURN
RETURN 1 1 Right RETURN

RETURN * * No move HALT

Church-Turing thesis

Church-Turing thesis: a Turing machine can compute any
computable function.
Not proven, but generally accepted

Function
A mapping of a set of input values and a set of output values.
Each input is assigned a single output
Computing a function
Determining the output value associated with a given input
Noncomputable function

A function that cannot be computed by any algorithm

Which problems cannot be solved by TM?

Any problem that can be solved on a computer has a
solution expressed in some language
Any programming language comprising the features of this
language can surely express a solution to the problem
The halting problem: for a given program (encoded as a
bit stream), return | if the program will eventually halt, or
0 if the program will run forever
A wrong algorithm: run the program to see if it can halt.
If the program halts, then return |.
If the program doesn’t halts for 10 years, ....
A problem is solvable means it needs be answered in a
finite number of operations.

An example

While x is not 0
x=x+ |
end

Consider this program
X is a positive integer
Not considering the finite representation
If the input x is 0, the program halts.

Otherwise, it does not halt.

2010/11/22



Self-reference and self-terminating

Self-reference: use the encoded program as the input

Encode the
program as
ong long bit 1 ] E—. d:
While X mot 0 do: Rttern using
iner Xp ASCIL -
and; 0111011101101000...0110010000111011

Assign this pettern to X L
and execute the program. [

Self-terminating: if a program with self-reference can halt,
then it is called self-terminating.

The example program is not self-terminating.

The undecibility of the halting program

Theorem: the halting problem is noncomputable.

PrOOft Now: If this new program wera
salf-tarminating and
First: Proposa the existence Then: If such a program exists, we started it with
of a program that, we could modify it by i o Sekeding
as its input
given any encodad execution would
version of a program reach this point l
l addinga F;%;:ﬁwd 10 produce with X aqual to 1,
a new
structurs | program Prop
B E—— 1 program
meposmm \[ mile X |
| S | while X
L l | /{ not 0 do;
end;
XM“ ha'llt M?l_r‘ahriable I th . 20 srecution
equal to 1 if the S this new program
inﬂn;n renreselnu (] |f Q P g, ::;gg?:‘:m:
self-tarminating - Z
wﬂu“m:mwﬁh X selt-terminating? loop forever:
equal to 0 otherwise.
i.ev, if the new program is
Maybe,...maybe not cai-tarminatiog, thn f
But must be one of them. frecrsstkinmiising

Proof (continue)

Howeavar: If this new program wara Consequently:
potsaibzsaninding aid The existence of the existence of
we started it with the proposed a new program
its own encoding program
i L

gErle Proposed that is neither
execution would would program self-terminating
ramch this point \| FProposed lead to nor not self-
with X equal o 0, | | program —_— | terminating

Pr while X
not 0 do;

| progrem end;

|

|while X -

wn”Pn Ao 50 the existence of the proposed
end;: T program is impossible,

| !
50 this loop
would ba skippad

and execution

would halt;

ie., if the new program
i= not salf-terminating,
then it is self-terminating

Problem classification

Among solvable problems, some problems appear easier
than the others.
How to classify problems based on their difficulties?

Classification may be based on time, space, or other computing
resources.

Unless otherwise noted, “complexity” means “time complexity.”
Answer:The complexity of a problem is measured by the time
complexity of the “best” algorithm to solve it.

Unfortunately, finding a best solution or knowing it is the
best is difficult for most problems.
Ex:The complexity of “searching a list” is O(N).

2010/11/22




Class P

Class P is the set of decision problems that can be solved
by a Turing machine in a polynomial time.
Decision problem is a problem whose answer is either yes or
no.
The halting problem is a decision problem.

If the problem size is N, polynomial time means the running
time is dominated by a polynomial function of N

Exponential function f(N)=2N is always larger than the
polynomial p(N)=NFk for any constant k if N is large enough.
Most computer scientists consider the problems in class

P can be solved practically

Class NP

Class NP is the set of problems that the “yes”-answers
can be verified by a Turing machine in polynomial time.
The halting problem is in not NP.

A million dollar question: P=NP?

Solvable problems Unsolvable problams
. I
I
NP problems
e
4 | i} I |
Dlr:lblems problems

The Clay Math Institute’s first millennium prize problem
A new proof by Vinay Deolalikar (Aug 2010)
http://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf

2010/11/22



