CS5321
 Numerical Optimization

03 Line Search Methods

Line search method

1. Given a point x_{k}, find a descent direction p_{k}.
2. Find the step length α to minimize $f\left(x_{k}+\alpha p_{k}\right)$

- A descent direction p_{k} means the directional derivative $\nabla f\left(x_{k}\right)^{\mathrm{T}} p_{k}<0$
- In Newton's method, $p_{k}=-H_{k} g_{k}$
- Matrix $H_{k}=\nabla^{2} f\left(x_{k}\right)$ is Hessian; $g_{k}=\nabla f\left(x_{k}\right)$ is gradient
- If H_{k} is positive definite, $\nabla f\left(x_{k}\right)^{\mathrm{T}} p_{k}=-g_{k}{ }^{\mathrm{T}} H_{k} g_{k}<0$

Modified Newton's methods

- If the Hessian H is indefinite, ill-conditioned, or singular, the modified Newton's methods compute the inverse of $H+E$, such that
$-(H+E)^{-1} \nabla f\left(x_{k}\right)$ gives a descent direction.
- Matrix E can be calculated via

1. Eigenvalue modification
2. Diagonal shift
3. Modified Cholesky factorization
4. Modified symmetric indefinite factorization

1. Eigenvalue modification

- Modifying the eigenvalues of H such that H becomes positive definite
- Let $H=Q \Lambda Q^{\mathrm{T}}$ be the spectral decomposition of H.
- $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{\mathrm{n}}\right)$ where $\lambda_{1} \geq \ldots \geq \lambda_{\mathrm{i}}>0 \geq \lambda_{\mathrm{i}+1} \ldots \geq \lambda_{\mathrm{n}}$
- Define $\Delta \Lambda=\operatorname{diag}\left(0, \ldots, 0, \Delta \lambda_{i+1}, \ldots, \Delta \lambda_{\mathrm{n}}\right)$ s.t. $\Lambda+\Delta \Lambda>0$
- Matrix $E=Q \Delta \Lambda Q^{T}$
- Problem: the eigenvalue decomposition is too expensive.

2. Diagonal shift

- If $\Delta \Lambda=\operatorname{diag}(\tau, \ldots, \tau)=\tau I, E=Q \Delta \Lambda Q^{\mathrm{T}}=\tau Q Q^{\mathrm{T}}=\tau I$
- To make $H+E$ positive definite, only need to choose $\tau>\left|\lambda_{\mathrm{i}}\right|$, where λ_{i} is minimum negative eigenvalues of H.
- How to know τ without explicitly performing the eigenvalue decomposition?
- If H is positive definite, H has Cholesky decomposition.
- Guess a shift τ and try Cholesky decomposition on $H+\tau I$. If fails, increase τ and try again, until succeed
- The choice of increment is heuristic.

3. Modified Cholesky factorization

- A SPD matrix H can be decomposed as $H=L D L^{\mathrm{T}}$.
- L is unit triangular matrix
- D is diagonal with positive elements
- Relations to Cholesky decomp $H=M M^{\mathrm{T}}$ is $M=L D^{1 / 2}$
- If A is not SPD, modify the elements of L and D during the decomposition such that
- $D(i, i) \geq \delta>0$ and $L(i, j) D(i, i)^{1 / 2} \leq \beta$.
- The decomposition can be used in solving linear systems.

4. Modified symmetric indefinite factorization

- Symmetric indefinite factorization $P H P^{\mathrm{T}}=L B L^{\mathrm{T}}$
- better numerical stability than Cholesky decomposition
- Matrix B has the same inertia as H.
- The inertia of a matrix is the number of positive, zero, and negative eigenvalues of the matrix.
- Use eigenvalue modification to B st. $\mathrm{B}+\mathrm{F}$ is positive definite
- The eigen-decomp of B is cheap since it is block diagonal
- Thus, $P(H+E) P^{\mathrm{T}}=L(B+F) L^{\mathrm{T}}$ and $E=P^{T} L F L^{T} P$

Step length α

- Assume p_{k} is a descent direction. Find an optimal step length α.

$$
\min _{\alpha>0} \phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
$$

- The minimization problem may be difficult to solve. (nonlinear)
- Alternative method is to find an α that satisfies some conditions
- Wolfe conditions
- Goldstein conditions

The Goldstein conditions

- With $0<c<1 / 2$,

$$
\begin{aligned}
f\left(x_{k}\right)+(1-c) \alpha \nabla f_{k}^{T} p_{k} & \leq f\left(x_{k}+\alpha p_{k}\right) \\
& \leq f\left(x_{k}\right)+c \alpha \nabla f_{k}^{T} p_{k}
\end{aligned}
$$

- Suitable for Newton-typed methods, but not well suited for quasi-Newton methods

The Wolfe conditions

- Sufficient decrease condition: for $c_{1} \in(0,1)$

$$
f\left(x_{k}+\alpha p_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f\left(x_{k}\right)^{T} p_{k}
$$

- Curvature condition: for $c_{2} \in\left(0, c_{1}\right)$

$$
\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k} \geq c_{2} \nabla f\left(x_{k}\right)^{T} p_{k}
$$

- Usually choose $c_{2}=0.9$ for Newton's method and $c_{2}=0.1$ for conjugate gradient method

The Wolfe conditions

The strong Wolfe conditions

- Limit the range of $\phi^{\prime}\left(\alpha_{k}\right)$ from both sides

$$
\begin{aligned}
f\left(x_{k}+\alpha p_{k}\right) & \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f\left(x_{k}\right)^{T} p_{k} \\
\left|\nabla f\left(x_{k}+\alpha p_{k}\right)^{T} p_{k}\right| & \leq c_{2}\left|\nabla f\left(x_{k}\right)^{T} p_{k}\right|
\end{aligned}
$$

The strong
Wolfe conditions

Convergence of line search

- For a descent direction p_{k} and a step length α that satisfies the Wolfe condition, if f is bounded below and continuously differentiable in an open neighborhood \mathcal{N} and ∇f is Lipschitz continuous in \mathcal{N}, then

$$
\cos ^{2} \theta_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \rightarrow 0
$$

- θ_{k} is the angle between p_{k} and $\nabla f\left(x_{k}\right)$
- Note that can be either $\cos \theta_{k} \rightarrow 0$ or $\left\|\nabla f\left(x_{k}\right)\right\| \rightarrow 0$
- Other two methods have similar results

