CS5321 Numerical Optimization

03 Line Search Methods

2/26/2009

Line search method

- 1. Given a point x_k , find a descent direction p_k .
- 2. Find the step length α to minimize $f(x_k + \alpha p_k)$
- A descent direction p_k means the directional derivative $\nabla f(x_k)^T p_k < 0$
- In Newton's method, $p_k = -H_k g_k$
 - Matrix $H_k = \nabla^2 f(x_k)$ is Hessian; $g_k = \nabla f(x_k)$ is gradient
 - If H_k is positive definite, $\nabla f(x_k)^T p_k = -g_k^T H_k g_k < 0$

Modified Newton's methods

- If the Hessian *H* is indefinite, ill-conditioned, or singular, the modified Newton's methods compute the inverse of *H*+*E*, such that -(*H*+*E*)⁻¹∇*f*(*x_k*) gives a descent direction.
- Matrix *E* can be calculated via
 - 1. Eigenvalue modification
 - 2. Diagonal shift
 - 3. Modified Cholesky factorization
 - 4. Modified symmetric indefinite factorization

1. Eigenvalue modification

- Modifying the eigenvalues of *H* such that *H* becomes positive definite
- Let $H=QAQ^{T}$ be the spectral decomposition of H.
 - $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ where $\lambda_1 \ge \dots \ge \lambda_i \ge 0 \ge \lambda_{i+1} \dots \ge \lambda_n$
 - Define $\Delta A = \text{diag}(0, \dots, 0, \Delta \lambda_{i+1}, \dots, \Delta \lambda_n)$ s.t. $A + \Delta A > 0$
 - Matrix $E = Q \Delta \Lambda Q^{\mathrm{T}}$
- Problem: the eigenvalue decomposition is too expensive.

2. Diagonal shift

- If ΔA =diag $(\tau, ..., \tau) = \tau I$, $E = Q\Delta AQ^{T} = \tau QQ^{T} = \tau I$
 - To make H+E positive definite, only need to choose $\tau > |\lambda_i|$, where λ_i is minimum negative eigenvalues of H.
- How to know τ without explicitly performing the eigenvalue decomposition?
 - If *H* is positive definite, *H* has Cholesky decomposition.
 - Guess a shift τ and try Cholesky decomposition on *H*+τ*I*.
 If fails, increase τ and try again, until succeed
 - The choice of increment is heuristic.

3. Modified Cholesky factorization

- A SPD matrix H can be decomposed as $H=LDL^{T}$.
 - *L* is unit triangular matrix
 - D is diagonal with positive elements
 - Relations to Cholesky decomp $H=MM^{T}$ is $M=LD^{1/2}$
- If *A* is not SPD, modify the elements of *L* and *D* during the decomposition such that
 - $D(i,i) \ge \delta > 0$ and $L(i,j)D(i,i)^{1/2} \le \beta$.
- The decomposition can be used in solving linear systems.

4. Modified symmetric indefinite factorization

- Symmetric indefinite factorization *PHP*^T=*LBL*^T
 - better numerical stability than Cholesky decomposition
 - Matrix *B* has the same *inertia* as *H*.
 - The inertia of a matrix is the number of positive, zero, and negative eigenvalues of the matrix.
 - Use eigenvalue modification to B st. B+F is positive definite
 - The eigen-decomp of *B* is cheap since it is block diagonal
 - Thus, $P(H+E)P^{T}=L(B+F)L^{T}$ and $E=P^{T}LFL^{T}P$

Step length α

• Assume p_k is a descent direction. Find an optimal step length α .

 $\min_{\alpha>0}\phi(\alpha) = f(x_k + \alpha p_k)$

- The minimization problem may be difficult to solve. (nonlinear)
- Alternative method is to find an α that satisfies some conditions
 - Wolfe conditions
 - Goldstein conditions

The Goldstein conditions

- With 0 < c < 1/2,
 - $f(x_k) + (1 c)\alpha \nabla f_k^T p_k \le f(x_k + \alpha p_k)$ $\le f(x_k) + c\alpha \nabla f_k^T p_k$
- Suitable for Newton-typed methods, but not well suited for quasi-Newton methods

The Wolfe conditions

• Sufficient decrease condition: for $c_1 \in (0,1)$

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f(x_k)^T p_k$$

• Curvature condition: for $c_2 \in (0, c_1)$

$$\nabla f(x_k + \alpha p_k)^T p_k \ge c_2 \nabla f(x_k)^T p_k$$

• Usually choose $c_2=0.9$ for Newton's method and $c_2=0.1$ for conjugate gradient method

The strong Wolfe conditions

• Limit the range of $\phi'(\alpha_k)$ from both sides $f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f(x_k)^T p_k$ $|\nabla f(x_k + \alpha p_k)^T p_k| \le c_2 |\nabla f(x_k)^T p_k|$ The strong Wolfe conditions

Convergence of line search

• For a descent direction p_k and a step length α that satisfies the Wolfe condition, if f is bounded below and continuously differentiable in an open neighborhood \mathcal{N} and ∇f is Lipschitz continuous in \mathcal{N} , then

$$\cos^2 \theta_k \|\nabla f(x_k)\|^2 \to 0$$

- θ_k is the angle between p_k and $\nabla f(x_k)$
- Note that can be either $\cos \theta_k \rightarrow 0$ or $\|\nabla f(x_k)\| \rightarrow 0$
- Other two methods have similar results